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Chapter 1

Introduction

Very roughly speaking, representation theory studies symmetry in

linear spaces. It is a beautiful mathematical subject which has many

applications, ranging from number theory and combinatorics to ge-

ometry, probability theory, quantum mechanics, and quantum field

theory.

Representation theory was born in 1896 in the work of the Ger-

man mathematician F. G. Frobenius. This work was triggered by a

letter to Frobenius by R. Dedekind. In this letter Dedekind made the

following observation: take the multiplication table of a finite group

G and turn it into a matrix XG by replacing every entry g of this

table by a variable xg . Then the determinant of XG factors into a

product of irreducible polynomials in {xg}, each of which occurs with

multiplicity equal to its degree. Dedekind checked this surprising fact

in a few special cases but could not prove it in general. So he gave

this problem to Frobenius. In order to find a solution of this problem

(which we will explain below), Frobenius created the representation

theory of finite groups.

The goal of this book is to give a “holistic” introduction to rep-

resentation theory, presenting it as a unified subject which studies

representations of associative algebras and treating the representa-

tion theories of groups, Lie algebras, and quivers as special cases. It

is designed as a textbook for advanced undergraduate and beginning

1



2 1. Introduction

graduate students and should be accessible to students with a strong

background in linear algebra and a basic knowledge of abstract al-

gebra. Theoretical material in this book is supplemented by many

problems and exercises which touch upon a lot of additional topics;

the more difficult exercises are provided with hints.

The book covers a number of standard topics in representation

theory of groups, associative algebras, Lie algebras, and quivers. For

a more detailed treatment of these topics, we refer the reader to the

textbooks [S], [FH], and [CR]. We mostly follow [FH], with the

exception of the sections discussing quivers, which follow [BGP], and

the sections on homological algebra and finite dimensional algebras,

for which we recommend [W] and [CR], respectively.

The organization of the book is as follows.

Chapter 2 is devoted to the basics of representation theory. Here

we review the basics of abstract algebra (groups, rings, modules,

ideals, tensor products, symmetric and exterior powers, etc.), as well

as give the main definitions of representation theory and discuss the

objects whose representations we will study (associative algebras,

groups, quivers, and Lie algebras).

Chapter 3 introduces the main general results about representa-

tions of associative algebras (the density theorem, the Jordan-Hölder

theorem, the Krull-Schmidt theorem, and the structure theorem for

finite dimensional algebras).

In Chapter 4 we discuss the basic results about representations of

finite groups. Here we prove Maschke’s theorem and the orthogonality

of characters and matrix elements and compute character tables and

tensor product multiplicities for the simplest finite groups. We also

discuss the Frobenius determinant, which was a starting point for

development of the representation theory of finite groups.

We continue to study representations of finite groups in Chapter

5, treating more advanced and special topics, such as the Frobenius-

Schur indicator, the Frobenius divisibility theorem, the Burnside the-

orem, the Frobenius formula for the character of an induced repre-

sentation, representations of the symmetric group and the general
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linear group over C, representations of GL2(Fq), representations of

semidirect products, etc.

In Chapter 6, we give an introduction to the representation theory

of quivers (starting with the problem of the classification of configura-

tions of n subspaces in a vector space) and present a proof of Gabriel’s

theorem, which classifies quivers of finite type.

In Chapter 7, we give an introduction to category theory, in par-

ticular, abelian categories, and explain how such categories arise in

representation theory.

In Chapter 8, we give a brief introduction to homological algebra

and explain how it can be applied to categories of representations.

Finally, in Chapter 9 we give a short introduction to the repre-

sentation theory of finite dimensional algebras.

Besides, the book contains six historical interludes written by Dr.

Slava Gerovitch.1 These interludes, written in an accessible and ab-

sorbing style, tell about the life and mathematical work of some of

the mathematicians who played a major role in the development of

modern algebra and representation theory: F. G. Frobenius, S. Lie,

W. Burnside, W. R. Hamilton, H. Weyl, S. Mac Lane, and S. Eilen-

berg. For more on the history of representation theory, we recommend

that the reader consult the references to the historical interludes, in

particular the excellent book [Cu].

Acknowledgments. This book arose from the lecture notes of

a representation theory course given by the first author to the re-

maining six authors in March 2004 within the framework of the Clay

Mathematics Institute Research Academy for high school students

and its extended version given by the first author to MIT undergrad-

uate mathematics students in the fall of 2008.

The authors are grateful to the Clay Mathematics Institute for

hosting the first version of this course. The first author is very in-

debted to Victor Ostrik for helping him prepare this course and thanks

1I wish to thank Prof. Pavel Etingof and his co-authors for adding technical notes
to my historical monograph. While they have made a commendable effort at a concise
exposition, their notes, unfortunately, have grown in size and in the end occupied
a better part of this volume. I hope the reader will forgive this preponderance of
technicalities in what, in essence, is a history book. — S. Gerovitch.
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Josh Nichols-Barrer and Thomas Lam for helping run the course in

2004 and for useful comments. He is also very grateful to Darij Grin-

berg for his very careful reading of the text, for many useful comments

and corrections, and for suggesting Problems 2.11.6, 3.3.3, 3.8.3, 3.8.4,

4.5.2, 5.10.2 and Exercises 5.27.2, 5.27.3, 7.9.8. Finally, the authors

gratefully acknowledge the use of the Dynkin diagram pictures pre-

pared by W. Casselman.



