COMBINATORIAL ANALYSIS

PROBLEM SET 1 SOLUTIONS (MIT, FALL 2021)

Problem 1. Show that at any given moment of this semester, we can choose two students in our class having the same number of friends inside our class.

Solution. Let S be the set of students in our class, and set n := |S|. If one student s_0 does not have any friend in the class, then each of the n - 1 students in $S \setminus \{s_0\}$ has at most n - 2 friends in the class, and it follows by the PHP that two of the students in $S \setminus \{s_0\}$ have the same number of friends. On the other hand, if each student has at least one friend, then the number of friends of each of the n students is a number in [n - 1], and once again it follows from the PHP that two of them must have the same number of friends.

Problem 2. Show that $(n/3)^n < n! < (n/2)^n$ for every $n \in \mathbb{Z}$ with $n \ge 6$.

Solution. First, note that $(6/3)^6 = 64 < 720 = 6!$ and $6! = 720 < 729 = (6/2)^6$. Now assume that $(n/3)^n < n! < (n/2)^n$ for some $n \in \mathbb{N}$ with $n \ge 6$. Recall from calculus that the sequence $(1+1/n)^n$ increases and $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$ (the increasing part can be either taken for granted or proved using Bernoulli's inequality, namely, $(1+x)^n \ge 1 + nx$ for every x > -1). Therefore

$$(0.1) 2 < \left(1 + \frac{1}{n}\right)^n < 3$$

for every $n \ge 2$. From the right inequality of (0.1), we obtain that $(n+1)^n < 3n^n$, and so

$$\left(\frac{n+1}{3}\right)^{n+1} = \frac{n+1}{3^{n+1}}(n+1)^n < (n+1)\left(\frac{n}{3}\right)^n < (n+1)!,$$

where the last inequality follows from our induction hypothesis. On the other hand, observe that the left inequality of (0.1) ensures that $2n^n < (n+1)^n$. As a consequence, we obtain that

$$(n+1)! < (n+1)\left(\frac{n}{2}\right)^n = \frac{n+1}{2^{n+1}}2n^n < \frac{n+1}{2^{n+1}} = \left(\frac{n+1}{2}\right)^{n+1},$$

where the first inequality follows from our induction hypothesis.

Problem 3. Consider the sequence $(F_n)_{n\geq 0}$ obtained by setting $F_0 = 0, F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for every $n \geq 2$. Prove that 18211 divides F_n for some $n \in \mathbb{N}$. [This is called the Fibonacci sequence and we will learn more about it throughout the course].

F. GOTTI

Solution. Since the set $\{(r_1, r_2) \mid 0 \leq r_1, r_2 < 18211\}$ has size 18211^2 , it follows from the PHP that there exist $i, j \in [18211^2 + 1]$ with i < j such that $F_i \equiv F_j \pmod{18211}$ and $F_{i+1} \equiv F_{j+1} \pmod{18211}$. Then

$$F_{i-1} = F_{i+1} - F_i \equiv F_{j+1} - F_j = F_{j-1} \pmod{18211}$$

In a similar way, we can verify that $F_{i-2} \equiv F_{j-2} \pmod{18211}$, and we can continue in this fashion until we obtain that $0 = F_0 \equiv F_{j-i} \pmod{18211}$. Hence F_{j-i} is a Fibonacci number divisible by 18211.

Problem 4. Let T be a triangle with two angles of 30° . Prove that T can be subdivided into n smaller triangles similar to it for all n > 3.

Solution. Let A, B, and C be the vertices of T.

For n = 4, consider the subdivision obtained by drawing the triangle $\triangle EDK$, where E, D, and K are the middle points of the segments AB, AC, and BC, respectively (see the top-left figure below).

For n = 5, take E and D in the segment CB such that $\angle CAE = \angle DAB = 30^{\circ}$. Now draw the regular triangle $\triangle AED$, and then draw three segments from the centroid K of $\triangle AED$ to its vertices. This gives us a subdivision of T into five triangles similar to itself (see the top-right figure below).

For n = 6, take E and D in the segments AB and AC, respectively, so that $|EB| = \frac{1}{2}|AE|$ and $|DC| = \frac{1}{2}|AD|$. Let K be the middle point of the segment ED. Take M and N in BC satisfying that |BM| = |MN| = |NC|. It is easy to check that the triangulation one obtains by drawing the triangles $\triangle EKM$ and $\triangle KDN$ is a subdivision of T into six triangles similar to itself (see the bottom figure below).



