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LECTURE 12: PERMUTATIONS 11

Recall that for every n € N and k € [n] the Stirling number of the second kind
S(n, k) counts the set of partitions of [n] into k blocks. Now that we know how to
represent a permutation into disjoint cycles, we introduce the following numbers.

Definition 1. For n,k € N, we let ¢(n, k) denote the number of permutations of S,
whose disjoint cycle decompositions consist of k cycles, and we call ¢(n, k) a signless
Stirling number of the first kind.

It is clear that c¢(n,k) = 0 when k ¢ [n], and it is convenient to extend signless
Stirling numbers by setting ¢(0,0) = 1 and ¢(0, k) = 0 for every k € N.

Example 2. If the disjoint cycle decomposition of m € S,, consists of n cycles, then
each cycle must have length 1, which means that 7 is the identity permutation. Thus,
c¢(n,n) = 1. We have seen before that there are (n — 1)! permutations in S,, whose
disjoint cycle decomposition consists of only one cycle, so ¢(n,1) = (n — 1)L

As in the case of Stirling numbers of the second kind, we can express ¢(n, k) in terms
of c(n — 1,k —1) and ¢(n — 1, k).

Proposition 3. Forn € N and k € [n], the following recurrence identity holds:
(0.1) cnyk)=cn—1,k—1)+ (n— 1)c(n — 1, k).

Proof. By the definition of the signless Stirling numbers, the left-hand side of (0.1)
equals the number of permutations in \5,, whose disjoint cycle decomposition consists
of k£ cycles. Let us count the same set in a different ways. To count the number of
permutations in S,, having n as a cycle by itself, choose a permutation of S,,_; with
k —1 cycles in its disjoint cycle decomposition and then include (n) as a cycle; this can
be done in ¢(n — 1,k — 1) ways. To count the permutations in S, having n as part of
a cycle of length at least 2, choose a permutation of S, ; with k cycles in its disjoint
cycle decomposition and then insert n in any cycle after any of the elements in such a
cycle (not at the beginning because this would give the same permutation that we have
obtained by placing n at the end). This can be done in (n — 1)c¢(n — 1, k) ways. Hence
the number of permutations in .S,, with k cycles in their disjoint cycle decompositions
iscn—1,k—1)+ (n—1)c(n — 1, k), which is the right-hand side of (0.1). O
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We can use the recurrence identity in (0.1) to prove the following result.

Proposition 4. For each n € Ny the following polynomial identity holds:
(0.2) Zc(n,k)xk =z(z+1)---(z+n-1).
k=0

Proof. Set F,(xz) = z(x +1)---(x +n — 1) for every n € Ny. Observe that, for
each n € N, the function F,(z) is a polynomial of degree n with nonnegative integer
coefficients. Thus, we can write F,(z) = Y _,_, d(n, k)z*, where d(n, k) € Ny for every
k € [0,n]. Observe that Fy(xz) =1 (the product of no factors is 1 by convention), and
so d(0,0) =1 and d(0,k) = 0 for any k£ € N. In addition,

Y dn k)t =z(@+ 1) (wtn—1) = (x+n-1)F,_(z)

=(z+n—-1Y dn-1k)a2"
0

n—1 n—1
= dn— 1,k +> (n—1)d(n — 1,k)2"
k=0

k=0
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n n—1
= Zd(n — 1,k —1)2" + Z(n — 1)d(n — 1,k)a".
k=1 k=0

As a result, we obtain that d(n, k) =d(n—1,k—1)+ (n—1)d(n—1,k) for every n € N
and k € [n]. Therefore the sequences c(n, k) and d(n, k) satisfy the same recurrence
identity. Since they coincide when either n = 0 or k£ = 0, they must be equal, whence
(0.2) must hold. O

Let us define Stirling numbers of the first kind.

Definition 5. For n, k € Ny, we call (—1)""*¢(n, k) a Stirling number of the first kind,
and we denote it by s(n, k).

Recall that Stirling numbers of the second kind satisfy the following recurrence
identity

(0.3) "= S k) (@),
k=0

where (z)y = z(z —1)---(x — k + 1). As a consequence of Proposition 4, we obtain
the following (somehow) similar polynomial equation for Stirling numbers of the first

kind.
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Corollary 6. For each n € N, the following polynomial identity holds:

n

(0.4) > s(n k)a* = (2)n,

k=0
Proof. Tt suffices to see that
n n n—1 n—1
Y s(nk)zt = (=1 Y eln, k) (—a)* = (1) [ (e +J) = [[(@ = 5) = (@),
k=0 k=0 3=0 §=0
where the second equality follows from Proposition 4. O

We conclude this section with the following linear algebra observation.

Remark 7. Let Q[x] denote the vector space consisting of all polynomials with co-
efficients in the field Q and, for each n € Ny, let V,, denote the subspace of Q[z]
consisting of all polynomials of Q[z] of degree at most n. It is clear that the set of
monic monomials 3 := {z* | k € [0,n]} is a basis of V,,. In addition, it is not hard to
argue that the set 5" := {(z)x | £ € [0,n]} is also a basis of V,,. By virtue of (0.3),
the matrix B’ := (S(n, k))nkefon] is the matrix of change of coordinates from ' to 3.
Similarly, (0.4) means that the matrix B := (s(n, k))nkefon] is the matrix of change of
coordinates from (8 to 8’. As a result, we obtain that the matrices B and B’, whose
entries are given by the Stirling numbers of the first and second kind, respectively, are
inverses of each other, that is, BB’ = B'B = 1I,,,.

PRACTICE EXERCISES
Exercise 1. [1, Exercise 6.2] For any positive integer n with n > 2, find a formula for
c(n,n—2).

Exercise 2. [1, Exercise 6.31] What is the number of permutations in Ss, whose longest
cycle has length n?
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