Chapter 2

Basic notions of
representation theory

2.1. What is representation theory?

In technical terms, representation theory studies representations of

associative algebras. Its general content can be very briefly summa-

rized as follows.

An associative algebra over a field k is a vector space A over

k equipped with an associative bilinear multiplication a, b 7→ ab,

a, b ∈ A. We will always consider associative algebras with unit,

i.e., with an element 1 such that 1 · a = a · 1 = a for all a ∈ A. A

basic example of an associative algebra is the algebra EndV of linear

operators from a vector space V to itself. Other important examples

include algebras defined by generators and relations, such as group

algebras and universal enveloping algebras of Lie algebras.

A representation of an associative algebra A (also called a left

A-module) is a vector space V equipped with a homomorphism ρ :

A→ EndV , i.e., a linear map preserving the multiplication and unit.

A subrepresentation of a representation V is a subspace U ⊂ V

which is invariant under all operators ρ(a), a ∈ A. Also, if V1, V2 are

two representations of A, then the direct sum V1⊕V2 has an obvious

structure of a representation of A.

5



6 2. Basic notions of representation theory

A nonzero representation V of A is said to be irreducible if its

only subrepresentations are 0 and V itself, and it is said to be inde-

composable if it cannot be written as a direct sum of two nonzero

subrepresentations. Obviously, irreducible implies indecomposable,

but not vice versa.

Typical problems of representation theory are as follows:

(1) Classify irreducible representations of a given algebra A.

(2) Classify indecomposable representations of A.

(3) Do (1) and (2) restricting to finite dimensional representa-

tions.

As mentioned above, the algebra A is often given to us by gener-

ators and relations. For example, the universal enveloping algebra U

of the Lie algebra sl(2) is generated by h, e, f with defining relations

(2.1.1) he− eh = 2e, hf − fh = −2f, ef − fe = h.

This means that the problem of finding, say, N -dimensional represen-

tations of A reduces to solving a bunch of nonlinear algebraic equa-

tions with respect to a bunch of unknownN×N matrices, for example

system (2.1.1) with respect to unknown matrices h, e, f .

It is really striking that such, at first glance hopelessly compli-

cated, systems of equations can in fact be solved completely by meth-

ods of representation theory! For example, we will prove the following

theorem.

Theorem 2.1.1. Let k = C be the field of complex numbers. Then:

(i) The algebra U has exactly one irreducible representation Vd of

each dimension, up to equivalence; this representation is realized in

the space of homogeneous polynomials of two variables x, y of degree

d− 1 and is defined by the formulas

ρ(h) = x
∂

∂x
− y

∂

∂y
, ρ(e) = x

∂

∂y
, ρ(f) = y

∂

∂x
.

(ii) Any indecomposable finite dimensional representation of U is

irreducible. That is, any finite dimensional representation of U is a

direct sum of irreducible representations.

As another example consider the representation theory of quivers.
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A quiver is an oriented graph Q (which we will assume to be

finite). A representation of Q over a field k is an assignment of

a k-vector space Vi to every vertex i of Q and of a linear operator

Ah : Vi → Vj to every directed edge h going from i to j (loops and

multiple edges are allowed). We will show that a representation of a

quiver Q is the same thing as a representation of a certain algebra

PQ called the path algebra of Q. Thus one may ask: what are the

indecomposable finite dimensional representations of Q?

More specifically, let us say that Q is of finite type if it has

finitely many indecomposable representations.

We will prove the following striking theorem, proved by P. Gabriel

in early 1970s:

Theorem 2.1.2. The finite type property of Q does not depend on

the orientation of edges. The connected graphs that yield quivers of

finite type are given by the following list:

• An :

• Dn:

• E6

• E7

• E8
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The graphs listed in the theorem are called (simply laced) Dyn-

kin diagrams. These graphs arise in a multitude of classification

problems in mathematics, such as the classification of simple Lie al-

gebras, singularities, platonic solids, reflection groups, etc. In fact, if

we needed to make contact with an alien civilization and show them

how sophisticated our civilization is, perhaps showing them Dynkin

diagrams would be the best choice!

