
COMBINATORIAL ANALYSIS

Problem Set 1 Solutions (MIT, Fall 2021)

Problem 1. Show that at any given moment of this semester, we can choose two
students in our class having the same number of friends inside our class.

Solution. Let S be the set of students in our class, and set n := |S|. If one student s0
does not have any friend in the class, then each of the n − 1 students in S \ {s0} has
at most n− 2 friends in the class, and it follows by the PHP that two of the students
in S \ {s0} have the same number of friends. On the other hand, if each student has
at least one friend, then the number of friends of each of the n students is a number in
[n− 1], and once again it follows from the PHP that two of them must have the same
number of friends inside our class. �

Problem 2. Show that (n/3)n < n! < (n/2)n for every n ∈ Z with n ≥ 6.

Solution. First, note that (6/3)6 = 64 < 720 = 6! and 6! = 720 < 729 = (6/2)6.
Now assume that

(
n/3
)n

< n! < (n/2)n for some n ∈ N with n ≥ 6. Recall from

calculus that the sequence (1+1/n)n increases and limn→∞
(
1+ 1

n

)n
= e (the increasing

part can be either taken for granted or proved using Bernoulli’s inequality, namely,
(1 + x)n ≥ 1 + nx for every x > −1). Therefore

(0.1) 2 <
(

1 +
1

n

)n
< 3

for every n ≥ 2. From the right inequality of (0.1), we obtain that (n+ 1)n < 3nn, and
so (n + 1

3

)n+1

=
n + 1

3n+1
(n + 1)n < (n + 1)

(n
3

)n
< (n + 1)!,

where the last inequality follows from our induction hypothesis. On the other hand,
observe that the left inequality of (0.1) ensures that 2nn < (n+1)n. As a consequence,
we obtain that

(n + 1)! < (n + 1)
(n

2

)n
=

n + 1

2n+1
2nn <

n + 1

2n+1
=
(n + 1

2

)n+1

,

where the first inequality follows from our induction hypothesis. �

Problem 3. Consider the sequence (Fn)n≥0 obtained by setting F0 = 0, F1 = 1, and
Fn = Fn−1 +Fn−2 for every n ≥ 2. Prove that 18211 divides Fn for some n ∈ N. [This
is called the Fibonacci sequence and we will learn more about it throughout the course].
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Solution. Since the set {(r1, r2) | 0 ≤ r1, r2 < 18211} has size 182112, it follows from
the PHP that there exist i, j ∈ [182112 + 1] with i < j such that Fi ≡ Fj (mod 18211)
and Fi+1 ≡ Fj+1 (mod 18211). Then

Fi−1 = Fi+1 − Fi ≡ Fj+1 − Fj = Fj−1 (mod 18211).

In a similar way, we can verify that Fi−2 ≡ Fj−2 (mod 18211), and we can continue
in this fashion until we obtain that 0 = F0 ≡ Fj−i (mod 18211). Hence Fj−i is a
Fibonacci number divisible by 18211. �

Problem 4. Let T be a triangle with two angles of 30◦. Prove that T can be subdivided
into n smaller triangles similar to it for all n > 3.

Solution. Let A, B, and C be the vertices of T .
For n = 4, consider the subdivision obtained by drawing the triangle 4EDK, where

E, D, and K are the middle points of the segments AB, AC, and BC, respectively
(see the top-left figure below).

For n = 5, take E and D in the segment CB such that ∠CAE = ∠DAB = 30◦. Now
draw the regular triangle 4AED, and then draw three segments from the centroid K
of 4AED to its vertices. This gives us a subdivision of T into five triangles similar to
itself (see the top-right figure below).

For n = 6, take E and D in the segments AB and AC, respectively, so that
|EB| = 1

2
|AE| and |DC| = 1

2
|AD|. Let K be the middle point of the segment ED.

Take M and N in BC satisfying that |BM | = |MN | = |NC|. It is easy to check
that the triangulation one obtains by drawing the triangles 4EKM and 4KDN is a
subdivision of T into six triangles similar to itself (see the bottom figure below).
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Taking the previous cases as base cases, we can proceed by induction. Assume that we
can find a desired subdivision of T for every k ∈ J4, nK for some n ≥ 6. To subdivide T
into n + 1 triangles similar to itself, we can first subdivide T into n − 2 ≥ 4 triangles
similar to itself, and then we can subdivide one of the triangles of such a subdivision
into four triangles similar to T (as in the case when n = 4). �

Problem 5. For n ∈ N and k ∈ Z with 0 ≤ k ≤ n, let N(n, k) be the number of
k-subsets of [n] that do not contain a pair of consecutive integers.

(1) Prove that N(n, k) =
(
n−k+1

k

)
.
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(2) Prove that
∑n

k=0N(n, k) = Fn+2, where Fn+2 is the (n + 2)-th term of the
Fibonacci sequence.

Solution. (1) Let T (n, k) be the collection of k-subsets of [n] that do not contain a pair

of consecutive integers. Define f : T (n, k)→
(
[n−k+1]

k

)
as follows: if S = {s1, . . . , sk} ∈

T (n, k) with s1 < · · · < sk, then let f(S) = {s1 − 1, s2 − 2, . . . , sk − k} and note that
the fact that S does not contain two consecutive integers ensures that |f(S)| = k.

Conversely, we can define g :
(
[n−k+1]

k

)
→ T (n, k) as follows: for any S ′ = {s′1, . . . , s′k} ∈(

[n−k+1]
k

)
with s′1 < · · · < s′k, let g(S ′) = {s′1 + 1, s′2 + 2, . . . , s′k + k} and observe that

1 ≤ s′1 < · · · < s′k ≤ n− k + 1 guarantees that g(S ′) is a k-subset of [n] that does not
contain any two consecutive elements. Finally, one can readily check that f and g are
inverses of each other, and so

N(n, k) = |T (n, k)| =
(
n− k + 1

k

)
.

