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Lecture 12: Permutations II

Recall that for every n ∈ N and k ∈ [n] the Stirling number of the second kind
S(n, k) counts the set of partitions of [n] into k blocks. Now that we know how to
represent a permutation into disjoint cycles, we introduce the following numbers.

Definition 1. For n, k ∈ N, we let c(n, k) denote the number of permutations of Sn

whose disjoint cycle decompositions consist of k cycles, and we call c(n, k) a signless
Stirling number of the first kind.

It is clear that c(n, k) = 0 when k /∈ [n], and it is convenient to extend signless
Stirling numbers by setting c(0, 0) = 1 and c(0, k) = 0 for every k ∈ N.

Example 2. If the disjoint cycle decomposition of π ∈ Sn consists of n cycles, then
each cycle must have length 1, which means that π is the identity permutation. Thus,
c(n, n) = 1. We have seen before that there are (n − 1)! permutations in Sn whose
disjoint cycle decomposition consists of only one cycle, so c(n, 1) = (n− 1)!.

As in the case of Stirling numbers of the second kind, we can express c(n, k) in terms
of c(n− 1, k − 1) and c(n− 1, k).

Proposition 3. For n ∈ N and k ∈ [n], the following recurrence identity holds:

(0.1) c(n, k) = c(n− 1, k − 1) + (n− 1)c(n− 1, k).

Proof. By the definition of the signless Stirling numbers, the left-hand side of (0.1)
equals the number of permutations in Sn whose disjoint cycle decomposition consists
of k cycles. Let us count the same set in a different ways. To count the number of
permutations in Sn having n as a cycle by itself, choose a permutation of Sn−1 with
k−1 cycles in its disjoint cycle decomposition and then include (n) as a cycle; this can
be done in c(n− 1, k − 1) ways. To count the permutations in Sn having n as part of
a cycle of length at least 2, choose a permutation of Sn−1 with k cycles in its disjoint
cycle decomposition and then insert n in any cycle after any of the elements in such a
cycle (not at the beginning because this would give the same permutation that we have
obtained by placing n at the end). This can be done in (n− 1)c(n− 1, k) ways. Hence
the number of permutations in Sn with k cycles in their disjoint cycle decompositions
is c(n− 1, k − 1) + (n− 1)c(n− 1, k), which is the right-hand side of (0.1). �
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We can use the recurrence identity in (0.1) to prove the following result.

Proposition 4. For each n ∈ N0 the following polynomial identity holds:

(0.2)
n∑

k=0

c(n, k)xk = x(x+ 1) · · · (x+ n− 1).

Proof. Set Fn(x) := x(x + 1) · · · (x + n − 1) for every n ∈ N0. Observe that, for
each n ∈ N, the function Fn(x) is a polynomial of degree n with nonnegative integer
coefficients. Thus, we can write Fn(x) =

∑n
k=0 d(n, k)xk, where d(n, k) ∈ N0 for every

k ∈ J0, nK. Observe that F0(x) = 1 (the product of no factors is 1 by convention), and
so d(0, 0) = 1 and d(0, k) = 0 for any k ∈ N. In addition,

n∑
k=0

d(n, k)xk = x(x+ 1) · · · (x+ n− 1) = (x+ n− 1)Fn−1(x)

= (x+ n− 1)
n−1∑
k=0

d(n− 1, k)xk

=
n−1∑
k=0

d(n− 1, k)xk+1 +
n−1∑
k=0

(n− 1)d(n− 1, k)xk

=
n∑

k=1

d(n− 1, k − 1)xk +
n−1∑
k=0

(n− 1)d(n− 1, k)xk.

As a result, we obtain that d(n, k) = d(n−1, k−1)+(n−1)d(n−1, k) for every n ∈ N
and k ∈ [n]. Therefore the sequences c(n, k) and d(n, k) satisfy the same recurrence
identity. Since they coincide when either n = 0 or k = 0, they must be equal, whence
(0.2) must hold. �

Let us define Stirling numbers of the first kind.

Definition 5. For n, k ∈ N0, we call (−1)n−kc(n, k) a Stirling number of the first kind,
and we denote it by s(n, k).

Recall that Stirling numbers of the second kind satisfy the following recurrence
identity

(0.3) xn =
n∑

k=0

S(n, k)(x)k,

where (x)k = x(x − 1) · · · (x − k + 1). As a consequence of Proposition 4, we obtain
the following (somehow) similar polynomial equation for Stirling numbers of the first
kind.
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Corollary 6. For each n ∈ N, the following polynomial identity holds:

(0.4)
n∑

k=0

s(n, k)xk = (x)n,

Proof. It suffices to see that
n∑

k=0

s(n, k)xk = (−1)n
n∑

k=0

c(n, k)(−x)k = (−1)n
n−1∏
j=0

(−x+ j) =
n−1∏
j=0

(x− j) = (x)n,

where the second equality follows from Proposition 4. �

We conclude this section with the following linear algebra observation.

Remark 7. Let Q[x] denote the vector space consisting of all polynomials with co-
efficients in the field Q and, for each n ∈ N0, let Vn denote the subspace of Q[x]
consisting of all polynomials of Q[x] of degree at most n. It is clear that the set of
monic monomials β := {xk | k ∈ J0, nK} is a basis of Vn. In addition, it is not hard to
argue that the set β′ := {(x)k | k ∈ J0, nK} is also a basis of Vn. By virtue of (0.3),
the matrix B′ := (S(n, k))n,k∈J0,nK is the matrix of change of coordinates from β′ to β.
Similarly, (0.4) means that the matrix B := (s(n, k))n,k∈J0,nK is the matrix of change of
coordinates from β to β′. As a result, we obtain that the matrices B and B′, whose
entries are given by the Stirling numbers of the first and second kind, respectively, are
inverses of each other, that is, BB′ = B′B = In+1.

Practice Exercises

Exercise 1. [1, Exercise 6.2] For any positive integer n with n ≥ 2, find a formula for
c(n, n− 2).

Exercise 2. [1, Exercise 6.31] What is the number of permutations in S2n whose longest
cycle has length n?
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