
COMBINATORIAL ANALYSIS

Practice Midterm 1 (MIT, Fall 2021)

This practice midterm will give you an idea about the format, length, and difficulty
level of the first midterm. As the actual midterm, this practice midterm should be
taken as a closed-book exam with a duration of 50 minutes.

Problem 1. Prove that there exists n ∈ N such that 211 divides 18n − 1.

Proof. Consider the positive integers 18 − 1, 182 − 1, . . . , 18212 − 1. Since there are
only 211 remainders modulo 211, the PHP guarantees the existence of i, j ∈ [212] with
i 6= j such that 18i − 1 ≡ 18j − 1 (mod 211) (i.e., 18i − 1 and 18j − 1 leave the same
remainder modulo 211). Assume, without loss of generality, that i < j. Because 211
divides 18j − 18i = 18i(18j−i − 1), the fact that 18i and 211 are relatively prime (note
that neither 2 nor 3 divide 211) ensures that 211 divides 18j−i − 1, which concludes
our argument. �

Problem 2. Using a combinatorial argument, prove that
m∑
k=0

(
n

k

)(
n− k
m− k

)
= 2m

(
n

m

)
for every m,n ∈ N with m ≤ n.

Proof. Suppose that in a class of n students we want to select a group of m students and
then make some of them leaders of the group. We can create the group by choosing m
students out of the whole class in

(
n
m

)
ways, and then we can select a subset of leaders

in the already-chosen group of m students in 2m ways. Hence we can perform our task
in 2m

(
n
m

)
ways, which is the right-hand side of the desired identity. We can also do the

same as follows. First we choose, for each k ∈ J0,mK, a group of k leaders in
(
n
k

)
ways,

and then we enlarge the size of the chosen group of leaders to a group of m students by
choosing the remaining m− k non-leader out of the remaining part of the class, which
can be done in

(
n−k
m−k

)
ways. Hence we have performed the same task in

∑m
k=0

(
n
k

)(
n−k
m−k

)
different ways, which is precisely the left-hand side of the desired identity. �

Problem 3. For every n ∈ N with n ≥ 2, prove that the number of compositions of n
into parts greater than 1 is Fn−1, the (n− 1)-th Fibonacci term.
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Proof. For each n ∈ N with n ≥ 2, let Tn be the set of compositions of n into parts
greater than 1, and set tn := |Tn|. Observe that the subset An of Tn consisting of
partitions whose first part is at least 3 is in bijection with Tn−1, where the bijection
consists in subtracting 1 to the first part. So |An| = |Tn−1|. On the other hand, the
subset Bn of Tn consisting of partitions whose first part is 2 is in bijection with Tn−2,
where the bijection consists in dropping the first part. Thus, |Bn| = |Tn−2|. Since
{An, Bn} is a partition of Tn, it follows that

tn = |Tn| = |Tn−1|+ |Tn−2| = tn−1 + tn−2.

It is clear that t2 = 1 = F1 and t3 = 1 = F2. Finally, note that if tk = Fk−1 for every
k ∈ J2, nK, then

tn+1 = tn + tn−1 = Fn−1 + Fn−2 = Fn.

Hence it follows by induction that |Tn| = Fn−1 for every n ≥ 2, as desired. �

Problem 4. Using only the combinatorial definition of Stirling numbers of the second
kind, find a formula for S(n, n− 2) for n ≥ 3.

Proof. Let π be a partition of [n] into n − 2 blocks. We first note that π must have
at least one block of size larger than 1. Observe, in addition, that π cannot have any
block of size s larger than 3 as otherwise n ≥ s + n− 3 > 3 + (n− 3) = n. Therefore
π must have either a block of size 2 or a block of size 3.

If π has a block of size 2, then the remaining blocks of the partition form a partition π′

of n− 2 into n− 3 blocks, and we have seen before that π′ must consist of a block of
size 2 and n− 4 blocks of size 1. Hence if π has a block of size 2, then π must consist
of two blocks of size 2 and n − 4 blocks of size 1. As we can choose the first block of
size 2 in

(
n
2

)
ways and the second block of size 2 in

(
n−2
2

)
ways, there must be 1

2

(
n
2

)(
n−2
2

)
partitions of [n] into n − 2 blocks having a block of size 2 (we have divided by 2 to
compensate for double counting).

If π has no block of size 2, then π must have a block of size 3, in which case the
remaining blocks of π are completely determined: they are n−3 blocks of size 1. Hence
there are

(
n
3

)
partitions of [n] into n − 2 having no block of size 2. Thus, the formula

we are looking for is S(n, n− 2) = 1
2

(
n
2

)(
n−2
2

)
+
(
n
3

)
. �

Problem 5. Prove that the number of partitions of n into at most k parts equals the
number of partitions of n+ k into k parts.

Proof. Let P≤k(n) denote the set of partitions of n into at most k parts, and let Pk(n+k)
denote the set of partitions of n + k into k parts. Define f : P≤k(n) → Pk(n + k)
as follows. For each p ∈ P≤k(n) with Ferrer diagram F , let f(p) be the partition
corresponding to the Ferrer diagram we obtain by attaching a first column of size k to F .
As the number of parts of f(p) is given by the first column of its Ferrer diagram, f(p) has
exactly k parts, and so f(p) ∈ Pk(n+k). Although it is not hard to verify that f is both
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injective and surjective, we can show that f is a bijection by explicitly verifying that it
has an inverse function. Observe that the function g : Pk(n+k)→ P≤k(n) consisting in
removing the first column of the corresponding Ferrer diagram is the inverse function
of f . Hence f is a bijection, which implies that |P≤k(n)| = |Pk(n+k)| = pk(n+k). �
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