As a final example consider the representation theory of finite

groups, which is one of the most fascinating chapters of represen-

tation theory. In this theory, one considers representations of the

group algebra A = C[G] of a finite group G — the algebra with basis

ag, g ∈ G, and multiplication law agah = agh. We will show that any

finite dimensional representation of A is a direct sum of irreducible

representations, i.e., the notions of an irreducible and indecompos-

able representation are the same for A (Maschke’s theorem). Another

striking result discussed below is the Frobenius divisibility theorem:

the dimension of any irreducible representation of A divides the or-

der of G. Finally, we will show how to use the representation theory

of finite groups to prove Burnside’s theorem: any finite group of or-

der paqb, where p, q are primes, is solvable. Note that this theorem

does not mention representations, which are used only in its proof; a

purely group-theoretical proof of this theorem (not using representa-

tions) exists but is much more difficult!

2.2. Algebras

Let us now begin a systematic discussion of representation theory.

Let k be a field. Unless stated otherwise, we will always assume

that k is algebraically closed, i.e., any nonconstant polynomial with

coefficients in k has a root in k. The main example is the field of

complex numbers C, but we will also consider fields of characteristic

p, such as the algebraic closure Fp of the finite field Fp of p elements.

Definition 2.2.1. An associative algebra over k is a vector space

A over k together with a bilinear map A× A → A, (a, b) 7→ ab, such

that (ab)c = a(bc).
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Definition 2.2.2. A unit in an associative algebra A is an element

1 ∈ A such that 1a = a1 = a.

Proposition 2.2.3. If a unit exists, it is unique.

Proof. Let 1, 1′ be two units. Then 1 = 11′ = 1′. �

From now on, by an algebraA we will mean an associative algebra

with a unit. We will also assume that A 6= 0.

Example 2.2.4. Here are some examples of algebras over k:

1. A = k.

2. A = k[x1, . . . , xn] — the algebra of polynomials in variables

x1, . . . , xn.

3. A = EndV — the algebra of endomorphisms of a vector space

V over k (i.e., linear maps, or operators, from V to itself). The

multiplication is given by composition of operators.

4. The free algebra A = k〈x1, . . . , xn〉. A basis of this algebra

consists of words in letters x1, . . . , xn, and multiplication in this basis

is simply the concatenation of words.

5. The group algebra A = k[G] of a group G. Its basis is

{ag, g ∈ G}, with multiplication law agah = agh.

Definition 2.2.5. An algebra A is commutative if ab = ba for all

a, b ∈ A.

For instance, in the above examples, A is commutative in cases 1

and 2 but not commutative in cases 3 (if dimV > 1) and 4 (if n > 1).

In case 5, A is commutative if and only if G is commutative.

Definition 2.2.6. A homomorphism of algebras f : A → B is a

linear map such that f(xy) = f(x)f(y) for all x, y ∈ A and f(1) = 1.

2.3. Representations

Definition 2.3.1. A representation of an algebra A (also called a

left A-module) is a vector space V together with a homomorphism

of algebras ρ : A→ EndV .
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Similarly, a right A-module is a space V equipped with an

antihomomorphism ρ : A → EndV ; i.e., ρ satisfies ρ(ab) = ρ(b)ρ(a)

and ρ(1) = 1.

The usual abbreviated notation for ρ(a)v is av for a left mod-

ule and va for a right module. Then the property that ρ is an

(anti)homomorphism can be written as a kind of associativity law:

(ab)v = a(bv) for left modules, and (va)b = v(ab) for right modules.

Remark 2.3.2. Let M be a left module over a commutative ring

A. Then one can regard M as a right A-module, with ma := am.

Similarly, any right A-module can be regarded as a left A-module. For

this reason, for commutative rings one does not distinguish between

left and right A-modules and just calls them A-modules.

Here are some examples of representations.

Example 2.3.3. 1. V = 0.

2. V = A, and ρ : A → EndA is defined as follows: ρ(a) is the

operator of left multiplication by a, so that ρ(a)b = ab (the usual

product). This representation is called the regular representation of

A. Similarly, one can equip A with a structure of a right A-module

by setting ρ(a)b := ba.

3. A = k. Then a representation of A is simply a vector space

over k.

4. A = k〈x1, . . . , xn〉. Then a representation of A is just a vec-

tor space V over k with a collection of arbitrary linear operators

ρ(x1), . . . , ρ(xn) : V → V (explain why!).

Definition 2.3.4. A subrepresentation of a representation V of

an algebra A is a subspace W ⊂ V which is invariant under all the

operators ρ(a) : V → V , a ∈ A.

For instance, 0 and V are always subrepresentations.

Definition 2.3.5. A representation V 6= 0 of A is irreducible (or

simple) if the only subrepresentations of V are 0 and V .

Definition 2.3.6. Let V1, V2 be two representations of an algebra A.

A homomorphism (or intertwining operator) φ : V1 → V2 is a
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linear operator which commutes with the action of A, i.e., φ(av) =

aφ(v) for any v ∈ V1. A homomorphism φ is said to be an isomor-

phism of representations if it is an isomorphism of vector spaces.

The set (space) of all homomorphisms of representations V1 → V2 is

denoted by HomA(V1, V2).

Note that if a linear operator φ : V1 → V2 is an isomorphism of

representations, then so is the linear operator φ−1 : V2 → V1 (check

it!).

