
COMBINATORIAL ANALYSIS

MIDTERM 1 SOLUTIONS (MIT, FALL 2021)

Problem 1. Prove that there exist infinitely many positive integers n such that 2021 divides 99n − 1.

Proof. First, we check that gcd(99, 2021) = 1 as neither 3 nor 11 divides 2021. Now consider the positive

integers 991−1, 992− 1, ..., 992022− 1. As there are 2021 distinct residues modulo 2021, Pigeonhole Principle

guarantees the existence of two distinct integers i, j ∈ [2022] such that 99i − 1 and 99j − 1 leave the same

remainder when divided by 2021. Assume without loss of generality that i < j. This gives that 2021 divides

99j − 1− (99i − 1) = 99j − 99i = 99i(99j−i − 1). Since we established that gcd(99, 2021) = 1, it is clear that

99j−i − 1 is divisible by 2021. However, setting k = j − i, our argument concludes that k > 0 and 99k − 1 is

divisible by 2021.

There are several ways to show that the statement is true for an infinite number of positive integers. One

such method is to consider integers of the form ck ∀c ∈ Z+. We claim all integers of this form work. However,

this is not too hard to see as

99ck − 1 = (99k − 1)(99k(c−1) + 99k(c−2) + ...+ 1)

which is divisible by 2021 since 99k − 1 is divisible by 2021. �

Problem 2. Using a combinatorial argument, prove that

n∑
k=2

k(k − 1)

(
n

k

)
= n(n− 1)2n−2

for every n ∈ N with n ≥ 2.

Proof. Suppose that there is a class of n students and we wish to select a class council comprised of a

committee of at least 2 people, along with a president and a vice president who both serve on the committee

and are unique people. We can select a k person committee for any k in
(
n
k

)
different ways. From this

committee, we can pick the president in k different ways and the vice president in k−1 different ways. That

means that there are
(
n
k

)
k(k− 1) ways to pick a class council with a committee of size k. Summing this over

all sizes from k = 2 to n accounts for all possible student council sizes, but this is equivalent to the left hand

side of the equation.

Now consider what happens when the president and vice president are chosen before we select the com-

mittee. Namely, there are n ways to pick a president from a class of n students and n − 1 ways to pick a

vice president. Both of these students will already be on the committee. From here, the remaining n − 2

students can either serve on the committee or not serve on the committee, which means there are 2n−2 ways

to select the rest of the committee. This gives n(n− 1)2n−2 ways to form the class council which is precisely

the right hand side. Thus, these two sides count the same event and are subsequently equal. �
1



As a remark, this equality can be shown without a combinatorial argument by considering d2

dx2 (1 + x)n,

evaluated at x = 1. It is clear that this is equivalent to n(n− 1)(1 + x)n−2 = n(n− 1)2n−2 and the left hand

side considers taking the second derivative for each
(
n
k

)
xk term, and summing for all values from k = 2 to n

at x = 1.

Problem 3. Prove that the number of compositions of n into odd parts equals to n-th Fibonacci number

(assume that the first two Fibonacci numbers are F1 = 1 and F2 = 1).

Proof. For each n ∈ N with n ≥ 2, let Tn be the set of compositions of n into odd parts, and let tn := |Tn|.
Observe that the subset An ⊆ Tn consisting of subsets whose first part is 1 is in direct bijection with the odd

compositions Tn−1. To see why, note that having the first part equal to 1 means the rest of the composition

must sum to n− 1 and will be comprised of odd parts. Therefore, |An| = |Tn−1| = tn−1.

Consider Bn = Tn\An, the compositions of n into odd parts that do not start with 1. This means that

the first part is greater than or equal to 3. Subtracting 2 from the first part gives a composition of n − 2

into odd parts, and further this process is reversible thus implying that Bn is in direct bijection with Tn−2.

Therefore |Bn| = |Tn−2| = tn−2.

As Tn = An ∪ Bn, with An and Bn being disjoint, the relation tn = tn−1 + tn−2 is made. We finish the

proof with a strong induction. We claim that tn = Fn for all positive integers n. For the base case, it is

evident that t1 = 1 and t2 = 1, since T1 = {1} and T2 = {1 + 1}. Assume that tn = Fn for all positive

integers n ≤ k. It is then given from our work above that tk+1 = tk + tk−1 = Fk + Fk−1 from the induction

hypothesis. This means that tk+1 = Fk + Fk−1 = Fk+1, thus completing the induction, therefore we are

done. �

Problem 4. Let qk(n) denote the number of partitions of n into k distinct parts. Prove that qk(n+
(
k
2

)
) =

pk(n).

Proof. Let Qk(n) represent the set of partitions of n into k distinct parts and Pk(n) represent the set of

partitions of n into k not necessarily distinct parts. We wish to show that
∣∣∣Qk

(
n+

(
k
2

))∣∣∣ = |Pk(n)|. Define

a function f : Pk(n) → Qk

(
n+

(
k
2

))
as follows. Consider an element p ∈ Pk(n), and let p represent the

partition a1+a2+...+ak where ai ≤ ai+1 for i ∈ [k−1]. Taking f(p) will produce the partition b1+b2+...+bk

where bi = ai + (i− 1) for all i ∈ [k]. Evaluating this sum, it can be seen that

k∑
i=1

bi =

k∑
i=1

(ai + i− 1) = −k +

k∑
i=1

(ai) +

k∑
i=1

i = n− k +
k(k + 1)

2
= n+

(
k

2

)
.

We further claim that all bi are distinct. If this were not the case, then there must exist some bi = bj for

i 6= j; however, this would imply ai + i − 1 = aj + j − 1 ⇐⇒ aj − ai = i − j. Assume without loss of

generality that j > i, then the quantity aj − ai ≥ 0 but i − j < 0, thus implying that these two quantities

can not be equal, showing that all bi are distinct.

