Practice Midterm 2

Problem 1 For each $n \in \mathbb{N}$, let r_n be the number of permutations $\pi \in S_n$ such that π^2 is the identity permutation (here π^2 means π composed with itself as a function). Prove that $r_{n+1} = r_n + nr_{n-1}$ for every $n \geq 2$.

Solution. For each $n \in \mathbb{N}$, let T_n be the set of permutations in S_n whose square is the identity. Observe first that if $(a_1 a_2 \ldots a_\ell)$ is a cycle of length greater than 1 in the disjoint cycle decomposition of $\pi \in T_n$, then the fact that $\pi(a_2) = \pi^2(\pi(a_1)) = a_1$ implies that $\ell = 2$. Thus, every cycle in the disjoint cycle decomposition of π has length either 1 or 2. The subset of T_{n+1} whose elements has (n + 1) as a cycle is in bijection with T_n , where the bijection consists in dropping the cycle (n + 1). On the other hand, we can construct any permutation in T_{n+1} in which the cycle containing nhas length greater than one (that is, has length 2) as follows: construct the two-cycle (j, n + 1) containing n + 1 in n different ways, and then make the set $[n] \setminus \{j\}$ into a cycle type decomposition in r_{n-1} different ways. Hence $r_{n+1} = r_n + nr_{n-1}$.

Problem 2 In how many ways can we roll a die 8 consecutive times such that all six faces appear at least once?

Solution. For each $j \in [6]$, let A_j be the set consisting of 8 consecutive rolls of the given die such that the face labeled by j never shows. Observe that if S is a k-subset of [6], then the size of $\bigcap_{j \in S} A_j$ is the number of sequences of 8 consecutive rolls in which none of the elements in S shows, that is $(6-j)^8$. Then it follows from the Sieve Method that

$$\left| \bigcup_{n=1}^{6} A_{n} \right| = \sum_{\emptyset \neq S \subseteq [6]} (-1)^{|S|+1} \left| \bigcap_{j \in S} A_{j} \right| = \sum_{k=1}^{6} \sum_{S \subseteq [6]:|S|=k} (-1)^{|S|+1} \left| \bigcap_{j \in S} A_{j} \right|$$
$$= \sum_{k=1}^{6} {\binom{6}{k}} (-1)^{k+1} (6-j)^{8}.$$

Since there are a total of 6^8 sequence of 8 consecutive rolls of the given die, the number we are looking for is

$$6^{8} - \left| \bigcup_{n=1}^{6} A_{n} \right| = 6^{8} - \sum_{k=1}^{6} \binom{6}{k} (-1)^{k+1} (6-j)^{8} = \sum_{k=0}^{6} \binom{6}{k} (-1)^{k} (6-j)^{8}.$$

Problem 3 For $n \in \mathbb{N}_0$, let f_n be the number of ways we can have n cents in pennies, nickels, and quarters using at most five nickels. Find the explicit ordinary generating function for $(f_n)_{n>0}$.

Solution. Let F(x) be the generating function of $(f_n)_{n\geq 0}$. Let a_n and c_n be the number of ways to have *n* cents in pennies and quarters, respectively, and let b_n be the number of ways to have *n* cents in at most five nickels. Let A(x), B(x), and C(x) be the generating functions of $(a_n)_{n\geq 0}$, $(b_n)_{\geq 0}$, and $(c_n)_{n\geq 0}$, respectively. Then

$$A(x) = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$
 and $C(x) = \sum_{n=0}^{\infty} x^{25n} = \frac{1}{1-x^{25}}$

In addition, $B(x) = 1 + x^5 + x^{10} + x^{15} + x^{20} + x^{25}$. Then it follows from the product formula that

$$F(x) = A(x)B(x)C(x) = \frac{1 + x^5 + x^{10} + x^{15} + x^{20} + x^{25}}{(1 - x)(1 - x^{25})}.$$

Problem 4 The sequence $(a_n)_{n\geq 0}$ satisfies $a_0 = 1$ and $a_{n+1} = 3a_n + 2^n$ for every $n \in \mathbb{N}_0$. Find an explicit formula for a_n .

Solution. Let $F(x) = \sum_{n=0}^{\infty} a_n x^n$ be the generating function of the sequence $(a_n)_{n\geq 0}$. Since $a_0 = 1$,

$$F(x) - 1 = \sum_{n=0}^{\infty} a_{n+1} x^{n+1} = 3x \sum_{n=0}^{\infty} a_n x^n + x \sum_{n=0}^{\infty} 2^n x^n = 3x F(x) + \frac{x}{1 - 2x}$$

After solving for F(x), we obtain

$$F(x) = \frac{2}{1-3x} - \frac{1}{1-2x} = \sum_{n=0}^{\infty} 2 \cdot 3^n x^n - \sum_{n=0}^{\infty} 2^n x^n = \sum_{n=0}^{\infty} (2 \cdot 3^n - 2^n) x^n.$$

Hence $a_n = 2 \cdot 3^n - 2^n$.

Problem 5 For each $n \in \mathbb{N}$, let c_n be the number of ways to subdivide a group of n delegates into committees of sizes at least 3, and then select a leader in each committee. Assume that $c_0 = 1$, and find the exponential generating function of $(c_n)_{n \geq 0}$.

Solution. Let C(x) be the exponential generating function of $(c_n)_{n\geq 0}$. Let a_k be the number of ways to build a committee of size at least 3 using all given k delegates. It is clear that $a_0 = a_1 = a_2 = 0$. On the other hand, $a_n = n$ for every $n \geq 3$. Let A(x) be the exponential generating function of $(a_n)_{n\geq 0}$. Observe that

$$A(x) = \sum_{n=3}^{\infty} n \frac{x^n}{n!} = x \sum_{n=3}^{\infty} \frac{x^{n-1}}{(n-1)!} = x \left(\sum_{n=2}^{\infty} \frac{x^n}{n!}\right) = x \left(e^x - x - 1\right).$$

Hence, in light of the composition formula for exponential generating functions, after taking $B(x) = \sum_{n=0}^{\infty} x^n/n! = e^x$ we obtain that

$$C(x) = B(A(x)) = e^{x(e^x - x - 1)}$$