Two representations between which there exists an isomorphism

are said to be isomorphic. For practical purposes, two isomorphic

representations may be regarded as “the same”, although there could

be subtleties related to the fact that an isomorphism between two

representations, when it exists, is not unique.

Definition 2.3.7. Let V1, V2 be representations of an algebra A.

Then the space V1 ⊕ V2 has an obvious structure of a representation

of A, given by a(v1 ⊕ v2) = av1 ⊕ av2. This representation is called

the direct sum of V1 and V2.

Definition 2.3.8. A nonzero representation V of an algebra A is said

to be indecomposable if it is not isomorphic to a direct sum of two

nonzero representations.

It is obvious that an irreducible representation is indecomposable.

On the other hand, we will see below that the converse statement is

false in general.

One of the main problems of representation theory is to classify

irreducible and indecomposable representations of a given algebra up

to isomorphism. This problem is usually hard and often can be solved

only partially (say, for finite dimensional representations). Below we

will see a number of examples in which this problem is partially or

fully solved for specific algebras.

We will now prove our first result — Schur’s lemma. Although

it is very easy to prove, it is fundamental in the whole subject of

representation theory.

Proposition 2.3.9 (Schur’s lemma). Let V1, V2 be representations of

an algebra A over any field F (which need not be algebraically closed).
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Let φ : V1 → V2 be a nonzero homomorphism of representations.

Then:

(i) If V1 is irreducible, φ is injective.

(ii) If V2 is irreducible, φ is surjective.

Thus, if both V1 and V2 are irreducible, φ is an isomorphism.

Proof. (i) The kernel K of φ is a subrepresentation of V1. Since

φ 6= 0, this subrepresentation cannot be V1. So by irreducibility of V1

we have K = 0.

(ii) The image I of φ is a subrepresentation of V2. Since φ 6= 0,

this subrepresentation cannot be 0. So by irreducibility of V2 we have

I = V2. �

Corollary 2.3.10 (Schur’s lemma for algebraically closed fields). Let

V be a finite dimensional irreducible representation of an algebra A

over an algebraically closed field k, and let φ : V → V be an inter-

twining operator. Then φ = λ · Id for some λ ∈ k (a scalar operator).

Remark 2.3.11. Note that this corollary is false over the field of

real numbers: it suffices to take A = C (regarded as an R-algebra)

and V = A.

Proof. Let λ be an eigenvalue of φ (a root of the characteristic poly-

nomial of φ). It exists since k is an algebraically closed field. Then

the operator φ−λ Id is an intertwining operator V → V , which is not

an isomorphism (since its determinant is zero). Thus by Proposition

2.3.9 this operator is zero, hence the result. �

Corollary 2.3.12. Let A be a commutative algebra. Then every

irreducible finite dimensional representation V of A is 1-dimensional.

Remark 2.3.13. Note that a 1-dimensional representation of any

algebra is automatically irreducible.

Proof. Let V be irreducible. For any element a ∈ A, the operator

ρ(a) : V → V is an intertwining operator. Indeed,

ρ(a)ρ(b)v = ρ(ab)v = ρ(ba)v = ρ(b)ρ(a)v

(the second equality is true since the algebra is commutative). Thus,

by Schur’s lemma, ρ(a) is a scalar operator for any a ∈ A. Hence
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every subspace of V is a subrepresentation. But V is irreducible, so

0 and V are the only subspaces of V . This means that dimV = 1

(since V 6= 0). �

Example 2.3.14. 1. A = k. Since representations of A are simply

vector spaces, V = A is the only irreducible and the only indecom-

posable representation.

2. A = k[x]. Since this algebra is commutative, the irreducible

representations of A are its 1-dimensional representations. As we

discussed above, they are defined by a single operator ρ(x). In the 1-

dimensional case, this is just a number from k. So all the irreducible

representations of A are Vλ = k, λ ∈ k, in which the action of A

is defined by ρ(x) = λ. Clearly, these representations are pairwise

nonisomorphic.

The classification of indecomposable representations of k[x] is

more interesting. To obtain it, recall that any linear operator on

a finite dimensional vector space V can be brought to Jordan nor-

mal form. More specifically, recall that the Jordan block Jλ,n is the

operator on kn which in the standard basis is given by the formulas

Jλ,nei = λei + ei−1 for i > 1 and Jλ,ne1 = λe1. Then for any linear

operator B : V → V there exists a basis of V such that the matrix

of B in this basis is a direct sum of Jordan blocks. This implies that

all the indecomposable representations of A are Vλ,n = kn, λ ∈ k,

with ρ(x) = Jλ,n. The fact that these representations are indecom-

posable and pairwise nonisomorphic follows from the Jordan normal

form theorem (which in particular says that the Jordan normal form

of an operator is unique up to permutation of blocks).

This example shows that an indecomposable representation of an

algebra need not be irreducible.