Taking the previous cases as base cases, we can proceed by induction. Assume that we can find a desired subdivision of T for every $k \in \llbracket 4, n \rrbracket$ for some $n \ge 6$. To subdivide T into n + 1 triangles similar to itself, we can first subdivide T into $n - 2 \ge 4$ triangles similar to itself, and then we can subdivide one of the triangles of such a subdivision into four triangles similar to T (as in the case when n = 4).

Problem 5. For $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ with $0 \leq k \leq n$, let N(n,k) be the number of k-subsets of [n] that do not contain a pair of consecutive integers.

(1) Prove that $N(n,k) = \binom{n-k+1}{k}$.

 $\mathbf{2}$

COMBINATORIAL ANALYSIS

(2) Prove that $\sum_{k=0}^{n} N(n,k) = F_{n+2}$, where F_{n+2} is the (n+2)-th term of the Fibonacci sequence.

Solution. (1) Let T(n,k) be the collection of k-subsets of [n] that do not contain a pair of consecutive integers. Define $f: T(n,k) \to {\binom{[n-k+1]}{k}}$ as follows: if $S = \{s_1, \ldots, s_k\} \in$ T(n,k) with $s_1 < \cdots < s_k$, then let $f(S) = \{s_1 - 1, s_2 - 2, \ldots, s_k - k\}$ and note that the fact that S does not contain two consecutive integers ensures that |f(S)| = k. Conversely, we can define $g: {\binom{[n-k+1]}{k}} \to T(n,k)$ as follows: for any $S' = \{s'_1, \ldots, s'_k\} \in$ ${\binom{[n-k+1]}{k}}$ with $s'_1 < \cdots < s'_k$, let $g(S') = \{s'_1 + 1, s'_2 + 2, \ldots, s'_k + k\}$ and observe that $1 \le s'_1 < \cdots < s'_k \le n - k + 1$ guarantees that g(S') is a k-subset of [n] that does not contain any two consecutive elements. Finally, one can readily check that f and g are inverses of each other, and so

$$N(n,k) = |T(n,k)| = \binom{n-k+1}{k}.$$

(2) It is clear that $\sum_{k=0}^{n} N(n,k)$ is the size of the set T(n) consisting of all the subsets of [n] that do not contain a pair of consecutive integers. Let us show by induction that $|T(n)| = |F_{n+2}|$. When n = 1 none of the two subsets of [1] contains a pair of consecutive elements, and so $|T(1)| = 2 = F_3$. In addition, only one of the four subsets of [2], namely $\{1, 2\}$, contains a pair of consecutive integers, and so |T(2)| = $3 = F_4$. Now suppose that, for some $n \in \mathbb{N}$, the equality $|T(k)| = F_{k+2}$ holds for every $k \leq n$. Observe that there are $|T(n)| = F_{n+2}$ subsets in T(n+1) that do not contain n + 1, those in T(n), and there are |T(n-1)| sets in T(n+1) containing n + 1, those containing n + 1 that belong to T(n-1) when n + 1 is dropped. Hence $|T(n+1)| = |T(n)| + |T(n-1)| = F_{n+1} + F_{n+2} = F_{n+3}$, which completes our inductive argument.

Problem 6. Prove that

(0.2)
$$\sum_{k \in \mathbb{N}} {\binom{2r}{2k-1} \binom{k-1}{s-1}} = 2^{2r-2s+1} {\binom{2r-s}{s-1}}$$

for all $r, s \in \mathbb{N}_0$ by using a combinatorial argument.

Solution. Suppose we have 2r delegates labeled $1, 2, \ldots, 2r$, from which we choose an odd-size committee p_1, \ldots, p_{2k-1} , where $p_1 < \cdots < p_{2k-1}$, and then we choose a sub-committee of size s-1 consisting of some of the committee members p_2, \ldots, p_{2k-2} . We can clearly do this $\sum_{k \in \mathbb{N}} {2r \choose 2k-1} {k-1 \choose s-1}$ different ways, which is the left-hand side of (0.2).

