MIT 18.211: COMBINATORIAL ANALYSIS

FELIX GOTTI

LECTURE 11: PERMUTATIONS I

For every n € N, let S,, denote the set of all permutations of [n]. Recall that,
by definition, a permutation in S,, can be represented as a linear arrangement of the
elements of [n]. This representation is often referred to as a word representation. In
addition, we have learned in previous lectures how to represent a permutation based on
its set of inversions, and we called this representation the inversion table. The primary
purpose of this lecture is to introduce a further representation for permutations. This
representation, which consists of certain disjoint cycles, is useful in a wide variety of
situations.

Recall that a permutation 7 = w;...w, in S, can be considered as a function,
namely, the function determined by the assignments 7 (i) = w; for every i € [n]. We
have also seen before that, as functions, permutations are indeed bijections on [n].
Conversely, every bijection w: [n] — [n] yields the linear arrangement w(1)...w(n),
which is a permutation of [n]. Under the operation of composition of functions, S,, is
a group, and somehow every finite group is inside S,, for some large n. However, we
will not delve into the wonderful algebraic structure of \S,, as part of this course.

Let m: [n] — [n] be a permutation, and fix k¥ € [n]. By the PHP, there exist
i,7 € [0,n] with ¢ < j such that 7*(k) = 7/ (k), where 7™ denote the bijection we obtain
by composing 7 with itself m times (we assume that 7° is the identity function on [n],
which means that 7°(a) = a for every a € [n]). Let s be the smallest element in [1, n]
such that there exists r € [0, s — 1] with 7" (k) = 7°(k). Note that r = 0 as, otherwise,
the injectivity of m would imply that 7"~!(k) = 75~!(k), contradicting the minimality
of s. Hence, for every k € [n], there exists s € [n] such that k,7w(k),...,m (k) are
pairwise distinct and 7%(k) = k.

Definition 1. For a permutation 7: [n] — [n] and k € [n], we call (k, w(k), ..., 7 "1(k))
a cycle of 7 of length s provided that k,m(k),..., 7 1(k) are pairwise distinct and
(k) = k.

With notation as in the previous definition, the cycles (k,m(k),..., 757 (k)) and
(7'(k), 7Y (k),..., 7Y (k),k,..., 71 (k)) are considered the same cycle for every i €
[s — 1]. Therefore each k € [n] appears in a unique cycle of 7, and so we can assign a

formal product of disjoint cycles C - -- C, to m, where every element of [n] belongs to
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a unique cycle C;. Two such formal products of cycles are considered the same if one
of them can be obtained by permuting the cycles of the other one.

Definition 2. The representation of m € S,, as a formal product of disjoint cycles is
called the disjoint cycle decomposition of .

Observe that given a product of disjoint cycles C' - - - C} satisfying that every element
of [n] is in one of the cycles Cj, there is a permutation 7 € S,, whose disjoint cycle
decomposition is Cj---Cy. We can obtain 7 as follows: for each k, set w(k) = 7,
where 7 is the first entry in the cycle containing k& if k is the last entry and j proceeds k
if k£ is not the last entry.

Example 3. Let us find the disjoint cycle decomposition of the permutation 7 =
783295146 € Sy. First, we identify the cycle containing 1. Since 7(1) =7 and 7 (7) = 1,
the desired cycle is C} := (1,7). Now let us identify the cycle containing the smallest
element of [9] that is not an entry of C}, which is 2. Because 7(2) = 8, w(8) = 4, and
7(4) = 2, the cycle we are looking for is Cy := (2,8,4). Let us proceed to identify the
cycle containing 3, which is the smallest element of [9] that is neither an entry of C}
nor an entry of Cy. Since m(3) = 3, we get that C5 := (3). Now we identify the cycle
containing 5, the smallest element of [9] that is not an entry of any of the cycles already
found. As w(5) =9, 7(9) =6, and 7(6) = 5, the desired cycle is Cy := (5,9,6). Hence
the disjoint cycle decomposition of 7 is (1,7)(2,8,4)(3)(5,9,6).