(2) It is clear that
∑n

k=0N(n, k) is the size of the set T (n) consisting of all the subsets
of [n] that do not contain a pair of consecutive integers. Let us show by induction
that |T (n)| = |Fn+2|. When n = 1 none of the two subsets of [1] contains a pair
of consecutive elements, and so |T (1)| = 2 = F3. In addition, only one of the four
subsets of [2], namely {1, 2}, contains a pair of consecutive integers, and so |T (2)| =
3 = F4. Now suppose that, for some n ∈ N, the equality |T (k)| = Fk+2 holds for
every k ≤ n. Observe that there are |T (n)| = Fn+2 subsets in T (n + 1) that do not
contain n + 1, those in T (n), and there are |T (n − 1)| sets in T (n + 1) containing
n + 1, those containing n + 1 that belong to T (n − 1) when n + 1 is dropped. Hence
|T (n+ 1)| = |T (n)|+ |T (n− 1)| = Fn+1 +Fn+2 = Fn+3, which completes our inductive
argument. �

Problem 6. Prove that

(0.2)
∑
k∈N

(
2r

2k − 1

)(
k − 1

s− 1

)
= 22r−2s+1

(
2r − s

s− 1

)
for all r, s ∈ N0 by using a combinatorial argument.

Solution. Suppose we have 2r delegates labeled 1, 2, . . . , 2r, from which we choose an
odd-size committee p1, . . . , p2k−1, where p1 < · · · < p2k−1, and then we choose a sub-
committee of size s−1 consisting ot some of the committee members p2, . . . , p2k−2. We
can clearly do this

∑
k∈N
(

2r
2k−1

)(
k−1
s−1

)
different ways, which is the left-hand side of (0.2).

Let us argue that the right-hand side of (0.2) also counts the pair of committees
and sub-committees we have just described. This time we first choose a size-(s − 1)
sub-committee b1, . . . , bs−1 with 2 ≤ b1 < · · · < bs−1 ≤ 2r − 1 such that not two of
the labels b1, . . . , bs−1 are consecutive; this can be done in

(
(2r−2)−(s−1)+1

s−1

)
=
(
2r−s
s−1

)
(see

Problem 5.1 above). Now we enhance the chosen sub-committee to obtain the desired
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committee taking into account that the desired committee must satisfy the following
conditions:

(1) the committee must have an odd number of delegates,

(2) every member of the sub-committee must occupy an even position in the line
we obtain by organizing the members of the committee increasingly by labels.

Notice that achieving this amounts to choosing a subset of odd size from the delegates
labeled by J1, b1−1K in 2b1−2 different ways, then for every j ∈ [s−2] a subset of odd size
from the delegates labeled by Jbj + 1, bj+1 − 1K in 2bj+1−bj−2 different ways, and finally
a subset of odd size from the delegates labeled by Jbs−1 + 1, 2rK in 22r−bs−1−1 different
ways. Therefore the number of desired pairs of committees and sub-committees is

2(b1−2)+
(∑s−2

j=1(bj+1−bj−2)
)
+(2r−bs−1−1)

(
2r − s

s− 1

)
= 22r−2s+1

(
2r − s

s− 1

)
,

which is the right-hand side of (0.2). Hence the identity (0.2) holds. �

Problem 7. What is the number of northeastern lattice paths from (0, 0) to (n, n) that
only touch the segment between (0, 0) and (n, n) at its endpoints?

Solution. The number Cn of lattice paths from (0, 0) to (n, n) below (and possibly
repeatedly touching) the line y = x is Cn = 1

n+1

(
2n
n

)
, which is called the n-th Catalan

number (see the solution of Exercise 4.24 in the textbook).

Let En be the set of lattice paths from (0, 0) to (n, n) whose first unit step is the
vector (1, 0) and that only touch the line y = x at (0, 0) and (1, 1). By symmetry, the
number we want to determine is 2|En|. Since the last unit step of each lattice path in
En must be (0, 1), the set En is in bijection with the set D′n−1 consisting of all lattice
paths from (1, 0) to (n, n − 1) that do not go strictly above the line y = x − 1: the
bijections consists in dropping the first and the last steps. In addition, the set D′n−1 is
in bijection with the set Dn−1 consisting of all lattice paths from (0, 0) to (n−1, n−1):
the bijection consists in translating each lattice path by (−1, 0), a unit back. By the
remark given in the previous paragraph,

2|En| = 2|Dn−1| = 2
1

(n− 1) + 1

(
2(n− 1)

n− 1

)
=

2

n

(
2n− 2

n− 1

)
.

�

Problem 8. In the decimal representation of (
√

2 +
√

3)2020, what digit is immediately
on the right of the decimal point?
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Solution. Instead of 2020, we will fix any positive even power 2n. First, we can use the
Binomial Theorem to see that the sum N := (

√
3 +
√

2)2n + (
√

3−
√

2)2n is an integer:

N =
2n∑
j=0

(
2n

j

)(√
3
)j(√

2
)2n−j

+
2n∑
j=0

(
2n

j

)(√
3
)j(−√2

)2n−k
=

n∑
j=0

(
2n

2j

)(√
3
)2j(√

2
)2(n−j) ∈ N.

Now observe that (
√

3−
√

2)2n =
(

1√
3+
√
2

)2n
< 1

22n
< 0.1, where the last equality holds

as long as 2n > log2 10 (which is clearly the case of 2n = 2020). Since (
√

3 +
√

2)2n =
N − (

√
3 −
√

2)2n > N − 0.1, we can conclude that in the decimal expression of
(
√

3 +
√

2)2n the digit immediately to the right of the decimal point is 9. �
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