Problem Set 7 (Bonus)

Problem 1 Le P be a finite poset with no isolated elements (an isolated element of a poset is an element that is only comparable with itself). Suppose that the longest chain of P has length ℓ , and assume that for all $s, t \in P$ with $s \lt t$ there is a chain of length ℓ containing both s and t. Prove that every maximal chain of P has length ℓ .

Problem 2 Prove that a lattice is modular if and only if it does not contain the pentagonal lattice below as a sublattice (i.e., a subposet that is a lattice).

Problem 3 Let L be a finite semimodular lattice, and let S be a subposet of L consisting of elements that are joins of atoms of L with $\hat{0}$ as the empty join ($\hat{0}$ and $\hat{1}$ denote the minimum and maximum of L, respectively). Prove that S is a geometric lattice.

Problem 4 Let W be a subspace of \mathbb{R}^n . The **support** of $v = (v_1, \ldots, v_n) \in \mathbb{R}^n$ is the set $\operatorname{supp}(v) := \{k \in [n] \mid v_k \neq 0\}$. Set $L := \{\operatorname{supp}(v) \mid v \in W\}$. Consider the following order relation on L: for $S_2, S_2 \in L$ the relation $S_1 \leq S_2$ holds if and only if $S_2 \subseteq S_1$. Prove that L is a geometric lattice.

Problem 5 Let f(n) be the number of sublattices of rank n of B_n , and let g(n) be the number of sublattices of B_n that contain the empty set and [n] (i.e., the $\hat{0}$ and $\hat{1}$ of B_n).

- (1) Prove that f(n) is also the number of poset on [n].
- (2) Prove that if F(x) and G(x) are the exponential generating functions of $(f(n))_{n\geq 0}$ and $(g(n))_{n\geq 0}$, respectively, then $G(x) = F(e^x - 1)$.

Problem 6 Let E_n denote the poset of all subsets of [n] whose elements have even sum (ordered by inclusion).

- (1) Find $|E_n|$.
- (2) Compute $|\mu(S,T)|$ for all $S \leq T$ in E_n , where μ is the Möbius function of E_n .

Problem 7 Prove that, for a finite poset P, the following conditions are equivalent.

- (a) For all s < t, the interval [s, t] has an odd number of atoms.
- (b) For all s < t, the interval [s, t] has an odd number of coatoms.

Recall that a **coatom** of a bounded poset is an element covered by $\hat{1}$. [Hint: Consider $\mu(s,t)$ modulo 2.]

Problem 8 Let *L* be a finite lattice with *n* atoms. Prove that $|\mu(\hat{0}, \hat{1})| \leq {\binom{n-1}{\lfloor (n-1)/2 \rfloor}}$, and find a finite lattice with *n* atoms such that the equality holds.