MIT 18.211: COMBINATORIAL ANALYSIS

FELIX GOTTI

LECTURE 12: PERMUTATIONS II

Recall that for every $n \in \mathbb{N}$ and $k \in [n]$ the Stirling number of the second kind S(n,k) counts the set of partitions of [n] into k blocks. Now that we know how to represent a permutation into disjoint cycles, we introduce the following numbers.

Definition 1. For $n, k \in \mathbb{N}$, we let c(n, k) denote the number of permutations of S_n whose disjoint cycle decompositions consist of k cycles, and we call c(n, k) a signless Stirling number of the first kind.

It is clear that c(n,k) = 0 when $k \notin [n]$, and it is convenient to extend signless Stirling numbers by setting c(0,0) = 1 and c(0,k) = 0 for every $k \in \mathbb{N}$.

Example 2. If the disjoint cycle decomposition of $\pi \in S_n$ consists of n cycles, then each cycle must have length 1, which means that π is the identity permutation. Thus, c(n,n) = 1. We have seen before that there are (n-1)! permutations in S_n whose disjoint cycle decomposition consists of only one cycle, so c(n,1) = (n-1)!.

As in the case of Stirling numbers of the second kind, we can express c(n, k) in terms of c(n-1, k-1) and c(n-1, k).

Proposition 3. For $n \in \mathbb{N}$ and $k \in [n]$, the following recurrence identity holds:

(0.1)
$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k)$$

Proof. By the definition of the signless Stirling numbers, the left-hand side of (0.1) equals the number of permutations in S_n whose disjoint cycle decomposition consists of k cycles. Let us count the same set in a different ways. To count the number of permutations in S_n having n as a cycle by itself, choose a permutation of S_{n-1} with k-1 cycles in its disjoint cycle decomposition and then include (n) as a cycle; this can be done in c(n-1, k-1) ways. To count the permutations in S_n having n as part of a cycle of length at least 2, choose a permutation of S_{n-1} with k cycles in its disjoint cycle decomposition of S_{n-1} with k cycles in its disjoint cycle decomposition and then include (n) as a cycle; this can be done in c(n-1, k-1) ways. To count the permutations in S_n having n as part of a cycle of length at least 2, choose a permutation of S_{n-1} with k cycles in its disjoint cycle decomposition and then insert n in any cycle after any of the elements in such a cycle (not at the beginning because this would give the same permutation that we have obtained by placing n at the end). This can be done in (n-1)c(n-1,k) ways. Hence the number of permutations in S_n with k cycles in their disjoint cycle decompositions is c(n-1, k-1) + (n-1)c(n-1, k), which is the right-hand side of (0.1).

We can use the recurrence identity in (0.1) to prove the following result.

Proposition 4. For each $n \in \mathbb{N}_0$ the following polynomial identity holds:

(0.2)
$$\sum_{k=0}^{n} c(n,k)x^{k} = x(x+1)\cdots(x+n-1).$$

Proof. Set $F_n(x) := x(x+1)\cdots(x+n-1)$ for every $n \in \mathbb{N}_0$. Observe that, for each $n \in \mathbb{N}$, the function $F_n(x)$ is a polynomial of degree n with nonnegative integer coefficients. Thus, we can write $F_n(x) = \sum_{k=0}^n d(n,k)x^k$, where $d(n,k) \in \mathbb{N}_0$ for every $k \in [0,n]$. Observe that $F_0(x) = 1$ (the product of no factors is 1 by convention), and so d(0,0) = 1 and d(0,k) = 0 for any $k \in \mathbb{N}$. In addition,

$$\sum_{k=0}^{n} d(n,k)x^{k} = x(x+1)\cdots(x+n-1) = (x+n-1)F_{n-1}(x)$$
$$= (x+n-1)\sum_{k=0}^{n-1} d(n-1,k)x^{k}$$
$$= \sum_{k=0}^{n-1} d(n-1,k)x^{k+1} + \sum_{k=0}^{n-1} (n-1)d(n-1,k)x^{k}$$
$$= \sum_{k=1}^{n} d(n-1,k-1)x^{k} + \sum_{k=0}^{n-1} (n-1)d(n-1,k)x^{k}.$$

As a result, we obtain that d(n,k) = d(n-1,k-1) + (n-1)d(n-1,k) for every $n \in \mathbb{N}$ and $k \in [n]$. Therefore the sequences c(n,k) and d(n,k) satisfy the same recurrence identity. Since they coincide when either n = 0 or k = 0, they must be equal, whence (0.2) must hold.

Let us define Stirling numbers of the first kind.

Definition 5. For $n, k \in \mathbb{N}_0$, we call $(-1)^{n-k}c(n,k)$ a Stirling number of the first kind, and we denote it by s(n,k).

Recall that Stirling numbers of the second kind satisfy the following recurrence identity

(0.3)
$$x^{n} = \sum_{k=0}^{n} S(n,k)(x)_{k}$$

where $(x)_k = x(x-1)\cdots(x-k+1)$. As a consequence of Proposition 4, we obtain the following (somehow) similar polynomial equation for Stirling numbers of the first kind.

Corollary 6. For each $n \in \mathbb{N}$, the following polynomial identity holds:

(0.4)
$$\sum_{k=0}^{n} s(n,k)x^{k} = (x)_{n},$$

Proof. It suffices to see that

$$\sum_{k=0}^{n} s(n,k)x^{k} = (-1)^{n} \sum_{k=0}^{n} c(n,k)(-x)^{k} = (-1)^{n} \prod_{j=0}^{n-1} (-x+j) = \prod_{j=0}^{n-1} (x-j) = (x)_{n},$$

where the second equality follows from Proposition 4.

where the second equality follows from Proposition 4.

We conclude this section with the following linear algebra observation.

Remark 7. Let $\mathbb{Q}[x]$ denote the vector space consisting of all polynomials with coefficients in the field \mathbb{Q} and, for each $n \in \mathbb{N}_0$, let V_n denote the subspace of $\mathbb{Q}[x]$ consisting of all polynomials of $\mathbb{Q}[x]$ of degree at most n. It is clear that the set of monic monomials $\beta := \{x^k \mid k \in [0, n]\}$ is a basis of V_n . In addition, it is not hard to argue that the set $\beta' := \{(x)_k \mid k \in [[0, n]]\}$ is also a basis of V_n . By virtue of (0.3), the matrix $B' := (S(n,k))_{n,k \in [0,n]}$ is the matrix of change of coordinates from β' to β . Similarly, (0.4) means that the matrix $B := (s(n,k))_{n,k \in [0,n]}$ is the matrix of change of coordinates from β to β' . As a result, we obtain that the matrices B and B', whose entries are given by the Stirling numbers of the first and second kind, respectively, are inverses of each other, that is, $BB' = B'B = I_{n+1}$.

PRACTICE EXERCISES

Exercise 1. [1, Exercise 6.2] For any positive integer n with $n \ge 2$, find a formula for c(n, n-2).

Exercise 2. [1, Exercise 6.31] What is the number of permutations in S_{2n} whose longest cycle has length n?

References

[1] M. Bóna: A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory (Fourth Edition), World Scientific, New Jersey, 2017.

DEPARTMENT OF MATHEMATICS, MIT, CAMBRIDGE, MA 02139 Email address: fgotti@mit.edu