Let us argue that the right-hand side of (0.2) also counts the pair of committees and sub-committees we have just described. This time we first choose a size-(s-1)sub-committee b_1, \ldots, b_{s-1} with $2 \leq b_1 < \cdots < b_{s-1} \leq 2r-1$ such that not two of the labels b_1, \ldots, b_{s-1} are consecutive; this can be done in $\binom{(2r-2)-(s-1)+1}{s-1} = \binom{2r-s}{s-1}$ (see Problem 5.1 above). Now we enhance the chosen sub-committee to obtain the desired

F. GOTTI

committee taking into account that the desired committee must satisfy the following conditions:

- (1) the committee must have an odd number of delegates,
- (2) every member of the sub-committee must occupy an even position in the line we obtain by organizing the members of the committee increasingly by labels.

Notice that achieving this amounts to choosing a subset of odd size from the delegates labeled by $\llbracket 1, b_1 - 1 \rrbracket$ in 2^{b_1-2} different ways, then for every $j \in [s-2]$ a subset of odd size from the delegates labeled by $\llbracket b_j + 1, b_{j+1} - 1 \rrbracket$ in $2^{b_{j+1}-b_j-2}$ different ways, and finally a subset of odd size from the delegates labeled by $\llbracket b_{s-1} + 1, 2r \rrbracket$ in $2^{2r-b_{s-1}-1}$ different ways. Therefore the number of desired pairs of committees and sub-committees is

$$2^{(b_1-2)+\left(\sum_{j=1}^{s-2}(b_{j+1}-b_j-2)\right)+(2r-b_{s-1}-1)}\binom{2r-s}{s-1} = 2^{2r-2s+1}\binom{2r-s}{s-1},$$

which is the right-hand side of (0.2). Hence the identity (0.2) holds.

Problem 7. What is the number of northeastern lattice paths from (0,0) to (n,n) that only touch the segment between (0,0) and (n,n) at its endpoints?

Solution. The number C_n of lattice paths from (0,0) to (n,n) below (and possibly repeatedly touching) the line y = x is $C_n = \frac{1}{n+1} \binom{2n}{n}$, which is called the *n*-th Catalan number (see the solution of Exercise 4.24 in the textbook).

Let E_n be the set of lattice paths from (0,0) to (n,n) whose first unit step is the vector (1,0) and that only touch the line y = x at (0,0) and (1,1). By symmetry, the number we want to determine is $2|E_n|$. Since the last unit step of each lattice path in E_n must be (0,1), the set E_n is in bijection with the set D'_{n-1} consisting of all lattice paths from (1,0) to (n,n-1) that do not go strictly above the line y = x - 1: the bijections consists in dropping the first and the last steps. In addition, the set D'_{n-1} is in bijection with the set D_{n-1} consisting of all lattice paths from (0,0) to (n-1,n-1): the bijection consists in translating each lattice path by (-1,0), a unit back. By the remark given in the previous paragraph,

$$2|E_n| = 2|D_{n-1}| = 2\frac{1}{(n-1)+1}\binom{2(n-1)}{n-1} = \frac{2}{n}\binom{2n-2}{n-1}.$$

Problem 8. In the decimal representation of $(\sqrt{2} + \sqrt{3})^{2020}$, what digit is immediately on the right of the decimal point?

4

Solution. Instead of 2020, we will fix any positive even power 2n. First, we can use the Binomial Theorem to see that the sum $N := (\sqrt{3} + \sqrt{2})^{2n} + (\sqrt{3} - \sqrt{2})^{2n}$ is an integer:

$$N = \sum_{j=0}^{2n} {\binom{2n}{j}} (\sqrt{3})^j (\sqrt{2})^{2n-j} + \sum_{j=0}^{2n} {\binom{2n}{j}} (\sqrt{3})^j (-\sqrt{2})^{2n-k}$$
$$= \sum_{j=0}^n {\binom{2n}{2j}} (\sqrt{3})^{2j} (\sqrt{2})^{2(n-j)} \in \mathbb{N}.$$

Now observe that $(\sqrt{3} - \sqrt{2})^{2n} = (\frac{1}{\sqrt{3} + \sqrt{2}})^{2n} < \frac{1}{2^{2n}} < 0.1$, where the last equality holds as long as $2n > \log_2 10$ (which is clearly the case of 2n = 2020). Since $(\sqrt{3} + \sqrt{2})^{2n} = N - (\sqrt{3} - \sqrt{2})^{2n} > N - 0.1$, we can conclude that in the decimal expression of $(\sqrt{3} + \sqrt{2})^{2n}$ the digit immediately to the right of the decimal point is 9.