Problem Set 4 (Solutions by Daniil Kliuev)

Problem 1 Let G be a connected simple graph with $V = \{v_1, \ldots, v_n\}$ and $d_i = \deg v_i$ for every $i \in [n]$. In terms of (d_1, \ldots, d_n), find the minimum number of edges that must be added to G to obtain a graph with an Eulerian circuit.

Solution. Let k be the number of vertices in G that have odd degree. This is the same as the number of odd integers in (d_1, d_2, \ldots, d_n). Using handshaking lemma we see that k is even. We claim that the answer is $m = \frac{k}{2}$.

First we prove that we should add at least m edges. Suppose that we added l edges to G and obtained a graph G' with Eulerian circuit. Then all degrees of vertices in G' are even. Hence there are at least k vertices that have different degree in G and G'. Adding an edge changes the degree of two vertices. Hence $2l \geq k$, so $l \geq m$.

Now we prove that m edges is enough. Suppose that $v_{i_1}, v_{i_2}, \ldots, v_{i_k}$ are all vertices with odd degree. Consider edges connecting v_{i_s} to $v_{i_{s+1}}$ for $s = 1, \ldots, m$. Adding these edges to G increases the degree of v_{i_1}, \ldots, v_{i_k} by one and does not change other degrees. Hence we obtain a graph G' where each vertex has an even degree. Since G was connected, G' is also connected. Therefore G' contains an Eulerian circuit.

\[\square \]

Problem 2 Let G be a simple graph on n vertices. Suppose that $\deg v + \deg w \geq n$ for each pair of distinct non-adjacent vertices v and w of G.

1. Prove that G is connected.

2. Prove that G has a Hamiltonian cycle.

Solution. It is enough to prove the second statement. Consider the longest path in G. We can assume that this path is $v_1v_2\cdots v_l$, where $2 \leq l \leq n$. There are two cases: $l < n$ and $l = n$. We start with the first one.

Suppose that $l < n$. Since we chose the longest path v_l is not adjacent to v_{l+1}, \ldots, v_n. In particular, $\deg v_l + \deg v_n \geq n$. Let A be the subset of $[l]$ consisting of indices i such that v_i is adjacent to v_l. Let B be the subset of $[l]$ consisting of indices i such that v_i is adjacent to v_n. Since v_l is not adjacent to v_{l+1}, \ldots, v_n we have $\deg v_l = |A|$. Since there are $n - l - 1$ vertices distinct from v_n in $\{v_{l+1}, \ldots, v_n\}$ we have $\deg v_n \leq |B| + n - l - 1$. Comparing this with $\deg v_l + \deg v_n \geq n$ we get $|A| + |B| \geq l + 1$.

Since v_l is not adjacent to itself we have $A \subset [l - 1]$. Consider the set $A + 1 = \{a + 1 \mid a \in A\} \subset [l]$. We have $|A + 1| + |B| = |A| + |B| \geq l + 1 > l = |[l]|$. It follows that $A + 1$ and B intersect. Let a be an element of the intersection. This means that v_{a-1} is adjacent to v_l and v is adjacent to v_n. So there is a path $v_1 \cdots v_{a-1}v_nv_{n-1} \cdots v_av_n$ that has length $l + 1$. Since we chose the longest path we get a contradiction.
Suppose that \(l = n \). If \(v_1 \) and \(v_n \) are adjacent we already got a Hamiltonian cycle. We assume that \(v_1 \) and \(v_n \) are not adjacent. In this case \(\deg v_1 + \deg v_n \geq n \). Define \(A, B \) as above: \(A \) consists of indices \(i \) such that \(v_i \) and \(v_1 \) are adjacent, \(B \) consists of indices \(i \) such that \(v_i \) and \(v_n \) are adjacent. We have \(|A| + |B| \geq n \).

Since \(v_1 \) and \(v_n \) are not adjacent to themselves and to each other we have \(A, B \subset \{2, 3, \ldots, n - 1\} \). Hence \(A - 1 \) and \(B \) are subsets of \([n - 1]\). Since \(|A - 1| + |B| = |A| + |B| \geq n > |[n - 1]| \) subsets \(A - 1 \) and \(B \) intersect. Let \(a \) be an element of the intersection. This means that \(v_a \) is adjacent to \(v_n \) and \(v_{a+1} \) is adjacent to \(v_1 \). We get a Hamiltonian cycle \(v_1 \cdots v_a v_n v_{a-1} \cdots v_{a+1} \).

\[\square \]

Problem 3 For what values of \(n \), can we decompose \(K_n \) into the union of edge-disjoint Hamiltonian cycles?

Solution. The graph \(K_n \) contains \(\frac{n(n-1)}{2} \) edges. Each Hamiltonian cycle contains \(n \) edges. If the set of edges of \(K_n \) can be decomposed into a disjoint union of Hamiltonian cycles then \(n \) divides \(\frac{n(n-1)}{2} \). Hence \(\frac{n-1}{2} \) is an integer, so \(n \) is odd.

We claim that for odd \(n \) the graph \(K_n \) can be decomposed into a union of edge-disjoint Hamiltonian cycles. Let \(n = 2k + 1 \). Denote vertices by \(u, v_0, \ldots, v_{2k-1} \). For an integer \(i \) consider the cycle \(C_i = u v_i v_{i+1} v_{i-1} v_{i+2} \cdots v_{i+k-1} v_{i-k+1} v_{i+k} \). Here we use cyclic numeration of vertices, so \(v_{2k} = v_0, v_{2k+1} = v_1 \) and so on.

Each \(C_i \) is a Hamiltonian cycle and \(C_i = C_{i+k} \) for all \(i \). So we have \(k \) Hamiltonian cycles \(C_0, \ldots, C_{k-1} \). They contain \(nk = \frac{n(n-1)}{2} \) edges. So it is enough to prove that each edge of \(K_n \) belongs to one of \(C_i \), it will follows that the edges of \(C_0, \ldots, C_{k-1} \) are disjoint.

Consider any edge \(v_a v_b \), where \(0 \leq a, b < 2k \). If \(a, b \) have the same parity let \(i = \frac{a+b}{2}, j = \frac{a-b}{2} \). Since \(j < k \) the cycle \(C_i \) contains edge \(v_{i-j} v_{i+j} = v_a v_b \). If \(a, b \) have different parity let \(i = \frac{a+b-1}{2} \). Then exactly one of \(a - i, b - i \) is nonnegative, let \(j \) be this value. We have \(j < \frac{1}{2} |b-a| < k \). Then the cycle \(C_i \) contains the edge \(v_{i-j} v_{i+j+1} = v_a v_b \). Here we use that \(i - j \) equals to \(a \) or \(b \) and \(a + b = 2i + 1 \).

\[\square \]

Problem 4 Let \(T \) be a tournament that is not strongly connected. Prove that the set of vertices of \(T \) can be partitioned into nonempty subsets \(A \) and \(B \) such that all edges between \(A \) and \(B \) go from \(A \) to \(B \).

Solution. We say that two vertices \(v \) and \(w \) are equivalent if \(v = w \) or there is a path from \(v \) to \(w \) and from \(w \) to \(v \). This relation is symmetric and transitive by definition. Let \(E_1, \ldots, E_l \subset V(T) \) be equivalence classes of this relation. Each of \(E_i \) is strongly
connected by definition, they are called strongly connected components of T. Since T is not strongly connected we have $l \geq 2$.

Let G be the following directed graph: $V(G) = [l]$ and for $i \neq j$ it has edge $i \to j$ if there exists an edge $v \to w$ in T with $v \in E_i$, $w \in E_j$. We claim that G has no cycles. Suppose that we have cycle $i_1 \cdots i_k$. This means we have edges $v_{i_s} \to w_{i_{s+1}}$, where $v_i, w_i \in E_i$ for all i. Using paths P_i from w_i to v_i we obtain a cycle $v_{i_1}w_{i_2}v_{i_2}w_{i_3}v_{i_3} \cdots v_{i_k}w_{i_k}v_{i_1}$. We see that v_{i_1} is equivalent to w_{i_2}. Since $i_1 \neq i_2$ we get a contradiction.

So we proved that G has no cycles. Consider the longest path $v_{i_1} \cdots v_{i_k}$ in G. Since this path is the longest there are no edges from v_{i_k} to other vertices. Since G has no cycles there are no edges from v_{i_k} to other vertices of this path. Hence v_{i_k} is a sink. Now we take $B = E_{i_k}$ and define A to be the union of all other strongly connected components. Any edge from B to A gives an edge from v_{i_k} to another vertex of G, so there are no edges from B to A. \qed

Problem 5 A plane rooted tree is a tree with a distinguished vertex, usually called root, with a total ordering on the children of each vertex. For each $n \in \mathbb{N}$, find the number of plane rooted trees with n edges.

Solution. Denote the answer by t_n. We will write recursion for t_n. Let T be a rooted tree with root r. Let v be the first child of r. Let T_v be a set of descendants of v, including v. This is a rooted tree with the root v. Let $T_2 = T \setminus T_v$. This is also a rooted tree: we left descendants of other children of r.

We claim for any $0 \leq m \leq n - 1$ there is a bijection between the set of rooted trees T such that T_v has m edges and set of pairs (T_1, T_2), where T_1 is a rooted tree with m edges and T_2 is a rooted tree with $n - 1 - m$ edges.

The map in one direction is given by $T \mapsto (T_v, T_2)$. The map in other direction takes T_1, T_2 and attaches the root v of T_1 to the root r of T_2. The order on the children of r is that v is first, the rest are ordered as in T_2. We see that these two maps are inverse two each other. Therefore we can write $t_n = \sum_{i=0}^{n-1} t_i t_{n-1-i}$. We also have $t_0 = 1$. It follows that $t_n = C_n$, where $C_n = \frac{1}{n+1} \binom{2n}{n}$ is the Catalan number. \qed

Problem 6 Let k be a positive integer, and let T be a tree with precisely one vertex of degree j for every $j \in [2, k]$. Find the number of vertices of T if the rest of the vertices of T are leaves (i.e., have degree one).

Solution. Denote the number of leaves in T by l. Suppose that T has a vertices and b edges. It follows that $a = k - 1 + l$: one vertex of degree j for all $j \in \{2, \ldots, k\}$ and l leaves. The sum of degrees of vertices is $2 + 3 + \cdots + k + l = \frac{k(k+1)}{2} - 1 + l$. By
handshake lemma this equals to $2b$. We also have $b = a - 1$. Hence $2b = 2a - 2$. Using equations above we get

$$\frac{k(k+1)}{2} - 1 + l = 2(k - 1 + l) - 2 = 2k + 2l - 4.$$

We deduce that $l = \frac{k(k-3)}{2} + 3$. Hence $a = \frac{k(k-1)}{2} + 2$. □

Problem 7 We say that a tree T is trivalent if it satisfies that $\text{deg} v \in \{1, 3\}$ for all $v \in V(T)$. Let T be a trivalent tree with ℓ leaves.

1. Find the number of three-degree vertices of T.

2. Prove that if $\ell > 3$, then there is a vertex of T that is adjacent to two leaves.

Solution.

1. Denote the number of three-degree vertices by k. Then T has $k + l$ vertices with the sum of degrees $3k + l$. Using the handshake lemma we see that T has $\frac{1}{2}(3k + l)$ edges. The number of edges is the number of vertices minus one, hence

$$\frac{1}{2}(3k + l) = k + l - 1.$$

It follows that $k = l - 2$.

2. Suppose that a vertex v is adjacent to three leaves w_1, w_2, w_3. Since the degree of v is three and the degree of leaf is one there are no more edges going from v, w_1, w_2, w_3. Since a tree is connected we deduce that v, w_1, w_2, w_3 are all vertices of T, so $l = 3$. We get a contradiction with $l > 3$.

Hence all three-degree vertices are adjacent to zero, one or two leaves. If there is no vertex that is adjacent to two leaves all three-degree vertices are adjacent to zero or one leaf. Let m be the number of edges between three-degree vertices and leaves. We see that $m \leq k$.

If two leaves are adjacent to each other then T consists of two vertices and $l = 2$. Hence each leaf if adjacent to a three-degree vertex. It follows that $m \geq l$. It follows that $k \geq l$, contradiction with $k = l - 2$. Hence there exists a three-degree vertex that is adjacent to two leaves. □
Problem 8 Let G be the graph obtained from the complete graph K_n by removing an edge. Find the number of spanning trees of G.

Solution.

Let k be the number of trees that contain an edge, this number is the same for all edges. Then the number of spanning trees of G equals to the number of spanning trees of K_n minus k, so the answer is $n^{n-2} - k$. It remains to find k. Let N be the number of pairs (T, e), where T is a spanning tree of K_n and e is an edge of T. On one hand, there are $n(n-1)/2$ choices for e and k choices of T for fixed e, so $N = \frac{n(n-1)}{2} \cdot k$. On the other hand there are n^{n-2} choices of T and for each T there are $n - 1$ choices of e, so $N = (n - 1)n^{n-2}$. It follows that $k = 2n^{n-3}$, so the answer is $n^{n-3}(n - 2)$.

□