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Problem Set 4 (Solutions by Daniil Kliuev)

Problem 1 Let G be a connected simple graph with V = {v1, . . . , vn} and di = deg vi
for every i ∈ [n]. In terms of (d1, . . . , dn), find the minimum number of edges that must
be added to G to obtain a graph with an Eulerian circuit.

Solution. Let k be the number of vertices in G that have odd degree. This is the same
as the number of odd integers in (d1, d2, . . . , dn). Using handshaking lemma we see
that k is even. We claim that the answer is m = k

2
.

First we prove that we should add at least m edges. Suppose that we added l edges
to G and obtained a graph G′ with Eulerian circuit. Then all degrees of vertices in G′

are even. Hence there are at least k vertices that have different degree in G and G′.
Adding an edge changes the degree of two vertices. Hence 2l ≥ k, so l ≥ m.

Now we prove that m edges is enough. Suppose that vi1 , vi2 , . . . , vik are all vertices
with odd degree. Consider edges connecting vis to vis+m for s = 1, . . . ,m. Adding
these edges to G increases the degree of vi1 , . . . , vik by one and does not change other
degrees. Hence we obtain a graph G′ where each vertex has an even degree. Since G
was connected, G′ is also connected. Therefore G′ contains an Eulerian circuit.

�

Problem 2 Let G be a simple graph on n vertices. Suppose that deg v + degw ≥ n
for each pair of distinct non-adjacent vertices v and w of G.

1. Prove that G is connected.

2. Prove that G has a Hamiltonian cycle.

Solution. It is enough to prove the second statement. Consider the longest path in
G. We can assume that this path is v1v2 · · · vl, where 2 ≤ l ≤ n. There are two cases:
l < n and l = n. We start with the first one.

Suppose that l < n. Since we chose the longest path vl is not adjacent to vl+1, · · · , vn.
In particular, deg vl + deg vn ≥ n. Let A be the subset of [l] consisting of indices i such
that vi is adjacent to vl. Let B be the subset of [l] consisting of indices i such that vi is
adjacent to vn. Since vl is not adjacent to vl+1, . . . , vn we have deg vl = |A|. Since there
are n− l−1 vertices distinct from vn in {vl+1, . . . , vn} we have deg vn ≤ |B|+n− l−1.
Comparing this with deg vl + deg vn ≥ n we get |A|+ |B| ≥ l + 1.

Since vl is not adjacent to itself we have A ⊂ [l − 1]. Consider the set A + 1 =
{a+1 | a ∈ A} ⊂ [l]. We have |A+1|+|B| = |A|+|B| ≥ l+1 > l = |[l]|. It follows that
A + 1 and B intersect. Let a be an element of the intersection. This means that va−1
is adjacent to vl and v is adjacent to vn. So there is a path v1 · · · va−1vnvn−1 · · · vavn
that has length l + 1. Since we chose the longest path we get a contradiction.
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Suppose that l = n. If v1 and vn are adjacent we already got a Hamiltonian cycle.
We assume that v1 and vn are not adjacent. In this case deg v1 + deg vn ≥ n. Define
A, B as above: A consists of indices i such that vi and v1 are adjacent, B consists of
indices i such that vi and vn are adjacent. We have |A|+ |B| ≥ n.

Since v1 and vn are not adjacent to themselves and to each other we have A,B ⊂
{2, 3, . . . , n − 1}. Hence A − 1 and B are subsets of [n − 1]. Since |A − 1| + |B| =
|A| + |B| ≥ n > |[n − 1]| subsets A − 1 and B intersect. Let a be an element of the
intersection. This means that va is adjacent to vn and va+1 is adjacent to v1. We get
a Hamiltonian cycle v1 · · · vavnvn−1 · · · va+1.

�

Problem 3 For what values of n, can we decompose Kn into the union of edge-disjoint
Hamiltonian cycles?

Solution. The graph Kn contains n(n−1)
2

edges. Each Hamiltonian cycle contains n
edges. If the set of edges of Kn can be decomposed into a disjoint union of Hamiltonian
cycles then n divides n(n−1)

2
. Hence n−1

2
is an integer, so n is odd.

We claim that for odd n the graph Kn can be decomposed into a union of edge-
disjoint Hamiltonian cycles. Let n = 2k + 1. Denote vertices by u, v0, . . . , v2k−1. For
an integer i consider the cycle Ci = uvivi+1vi−1vi+2vi−2 · · · vi+k−1vi−k+1vi+k. Here we
use cyclic numeration of vertices, so v2k = v0, v2k+1 = v1 and so on.

Each Ci is a Hamiltonian cycle and Ci = Ci+k for all i. So we have k Hamiltonian
cycles C0, . . . , Ck−1. They contain nk = n(n−1)

2
edges. So it is enough to prove that

each edge of Kn belongs to one of Ci, it will follows that the edges of C0, . . . , Ck−1 are
disjoint.

Consider any edge vavb, where 0 ≤ a, b < 2k. If a, b have the same parity let i = a+b
2

,
j = a−b

2
. Since j < k the cycle Ci contains edge vi−jvi+j = vavb. If a, b have different

parity let i = a+b−1
2

. Then exactly one of a− i, b− i is nonnegative, let j be this value.
We have j < 1

2
|b− a| < k. Then the cycle Ci contains the edge vi−jvi+j+1 = vavb. Here

we use that i− j equals to a or b and a + b = 2i + 1.
�

Problem 4 Let T be a tournament that is not strongly connected. Prove that the set
of vertices of T can be partitioned into nonempty subsets A and B such that all edges
between A and B go from A to B.