Following standard conventions, we will omit the cycles of length 1 in the disjoint
cycle decomposition of any permutation. For instance, if 7 is the permutation in the
previous example, we omit the cycle (3) in its disjoint cycle decomposition, simply
writing 7 = (1,7)(2,8,4)(5,9,6).

Definition 4. Let m € S,,. If for every i € [n] the disjoint cycle decomposition of 7
has precisely a; cycles of length i, then (aq,...,a,) is called the (cycle) type of =.

For instance, the cycle type of the permutation 7 in Example 3is (1,1, 2,0,0,0,0,0,0).

Example 5. Let us count the set of permutations of Sy whose disjoint cycle decomposi-
tions have exactly one cycle, that is, whose cycle type is (0,0,0,0,0,0,0,0,1). Well, we
can choose a linear arrangement wyws . . . wg of the elements of [9] in 9! ways, and then
we can turn such a linear arrangement into the cycle decomposition (wy,ws, ..., wy),
which consists of precisely one cycle of length 9. However, observe that the 9 rotations
of the cycle (wq,ws, ..., wy) yield the same permutation. Therefore each permuta-
tion with cycle type (0,0,0,0,0,0,0,0,1) has been counted 9 times. Hence there are
9!/9 = 8! permutations of Sy consisting of exactly one (disjoint) cycle.

Example 6. Now we count the set of permutations of S; whose disjoint cycle decom-
positions consist of two cycles, one of them of length 3, that is, whose cycle type is
(0,0,1,1,0,0,0). As in the previous example, we choose a linear arrangement wy . . . wy
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of [7] in 7! ways, and this time we introduce 2 pairs of parentheses to obtain the cy-
cle decomposition (wy, ws, ws)(wy, ws, wg, wy). Observe that all the 3 rotations of the
cycle (wq,wq, ws3) yield the same permutation and also all the 4 rotations of the cy-
cle (wy, ws, wg, wy) yield the same permutation. Therefore we have to compensate the
overcounting caused by these rotations, which amounts to dividing by 12 = 3-4. Hence
there are 7!/12 permutations in S; whose cycle type is (0,0, 1,1,0,0,0).

Keeping the previous two examples in mind, we can establish a formula for the
number of permutations of [n| having any prescribed cycle type.

Theorem 7. Let ay,...,a, € Ny such that a1 4+ 2as + - - - +na, = n. Then the number
of permutations with cycle type (ay,...,a,) is

n!

a1!a2! . .an! . 10«12@2 c e nln ’

Proof. Suppose that we have n consecutive blank spaces, and insert a; + - - - + a,, pairs
of parenthesis from left to right in n steps as follows. In the i-th step, insert a; pairs
of parentheses in such a way that

(1) the first parenthesis of the first pair is right after the last parenthesis inserted
in a previous step (if ¢ > 1) and right before the first blank (if i = 1),

(2) leave exactly ¢ blanks between each of the a; pairs of parentheses, and

(3) leave no blank between consecutive pairs of parentheses.

For instance, when n = 9 the configuration of blanks and parenthesis corresponding to
the cycle type (1,2,0,1,0,0,0,0,0) is

()=o),

Now we can fill the n consecutive blanks by choosing a linear arrangement 7 of [n] in

n! ways. This gives us a permutation whose cycle type is (aq,...,a,). Now for each
i € [n] there are a; cycles of length i whose ;! linear arrangements yield the same
permutation; therefore we are overcounting each permutation alas!---a,! times due

to this situation. In addition, for each i € [n] all the i rotations of each of the a; cycle of
length 4 yield the same permutation; therefore we are overcounting each permutation
191292 ... n% times due to this second situation. Hence we conclude that the number
of permutations in S,, with cycle type (a1, ..., a,) is

n!

al!a2! .o .an! . 10«12(12 .o enln ’
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PRACTICE EXERCISES

Exercise 1. [1, Exercise 6.6] Find a recurrence formula for the number of permutations
of S, whose cube is the identity permutation.

Exercise 2. [1, Exercise 6.31| Find the number of permutations of Sa, whose largest
cycle has length n.
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