3. The group algebra A = k[G], where G is a group. A represen-

tation of A is the same thing as a representation of G, i.e., a vector

space V together with a group homomorphism ρ : G → Aut(V ),

where Aut(V ) = GL(V ) denotes the group of invertible linear maps

from the space V to itself (the general linear group of V ).
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Problem 2.3.15. Let V be a nonzero finite dimensional representa-

tion of an algebra A. Show that it has an irreducible subrepresen-

tation. Then show by example that this does not always hold for

infinite dimensional representations.

Problem 2.3.16. Let A be an algebra over a field k. The center

Z(A) of A is the set of all elements z ∈ A which commute with all

elements of A. For example, if A is commutative, then Z(A) = A.

(a) Show that if V is an irreducible finite dimensional representa-

tion of A, then any element z ∈ Z(A) acts in V by multiplication by

some scalar χV (z). Show that χV : Z(A) → k is a homomorphism.

It is called the central character of V .

(b) Show that if V is an indecomposable finite dimensional rep-

resentation of A, then for any z ∈ Z(A), the operator ρ(z) by which z

acts in V has only one eigenvalue χV (z), equal to the scalar by which z

acts on some irreducible subrepresentation of V . Thus χV : Z(A) → k

is a homomorphism, which is again called the central character of V .

(c) Does ρ(z) in (b) have to be a scalar operator?

Problem 2.3.17. Let A be an associative algebra, and let V be

a representation of A. By EndA(V ) one denotes the algebra of all

homomorphisms of representations V → V . Show that EndA(A) =

Aop, the algebra A with opposite multiplication.

Problem 2.3.18. Prove the following “infinite dimensional Schur

lemma” (due to Dixmier): Let A be an algebra over C and let V

be an irreducible representation of A with at most countable basis.

Then any homomorphism of representations φ : V → V is a scalar

operator.

Hint: By the usual Schur’s lemma, the algebra D := EndA(V ) is

an algebra with division. Show that D is at most countably dimen-

sional. Suppose φ is not a scalar, and consider the subfield C(φ) ⊂ D.

Show that C(φ) is a transcendental extension of C. Derive from this

that C(φ) is uncountably dimensional and obtain a contradiction.
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2.4. Ideals

A left ideal of an algebra A is a subspace I ⊆ A such that aI ⊆ I

for all a ∈ A. Similarly, a right ideal of an algebra A is a subspace

I ⊆ A such that Ia ⊆ I for all a ∈ A. A two-sided ideal is a

subspace that is both a left and a right ideal.

Left ideals are the same as subrepresentations of the regular rep-

resentation A. Right ideals are the same as subrepresentations of the

regular representation of the opposite algebra Aop.

Below are some examples of ideals:

• If A is any algebra, 0 and A are two-sided ideals. An algebra

A is called simple if 0 and A are its only two-sided ideals.

• If φ : A → B is a homomorphism of algebras, then kerφ is

a two-sided ideal of A.

• If S is any subset of an algebra A, then the two-sided ideal

generated by S is denoted by 〈S〉 and is the span of ele-

ments of the form asb, where a, b ∈ A and s ∈ S. Similarly,

we can define 〈S〉` = span{as} and 〈S〉r = span{sb}, the

left, respectively right, ideal generated by S.

Problem 2.4.1. A maximal ideal in a ring A is an ideal I 6= A

such that any strictly larger ideal coincides with A. (This definition

is made for left, right, or two-sided ideals.) Show that any unital

ring has a maximal left, right, and two-sided ideal. (Hint: Use Zorn’s

lemma.)

2.5. Quotients

Let A be an algebra and let I be a two-sided ideal in A. Then A/I

is the set of (additive) cosets of I . Let π : A → A/I be the quotient

map. We can define multiplication in A/I by π(a) · π(b) := π(ab).

This is well defined because if π(a) = π(a′), then

π(a′b) = π(ab+ (a′ − a)b) = π(ab) + π((a′ − a)b) = π(ab)

because (a′ − a)b ∈ Ib ⊆ I = kerπ, as I is a right ideal; similarly, if

π(b) = π(b′), then

π(ab′) = π(ab+ a(b′ − b)) = π(ab) + π(a(b′ − b)) = π(ab)
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because a(b′− b) ∈ aI ⊆ I = kerπ, as I is also a left ideal. Thus, A/I

is an algebra.

Similarly, if V is a representation of A and W ⊂ V is a subrep-

resentation, then V/W is also a representation. Indeed, let π : V →
V/W be the quotient map, and set ρV/W (a)π(x) := π(ρV (a)x).

Above we noted that left ideals of A are subrepresentations of the

regular representation of A, and vice versa. Thus, if I is a left ideal

in A, then A/I is a representation of A.

Problem 2.5.1. Let A = k[x1, . . . , xn] and let I 6= A be any ideal

in A containing all homogeneous polynomials of degree ≥ N . Show

that A/I is an indecomposable representation of A.

