Combinatorial Analysis (MIT Fall 2021) Instructor: Felix Gotti

Problem Set 4 (Solutions by Daniil Kliuev)

Problem 1 Let G be a connected simple graph with V = {vy,...,v,} and d; = degu;
for every i € [n]. In terms of (dy,...,d,), find the minimum number of edges that must
be added to G to obtain a graph with an Eulerian circuit.

Solution. Let k be the number of vertices in G that have odd degree. This is the same
as the number of odd integers in (di,ds,...,d,). Using handshaking lemma we see
that k is even. We claim that the answer is m = g

First we prove that we should add at least m edges. Suppose that we added [ edges
to G and obtained a graph G’ with Eulerian circuit. Then all degrees of vertices in G’
are even. Hence there are at least k vertices that have different degree in G and G'.
Adding an edge changes the degree of two vertices. Hence 21 > k, so | > m.

Now we prove that m edges is enough. Suppose that v;,,v;,,...,v;, are all vertices
with odd degree. Consider edges connecting v;, to v; ., for s = 1,...,m. Adding
these edges to G increases the degree of v;,,...,v; by one and does not change other
degrees. Hence we obtain a graph G’ where each vertex has an even degree. Since G

was connected, G’ is also connected. Therefore G’ contains an Eulerian circuit.
O

Problem 2 Let G be a simple graph on n vertices. Suppose that degv + degw > n
for each pair of distinct non-adjacent vertices v and w of G.

1. Prove that G is connected.

2. Prove that G has a Hamiltonian cycle.

Solution. It is enough to prove the second statement. Consider the longest path in
(GG. We can assume that this path is vivs - - - v, where 2 < [ < n. There are two cases:
I <n and [ = n. We start with the first one.

Suppose that [ < n. Since we chose the longest path v; is not adjacent to vi1,- -+, v,.
In particular, deg v, + deg v, > n. Let A be the subset of [I] consisting of indices i such
that v; is adjacent to v;. Let B be the subset of [I] consisting of indices ¢ such that v; is
adjacent to v,. Since v, is not adjacent to vy, ..., v, we have degv; = |A|. Since there
are n — [ — 1 vertices distinct from v, in {v;11,...,v,} we have degv, < |B|+n—1—1.
Comparing this with deg v, + degv, > n we get |A| + |B| > [+ 1.

Since v; is not adjacent to itself we have A C [l — 1]. Consider the set A + 1 =
{a+1|a e A} C [l]. Wehave |A+1|+|B| = |A|+|B| > I+1 > [ = |[l]|. It follows that
A+ 1 and B intersect. Let a be an element of the intersection. This means that v,_;
is adjacent to v; and v is adjacent to v,. So there is a path vy - v, 1V,V,_1 " VU,
that has length [ + 1. Since we chose the longest path we get a contradiction.
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Suppose that [ = n. If v; and v,, are adjacent we already got a Hamiltonian cycle.
We assume that v; and v, are not adjacent. In this case degv; 4+ degwv, > n. Define
A, B as above: A consists of indices ¢ such that v; and v; are adjacent, B consists of
indices ¢ such that v; and v, are adjacent. We have |A| 4+ |B| > n.

Since v; and v, are not adjacent to themselves and to each other we have A, B C
{2,3,...,n —1}. Hence A — 1 and B are subsets of [n — 1]. Since |A — 1| + |B| =
|A| +|B| > n > |[n — 1]| subsets A — 1 and B intersect. Let a be an element of the
intersection. This means that v, is adjacent to v,, and v, is adjacent to v;. We get
a Hamiltonian cycle vy - - - 0,001+ + - Vgr1.

0

Problem 3 For what values of n, can we decompose K, into the union of edge-disjoint
Hamiltonian cycles?

Solution. The graph K, contains @ edges. Each Hamiltonian cycle contains n
edges. If the set of edges of K,, can be decomposed into a disjoint union of Hamiltonian
cycles then n divides @ Hence ”T_l is an integer, so n is odd.

We claim that for odd n the graph K, can be decomposed into a union of edge-
disjoint Hamiltonian cycles. Let n = 2k 4 1. Denote vertices by u, vy, ..., vo,—1. For
an integer ¢ consider the cycle C; = wv;v;110; 1040V _9 -+ Vit p_1Vi_p+1Vivk. Here we
use cyclic numeration of vertices, so vor = vy, Vor+1 = v1 and so on.

Each C; is a Hamiltonian cycle and C; = C;  for all . So we have k£ Hamiltonian
cycles Cy, ..., Cx_1. They contain nk = @ edges. So it is enough to prove that
each edge of K, belongs to one of Cj, it will follows that the edges of Cy, ..., Cy_1 are
disjoint.

Consider any edge v,vp, where 0 < a,b < 2k. If a, b have the same parity let ¢ = “TH’,
j = “T_b Since j < k the cycle C; contains edge v;_;vi1; = v,vp. If @, b have different
parity let ¢ = Lg’l Then exactly one of a — i, b — ¢ is nonnegative, let j be this value.
We have j < %]b— a| < k. Then the cycle C; contains the edge v;_;v;1j+1 = vavp. Here
we use that ¢ — j equals to a or b and a + b =27 + 1.

OJ

Problem 4 Let T be a tournament that is not strongly connected. Prove that the set
of vertices of T can be partitioned into nonempty subsets A and B such that all edges
between A and B go from A to B.

