Problem Set 5 (Due on Monday, 11/22)

Problem 1 Prove that a connected graph G is a tree if and only if any family of pairwise intersecting (that is, vertex intersecting) paths P_1, \ldots, P_k in G have a common vertex.

Problem 2 Let A_1 , A_2 , A_3 be nonempty mutually-disjoint sets with $|A_i| = n_i$ for every $i \in [3]$. The **complete tripartite graph** on $A_1 \cup A_2 \cup A_3$, denoted by K_{n_1,n_2,n_3} , is the graph G with $V(G) = A_1 \cup A_2 \cup A_3$ having an edge between two vertices if and only if these vertices are not in the same set A_i . For $m, n \in \mathbb{N}$, find a formula for the number of spanning trees of the complete tripartite graph $K_{m,m,n}$.

Problem 3 For every $n \in \mathbb{N}$, let t_n be the number of trees on [n]. Without using Cayley's theorem (that is, $t_n = n^{n-2}$), prove that

$$t_n = \frac{1}{2(n-1)} \sum_{k=1}^{n-1} \binom{n}{k} k t_k (n-k) t_{n-k}.$$

Problem 4 Let T be a tree on the set of vertices [m]. For $n \in \mathbb{N}$ with n > m, in how many ways can we extend T to a tree on [n]?

Problem 5 Let G be a simple graph, and let T and T' be two spanning trees of G. Show that for each $e \in E(T)$, we can choose $e' \in E(T')$ such that $(T \setminus \{e\}) \cup \{e'\}$ and $(T' \setminus \{e'\}) \cup \{e\}$ are both spanning trees of G.

Problem 6 Let V_1, V_2 , and V_3 be three mutually disjoint nonempty sets satisfying $|V_1| = |V_2| = |V_3| = n$, and let G be a simple graph with $V(G) = V_1 \cup V_2 \cup V_3$. Assume that every $v \in V_i$ is adjacent to exactly n + 1 vertices in $V(G) \setminus V_i$ (v may also be adjacent to some vertices in V_i) for every $i \in [3]$. Prove that there exist $v_1, v_2, v_3 \in V(G)$ with $v_i \in V_i$ for every $i \in [3]$ such that $v_1v_2v_3$ is a cycle in G.

Problem 7 Let G be a simple graph in which every vertex has degree 3. Prove that G has a perfect matching if and only if G can be decomposed into paths of length 3 each.

Problem 8 Let $k, n \in \mathbb{N}$ such that k < n/2. Let G be a bipartite graph with parts V and W satisfying the following condition:

- V is the set of k-subsets of [n] and W is the set of (k+1)-subsets of [n], and
- there is an edge between $S \in V$ and $T \in W$ if and only if $S \subseteq T$.

Prove that X has a perfect matching into Y

- 1. (0.5 pts) by using Hall's theorem, and
- 2. (0.5 pts) by explicitly finding a perfect matching.