Problem 2.5.2. Let V 6= 0 be a representation of A. We say that a

vector v ∈ V is cyclic if it generates V , i.e., Av = V . A representation

admitting a cyclic vector is said to be cyclic. Show the following:

(a) V is irreducible if and only if all nonzero vectors of V are

cyclic.

(b) V is cyclic if and only if it is isomorphic to A/I , where I is a

left ideal in A.

(c) Give an example of an indecomposable representation which

is not cyclic.

Hint: Let A = C[x, y]/I2, where I2 is the ideal spanned by ho-

mogeneous polynomials of degree ≥ 2 (so A has a basis 1, x, y). Let

V = A∗ be the space of linear functionals on A, with the action of A

given by (ρ(a)f)(b) = f(ba). Show that V provides such an example.

2.6. Algebras defined by generators and

relations

If f1, . . . , fm are elements of the free algebra k〈x1, . . . , xn〉, we say

that the algebra A := k〈x1, . . . , xn〉/〈{f1, . . . , fm}〉 is generated by

x1, . . . , xn with defining relations f1 = 0, . . . , fm = 0.
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2.7. Examples of algebras

The following two examples are among the simplest interesting ex-

amples of noncommutative associative algebras:

(1) the Weyl algebra, k〈x, y〉/〈yx− xy − 1〉;
(2) the q-Weyl algebra, generated by x, x−1, y, y−1 with defin-

ing relations yx = qxy and xx−1 = x−1x = yy−1 = y−1y =

1.

Proposition 2.7.1. (i) A basis for the Weyl algebra A is {xiyj , i, j ≥
0}.

(ii) A basis for the q-Weyl algebra Aq is {xiyj , i, j ∈ Z}.

Proof. (i) First let us show that the elements xiyj are a spanning set

for A. To do this, note that any word in x, y can be ordered to have

all the x’s on the left of the y’s, at the cost of interchanging some x

and y. Since yx−xy = 1, this will lead to error terms, but these terms

will be sums of monomials that have a smaller number of letters x, y

than the original word. Therefore, continuing this process, we can

order everything and represent any word as a linear combination of

xiyj .

The proof that xiyj are linearly independent is based on represen-

tation theory. Namely, let a be a variable, and let E = tak[a][t, t−1]

(here ta is just a formal symbol, so really E = k[a][t, t−1]). Then E

is a representation of A with action given by xf = tf and yf = df
dt

(where d(ta+n)
dt := (a + n)ta+n−1). Suppose now that we have a non-

trivial linear relation
∑
cijx

iyj = 0. Then the operator

L =
∑

cij t
i

(
d

dt

)j

acts by zero in E. Let us write L as

L =

r∑

j=0

Qj(t)

(
d

dt

)j

,

where Qr 6= 0. Then we have

Lta =

r∑

j=0

Qj(t)a(a− 1) . . . (a− j + 1)ta−j .
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This must be zero, so we have
∑r

j=0 Qj(t)a(a−1) . . . (a−j+1)t−j = 0

in k[a][t, t−1]. Taking the leading term in a, we get Qr(t) = 0, a

contradiction.

(ii) Any word in x, y, x−1, y−1 can be ordered at the cost of mul-

tiplying it by a power of q. This easily implies both the spanning

property and the linear independence. �

Remark 2.7.2. The proof of (i) shows that the Weyl algebra A can

be viewed as the algebra of polynomial differential operators in one

variable t.

The proof of (i) also brings up the notion of a faithful represen-

tation.

Definition 2.7.3. A representation ρ : A → End V of an algebra A

is faithful if ρ is injective.

For example, k[t] is a faithful representation of the Weyl algebra if

k has characteristic zero (check it!), but not in characteristic p, where

(d/dt)pQ = 0 for any polynomial Q. However, the representation

E = tak[a][t, t−1], as we’ve seen, is faithful in any characteristic.

Problem 2.7.4. Let A be the Weyl algebra.

(a) If char k = 0, what are the finite dimensional representations

of A? What are the two-sided ideals in A?

Hint: For the first question, use the fact that for two square

matrices B,C, Tr(BC) = Tr(CB). For the second question, show

that any nonzero two-sided ideal in A contains a nonzero polynomial

in x, and use this to characterize this ideal.

Suppose for the rest of the problem that char k = p.

(b) What is the center of A?

Hint: Show that xp and yp are central elements.

(c) Find all irreducible finite dimensional representations of A.

Hint: Let V be an irreducible finite dimensional representation

of A, and let v be an eigenvector of y in V . Show that the collection

of vectors {v, xv, x2v, . . . , xp−1v} is a basis of V .

Problem 2.7.5. Let q be a nonzero complex number, and let A be

the q-Weyl algebra over C.
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(a) What is the center of A for different q? If q is not a root of

unity, what are the two-sided ideals in A?

(b) For which q does this algebra have finite dimensional repre-

sentations?

Hint: Use determinants.

(c) Find all finite dimensional irreducible representations of A for

such q.

Hint: This is similar to part (c) of the previous problem.