Solution. We say that two vertices v and w are equivalent if v = w or there is a path
from v to w and from w to v. This relation is symmetric and transitive by definition.
Let Ey,...,E, C V(T) be equivalence classes of this relation. Each of E; is strongly
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connected by definition, they are called strongly connected components of T'. Since T’
is not strongly connected we have [ > 2.

Let G be the following directed graph: V(G) = [l] and for ¢ # j it has edge
i — 7 if there exists an edge v — w in T with v € F;, w € E;. We claim that
G has no cycles. Suppose that we have cycle iy ---17;. This means we have edges
v;, — W, ,, where v;, w; € I; for all 4. Using paths P; from w; to v; we obtain a cycle
Vi, Wiy Py Viy Wiy Piy -+ - w;, Py, v, w;, Py, . We see that vy, is equivalent to w;,. Since 77 # iy
we get a contradiction.

So we proved that G has no cycles. Consider the longest path v;, ---v;, in G. Since
this path is the longest there are no edges from v;, to other vertices. Since G' has no
cycles there are no edges from v;, to other vertices of this path. Hence v;, is a sink.
Now we take B = E;, and define A to be the union of all other strongly connected
components. Any edge from B to A gives an edge from v;, to another vertex of G, so
there are no edges from B to A. O

Problem 5 A plane rooted tree is a tree with a distinguished vertex, usually called
root, with a total ordering on the children of each verter. For each n € N, find the
number of plane rooted trees with n edges.

Solution. Denote the answer by t,. We will write recursion for ¢,,. Let T" be a rooted
tree with root r. Let v be the first child of r. Let T, be a set of descendants of v,
including v. This is a rooted tree with the root v. Let T, = T'\ T,. This is also a
rooted tree: we left descendants of other children of r.

We claim for any 0 < m < n — 1 there is a bijection between the set of rooted trees
T such that T, has m edges and set of pairs (77, 7%), where T} is a rooted tree with m
edges and T is a rooted tree with n — 1 — m edges.

The map in one direction is given by 7'+ (T3,7T5). The map in other direction
takes T7, T, and attaches the root v of T3 to the root r of T5. The order on the children
of r is that v is first, the rest are ordered as in T,. We see that these two maps are
inverse two each other. Therefore we can write ¢, = Z?:_Ol titn—1—;. We also have
to = 1. It follows that t, = C,,, where C,, = n+r1(2:> is the Catalan number. [
Problem 6 Let k be a positive integer, and let T be a tree with precisely one vertex of
degree j for every j € [2,k]. Find the number of vertices of T if the rest of the vertices
of T' are leaves (i.e., have degree one).

Solution. Denote the number of leaves in T by [. Suppose that T" has a vertices and
b edges. It follows that a = k — 1 + [: one vertex of degree j for all j € {2,...,k}
and [ leaves. The sum of degrees of verticesis 2+3+4---+k+1= @ —1+1(. By
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handshake lemma this equals to 20. We also have b = a — 1. Hence 20 = 2a — 2. Using
equations above we get

k(k+1)

s lHl=20k—1+1)-2=2k+21—4

We deduce that | = @ + 3. Hence a = _k(’fQ—U +92.

O

Problem 7 We say that a tree T is trivalent if it satisfies that degv € {1,3} for all
veV(T). Let T be a trivalent tree with ¢ leaves.

1. Find the number of three-degree vertices of T.

2. Prove that if > 3, then there is a vertex of T that is adjacent to two leaves.

Solution.

1. Denote the number of three-degree vertices by k. Then T" has k + [ vertices with
the sum of degrees 3k +1[. Using the handshake lemma we see that 7" has %(3/6-1-1)
edges. The number of edges is the number of vertices minus one, hence

1
SBRkHD =k+1-1,

It follows that £k =1 — 2.

2. Suppose that a vertex v is adjacent to three leaves wy, wsy, ws. Since the degree
of v is three and the degree of leaf is one there are no more edges going from
v, Wy, We, ws3. Since a tree is connected we deduce that v, wy, wsy, w3 are all vertices
of T, so l = 3. We get a contradiction with [ > 3.

Hence all three-degree vertices are adjacent to zero, one or two leaves. If there
is no vertex that is adjacent to two leaves all three-degree vertices are adjacent
to zero or one leaf. Let m be the number of edges between three-degree vertices
and leaves. We see that m < k.

If two leaves are adjacent to each other then T consists of two vertices and [ = 2.
Hence each leaf if adjacent to a three-degree vertex. It follows that m > [. It
follows that k > [, contradiction with £k = [ —2. Hence there exists a three-degree
vertex that is adjacent to two leaves.

O
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Problem 8 Let G be the graph obtained from the complete graph K, by removing an
edge. Find the number of spanning trees of G.

Solution.

Let k£ be the number of trees that contain an edge, this number is the same for all
edges. Then the number of spanning trees of GG equals to the number of spanning trees
of K, minus k, so the answer is n"~2 — k. It remains to find k. Let N be the number
of pairs (T, e), where T is a spanning tree of K,, and e is an edge of 7. On one hand,
there are @ choices for e and k choices of T for fixed e, so N = @ k. On the
other hand there are n"~2 choices of T and for each T there are n — 1 choices of e, so

N = (n—1)n"2 Tt follows that k = 2n"3, so the answer is n"3(n — 2). O