Solution. We say that two vertices v and w are equivalent if v = w or there is a path
from v to w and from w to v. This relation is symmetric and transitive by definition.
Let E1, . . . , El ⊂ V (T ) be equivalence classes of this relation. Each of Ei is strongly
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connected by definition, they are called strongly connected components of T . Since T
is not strongly connected we have l ≥ 2.

Let G be the following directed graph: V (G) = [l] and for i 6= j it has edge
i → j if there exists an edge v → w in T with v ∈ Ei, w ∈ Ej. We claim that
G has no cycles. Suppose that we have cycle i1 · · · ik. This means we have edges
vis → wis+1 , where vi, wi ∈ Ei for all i. Using paths Pi from wi to vi we obtain a cycle
vi1wi2Pi2vi2wi3Pi3 · · ·wikPikvikwi1Pi1 . We see that vi1 is equivalent to wi2 . Since i1 6= i2
we get a contradiction.

So we proved that G has no cycles. Consider the longest path vi1 · · · vik in G. Since
this path is the longest there are no edges from vik to other vertices. Since G has no
cycles there are no edges from vik to other vertices of this path. Hence vik is a sink.
Now we take B = Eik and define A to be the union of all other strongly connected
components. Any edge from B to A gives an edge from vik to another vertex of G, so
there are no edges from B to A. �

Problem 5 A plane rooted tree is a tree with a distinguished vertex, usually called
root, with a total ordering on the children of each vertex. For each n ∈ N, find the
number of plane rooted trees with n edges.

Solution. Denote the answer by tn. We will write recursion for tn. Let T be a rooted
tree with root r. Let v be the first child of r. Let Tv be a set of descendants of v,
including v. This is a rooted tree with the root v. Let T2 = T \ Tv. This is also a
rooted tree: we left descendants of other children of r.

We claim for any 0 ≤ m ≤ n− 1 there is a bijection between the set of rooted trees
T such that Tv has m edges and set of pairs (T1, T2), where T1 is a rooted tree with m
edges and T2 is a rooted tree with n− 1−m edges.

The map in one direction is given by T 7→ (Tv, T2). The map in other direction
takes T1, T2 and attaches the root v of T1 to the root r of T2. The order on the children
of r is that v is first, the rest are ordered as in T2. We see that these two maps are
inverse two each other. Therefore we can write tn =

∑n−1
i=0 titn−1−i. We also have

t0 = 1. It follows that tn = Cn, where Cn = 1
n+1

(
2n
n

)
is the Catalan number. �

Problem 6 Let k be a positive integer, and let T be a tree with precisely one vertex of
degree j for every j ∈ J2, kK. Find the number of vertices of T if the rest of the vertices
of T are leaves (i.e., have degree one).

Solution. Denote the number of leaves in T by l. Suppose that T has a vertices and
b edges. It follows that a = k − 1 + l: one vertex of degree j for all j ∈ {2, . . . , k}
and l leaves. The sum of degrees of vertices is 2 + 3 + · · ·+ k + l = k(k+1)

2
− 1 + l. By
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handshake lemma this equals to 2b. We also have b = a− 1. Hence 2b = 2a− 2. Using
equations above we get

k(k + 1)

2
− 1 + l = 2(k − 1 + l)− 2 = 2k + 2l − 4.

We deduce that l = k(k−3)
2

+ 3. Hence a = k(k−1)
2

+ 2.
�

Problem 7 We say that a tree T is trivalent if it satisfies that deg v ∈ {1, 3} for all
v ∈ V (T ). Let T be a trivalent tree with ` leaves.

1. Find the number of three-degree vertices of T .

2. Prove that if ` > 3, then there is a vertex of T that is adjacent to two leaves.

Solution.

1. Denote the number of three-degree vertices by k. Then T has k + l vertices with
the sum of degrees 3k+l. Using the handshake lemma we see that T has 1

2
(3k+l)

edges. The number of edges is the number of vertices minus one, hence

1

2
(3k + l) = k + l − 1.

It follows that k = l − 2.

2. Suppose that a vertex v is adjacent to three leaves w1, w2, w3. Since the degree
of v is three and the degree of leaf is one there are no more edges going from
v, w1, w2, w3. Since a tree is connected we deduce that v, w1, w2, w3 are all vertices
of T , so l = 3. We get a contradiction with l > 3.

Hence all three-degree vertices are adjacent to zero, one or two leaves. If there
is no vertex that is adjacent to two leaves all three-degree vertices are adjacent
to zero or one leaf. Let m be the number of edges between three-degree vertices
and leaves. We see that m ≤ k.

If two leaves are adjacent to each other then T consists of two vertices and l = 2.
Hence each leaf if adjacent to a three-degree vertex. It follows that m ≥ l. It
follows that k ≥ l, contradiction with k = l−2. Hence there exists a three-degree
vertex that is adjacent to two leaves.

�
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Problem 8 Let G be the graph obtained from the complete graph Kn by removing an
edge. Find the number of spanning trees of G.

Solution.
Let k be the number of trees that contain an edge, this number is the same for all

edges. Then the number of spanning trees of G equals to the number of spanning trees
of Kn minus k, so the answer is nn−2 − k. It remains to find k. Let N be the number
of pairs (T, e), where T is a spanning tree of Kn and e is an edge of T . On one hand,

there are n(n−1)
2

choices for e and k choices of T for fixed e, so N = n(n−1)
2
· k. On the

other hand there are nn−2 choices of T and for each T there are n− 1 choices of e, so
N = (n− 1)nn−2. It follows that k = 2nn−3, so the answer is nn−3(n− 2). �


