Problem Set 3 (Due on Friday, 10/29)

Problem 1 Let D(n) be the number of derangements in S_n .

- (1) Prove that D(n) = (n-1)(D(n-1) + D(n-2)).
- (2) Deduce that $D(n) = nD(n-1) + (-1)^n$.

Problem 2 For each $n \in \mathbb{N}_0$, let C_n be the n-th Catalan number and set $a_n = nC_n$. Find an explicit formula for the generating function of $(a_n)_{n>0}$.

Problem 3 Find an explicit formula for the number of solutions $(x, y, z) \in \mathbb{N}_0^3$ of the equation x + y + z = n satisfying that x is odd, y > 2, and z < 5.

Problem 4 Let a_n be the number of compositions of n with an odd number of parts such that every part is at least 3. Find an explicit formula (no summation signs allowed) for the generating function of $(a_n)_{n>0}$.

Problem 5 Let t_n be the number of partitions of [n] into blocks of cardinality two. Find the explicit formula (no summation signs allowed) for the exponential generating function of $(t_n)_{n>0}$.

Problem 6 Find an explicit formula (no summation signs allowed) for the exponential generating function of $(D(n))_{n\geq 0}$, where D(0) = 1 and D(n) is the number of derangements of S_n .

Problem 7 For each $n \in \mathbb{N}$, let t_n be the number of simple graphs with vertex set [n] with no vertex of degree larger than 2, and assume that $t_0 = 1$. Find an explicit formula for the exponential generating function of $(t_n)_{n\geq 0}$.

Problem 8 Using generating functions, prove that the number of partitions of n into distinct parts equals the number of partitions of n where each part is odd.