Now that it has been shown that f is a valid function, we wish to prove that it is bijective. To do this, it

can be shown that f is both injective and surjective, but it also suffices to show that f has a valid inverse.

The inverse f−1 : Qk

(
n+

(
k
2

))
→ Pk(n) is defined by taking a valid partition q ∈ Qk

(
n+

(
k
2

))
, such that

q represents q1 + q2 + ...+ qk with qi < qi+1 ∀i ∈ [k − 1], and then making a new partition p1 + p2 + ...+ pk
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where pi = qi − (i − 1) for all i ∈ [k]. It can be seen that this will map to a partition such that pi ≤ pi+1

for all i ∈ [k − 1] since qi+1 > qi =⇒ pi+1 + (i + 1 − 1) > pi + (i − 1) =⇒ pi+1 > pi + 1 =⇒ pi+1 ≥ pi.

Further, it is known that

k∑
i=1

pi =

k∑
i=1

qi − (i− 1) = k +

k∑
i=1

(qi)−
k∑

i=1

(i) = k + n+

(
k

2

)
−
(
k + 1

2

)
= n.

This means that p1 + p2 + ...+ pk is a valid partition of n. Thus, this definition of f−1 is well-defined. To see

that it is indeed the inverse, consider an element p ∈ Pk(n) and take f−1(f(p)). The partition p1+p2+...+pk

gets mapped to p1 + (p2 + 1) + (p3 + 2) + ...+ (pk + k− 1) and then f−1 maps this to p1 + p2 + ...+ pk = p.

It is evident that this represents a valid inverse to f, and this proves that f is bijective. Therefore, we are

done. �

Problem 5. Find a closed formula for S(n, 3).

Proof. We first present a combinatorial argument. Let π be a partition of [n] into 3 blocks. Note that

each element of [n] has 3 choices of where it can go, thus giving 3n options for where we can put those

elements. However, all blocks must be nonempty, meaning that all situations in which there is at least one

block without an element have been falsely included.

Counting these, it can be seen that the number of ways to pick exactly one block to not have any elements

is 3 and then there are 2n− 2 ways to place the elements of [n] into the remaining two blocks so that not all

of the elements go entirely into one block or the other. Lastly, there are 3 ways to place all of the elements

of [n] into exactly 1 block. That means we have overcounted 3(2n − 2) + 3 = 3 · 2n − 3 cases. Subtracting

this from our original count gives a total of 3n−3 ·2n +3 valid partitions for π. However, we have to account

for the fact that the blocks are indistinguishable, but the elements in them are not. This means we have

overcounted by a factor of 3! which is the number of ways to permute the blocks. This gives a final answer

of:

S(n, 3) =
1

3!
(3n − 3 · 2n + 3) =

3n−1 + 1

2
− 2n−1 .

�

A second solution to this question invokes the formula S(n, k) = S(n− 1, k − 1) + kS(n− 1, k) that was

shown in lecture. Further note that it was shown that S(n, 2) = 2n−1 − 1, which can be shown again as

there are 2n − 2 ways to place the items of [n] into one of two boxes so that not all of them items end up in

one block, and we overcount by a factor of 2! which is the number of ways to permute the blocks.

Using this, it can be seen that

S(n, 3) = S(n− 1, 2) + 3 · S(n− 1, 3) = S(n− 1, 2) + 3 · (S(n− 2, 2) + 3 · S(n− 2, 3)).

Repeating this procedure, it is not hard to see that

S(n, 3) =

n−2∑
i=1

3i−1 · S(n− i, 2).
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This can be shown inductively. From here, substituting the value of S(n− i, 2) gives:

S(n, 3) =

n−2∑
i=1

3i−1(2n−i−1 − 1) =

n−2∑
i=1

3i−1 · 2n−i−1 −
n−2∑
i=1

3i−1 =

n−3∑
i=0

3i · 2n−i−2 − 3n−2 − 1

2
.

However, this can be simplified to

2n−2
n−3∑
i=0

3i · 2−i − 3n−2 − 1

2
= 2n−2

((
3
2

)n−2 − 1
1
2

)
− 3n−2 − 1

2
= 2 · 3n−2 − 2n−1 − 3n−2 − 1

2
=

3n−1 + 1

2
− 2n−1 .

�

A third and final solution counts the problem directly in another fashion. Namely, if π is a partition of

[n] into 3 blocks, we have
(
n
k

)
ways to pick the first block’s elements for any k in [1, n − 2]. Additionally,

there are S(n − k, 2) ways to place items into the other two blocks. Further, this overcounts by a factor of

3 since we have 3 ways to select which block gets the k elements. This gives the formula

S(n, 3) =
1

3

n−2∑
k=1

(
n

k

)
S(n− k, 2) =

1

3

n−2∑
k=1

(
n

k

)
(2n−k−1 − 1) =

1

3

n−2∑
k=1

(
n

k

)
2n−k−1 − 1

3

n−2∑
k=1

(
n

k

)
.

Using the identity
∑n

k=0

(
n
k

)
= (1 + 1)n = 2n, we obtain

S(n, 3) =
−2n + n+ 2

3
+

1

2 · 3

n−2∑
k=1

(
n

k

)
2n−k =

−2n + n+ 2

3
− 2n + 2n+ 1

6
+

1

6

n∑
k=0

(
n

k

)
2n−k =

−2n−1 +
1

2
+

1

6

n∑
k=0

(
n

k

)
2n−k.

Note that the new sum counts the number of ways to select three A,B, and C, where A has k members and

the remaining n − k members either go to B or C. However, this also is equal to 3n as each person has 3

choices for where to go, so this simplifies to

S(n, 3) = −2n−1 +
1 + 3n−1

2
.

�
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