2.8. Quivers

Definition 2.8.1. A quiver Q is a directed graph, possibly with

self-loops and/or multiple edges between two vertices.

Example 2.8.2.

• // • •oo

•

OO

We denote the set of vertices of the quiver Q as I and the set

of edges as E. For an edge h ∈ E, let h′, h′′ denote the source and

target of h, respectively:

•
h′ h

// •
h′′

Definition 2.8.3. A representation of a quiver Q is an assign-

ment to each vertex i ∈ I of a vector space Vi and to each edge h ∈ E

of a linear map xh : Vh′ −→ Vh′′ .

It turns out that the theory of representations of quivers is a part

of the theory of representations of algebras in the sense that for each

quiver Q, there exists a certain algebra PQ, called the path algebra

of Q, such that a representation of the quiver Q is “the same” as

a representation of the algebra PQ. We shall first define the path

algebra of a quiver and then justify our claim that representations of

these two objects are “the same”.
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Definition 2.8.4. The path algebra PQ of a quiver Q is the algebra

whose basis is formed by oriented paths in Q, including the trivial

paths pi, i ∈ I , corresponding to the vertices of Q, and multiplication

is the concatenation of paths: ab is the path obtained by first tracing

b and then a. If two paths cannot be concatenated, the product is

defined to be zero.

Remark 2.8.5. It is easy to see that for a finite quiver
∑
i∈I

pi = 1, so

PQ is an algebra with unit.

Problem 2.8.6. Show that the algebra PQ is generated by pi for

i ∈ I and ah for h ∈ E with the following defining relations:

(1) p2
i = pi, pipj = 0 for i 6= j,

(2) ahph′ = ah, ahpj = 0 for j 6= h′,

(3) ph′′ah = ah, piah = 0 for i 6= h′′.

We now justify our statement that a representation of a quiver is

the same thing as a representation of the path algebra of a quiver.

Let V be a representation of the path algebra PQ. From this

representation, we can construct a representation of Q as follows: let

Vi = piV, and for any edge h, let xh = ah|ph′V : ph′V −→ ph′′V be

the operator corresponding to the one-edge path h.

Similarly, let (Vi, xh) be a representation of a quiver Q. From this

representation, we can construct a representation of the path algebra

PQ: let V =
⊕

i Vi, let pi : V → Vi → V be the projection onto Vi,

and for any path p = h1 . . . hm let ap = xh1 . . . xhm
: Vh′

m
→ Vh′′

1
be

the composition of the operators corresponding to the edges occurring

in p (and the action of this operator on the other Vi is zero).

It is clear that the above assignments V 7→ (piV) and (Vi) 7→⊕
i Vi are inverses of each other. Thus, we have a bijection between

isomorphism classes of representations of the algebra PQ and of the

quiver Q.

Remark 2.8.7. In practice, it is generally easier to consider a rep-

resentation of a quiver as in Definition 2.8.3.

We lastly define several previous concepts in the context of quiver

representations.
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Definition 2.8.8. A subrepresentation of a representation (Vi, xh)

of a quiver Q is a representation (Wi, x
′
h) where Wi ⊆ Vi for all i ∈ I

and where xh(Wh′) ⊆ Wh′′ and x′h = xh|Wh′ : Wh′ −→ Wh′′ for all

h ∈ E.

Definition 2.8.9. The direct sum of two representations (Vi, xh)

and (Wi, yh) is the representation (Vi ⊕Wi, xh ⊕ yh).

As with representations of algebras, a nonzero representation (Vi)

of a quiver Q is said to be irreducible if its only subrepresentations

are (0) and (Vi) itself, and it is said to be indecomposable if it is not

isomorphic to a direct sum of two nonzero representations.

Definition 2.8.10. Let (Vi, xh) and (Wi, yh) be representations of

the quiver Q. A homomorphism ϕ : (Vi) −→ (Wi) of quiver

representations is a collection of maps ϕi : Vi −→ Wi such that

yh ◦ ϕh′ = ϕh′′ ◦ xh for all h ∈ E.

Problem 2.8.11. LetA be a Z+-graded algebra, i.e., A =
⊕

n≥0A[n],

and A[n] · A[m] ⊂ A[n+m]. If A[n] is finite dimensional, it is useful

to consider the Hilbert series hA(t) =
∑

dimA[n]tn (the generating

function of dimensions of A[n]). Often this series converges to a ratio-

nal function, and the answer is written in the form of such a function.

For example, if A = k[x] and deg(xn) = n, then

hA(t) = 1 + t+ t2 + · · · + tn + · · · =
1

1 − t
.

Find the Hilbert series of the following graded algebras:

(a) A = k[x1, . . . , xm] (where the grading is by degree of polyno-

mials).

(b) A = k〈x1, . . . , xm 〉 (the grading is by length of words).

(c) A is the exterior (= Grassmann) algebra ∧k[x1, . . . , xm] gen-

erated over some field k by x1, . . . , xm with the defining relations

xixj + xjxi = 0 and x2
i = 0 for all i, j (the grading is by degree).

(d) A is the path algebra PQ of a quiver Q (the grading is defined

by deg(pi) = 0, deg(ah) = 1).

Hint: The closed answer is written in terms of the adjacency

matrix MQ of Q.
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2.9. Lie algebras

Let g be a vector space over a field k, and let [ , ] : g × g −→ g

be a skew-symmetric bilinear map. (That is, [a, a] = 0, and hence

[a, b] = −[b, a].)

Definition 2.9.1. (g, [ , ]) is a Lie algebra if [ , ] satisfies the Jacobi

identity

(2.9.1)
[
[a, b] , c

]
+

[
[b, c] , a

]
+

[
[c, a] , b

]
= 0.

Example 2.9.2. Some examples of Lie algebras are:

(1) Any space g with [ , ] = 0 (abelian Lie algebra).

(2) Any associative algebraA with [a, b] = ab−ba , in particular,

the endomorphism algebra A = End(V ), where V is a vector

space. When such an A is regarded as a Lie algebra, it is

often denoted by gl(V ) (general linear Lie algebra).

(3) Any subspace U of an associative algebraA such that [a, b] ∈
U for all a, b ∈ U .

(4) The space Der(A) of derivations of an algebra A, i.e. linear

maps D : A→ A which satisfy the Leibniz rule:

D(ab) = D(a)b+ aD(b).

(5) Any subspace a of a Lie algebra g which is closed under the

commutator map [ , ], i.e., such that [a, b] ∈ a if a, b ∈ a.

Such a subspace is called a Lie subalgebra of g.

Remark 2.9.3. Ado’s theorem says that any finite dimensional Lie

algebra is a Lie subalgebra of gl(V ) for a suitable finite dimensional

vector space V .

Remark 2.9.4. Derivations are important because they are the “in-

finitesimal version” of automorphisms (i.e., isomorphisms onto itself).

For example, assume that g(t) is a differentiable family of automor-

phisms of a finite dimensional algebra A over R or C parametrized

by t ∈ (−ε, ε) such that g(0) = Id. Then D := g′(0) : A → A is a

derivation (check it!). Conversely, if D : A → A is a derivation, then

etD is a 1-parameter family of automorphisms (give a proof!).
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This provides a motivation for the notion of a Lie algebra. Namely,

we see that Lie algebras arise as spaces of infinitesimal automorphisms

(= derivations) of associative algebras. In fact, they similarly arise as

spaces of derivations of any kind of linear algebraic structures, such

as Lie algebras, Hopf algebras, etc., and for this reason play a very

important role in algebra.

Here are a few more concrete examples of Lie algebras:

(1) R3 with [u, v] = u× v, the cross-product of u and v.

(2) sl(n), the set of n× n matrices with trace 0.

For example, sl(2) has the basis

e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)

with relations

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

(3) The Heisenberg Lie algebra H of matrices
(

0 ∗ ∗
0 0 ∗
0 0 0

)
.

It has the basis

x =




0 0 0

0 0 1

0 0 0


 , y =




0 1 0

0 0 0

0 0 0


 , c =




0 0 1

0 0 0

0 0 0




with relations [y, x] = c and [y, c] = [x, c] = 0.

(4) The algebra aff(1) of matrices ( ∗ ∗
0 0 ).

Its basis consists of X = ( 1 0
0 0 ) and Y = ( 0 1

0 0 ), with [X,Y ] =

Y .

(5) so(n), the space of skew-symmetric n × n matrices, with

[a, b] = ab− ba.

Exercise 2.9.5. Show that example (1) is a special case of example

(5) (for n = 3).

Definition 2.9.6. Let g1, g2 be Lie algebras. A homomorphism

of Lie algebras ϕ : g1 −→ g2 is a linear map such that ϕ([a, b]) =

[ϕ(a), ϕ(b)].

Definition 2.9.7. A representation of a Lie algebra g is a vector

space V with a homomorphism of Lie algebras ρ : g −→ EndV .
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Example 2.9.8. Some examples of representations of Lie algebras

are:

(1) V = 0.

(2) Any vector space V with ρ = 0 (the trivial representation).

(3) The adjoint representation V = g with ρ(a)(b) := [a, b].

That this is a representation follows from equation (2.9.1).

Thus, the meaning of the Jacobi identity is that it is equiv-

alent to the existence of the adjoint representation.

It turns out that a representation of a Lie algebra g is the same

thing as a representation of a certain associative algebra U(g). Thus,

as with quivers, we can view the theory of representations of Lie alge-

bras as a part of the theory of representations of associative algebras.

Definition 2.9.9. Let g be a Lie algebra with basis xi and [ , ]

defined by [xi, xj ] =
∑

k c
k
ijxk. The universal enveloping algebra

U(g) is the associative algebra generated by the xi’s with the defining

relations xixj − xjxi =
∑

k c
k
ijxk.

Remark 2.9.10. This is not a very good definition since it depends

on the choice of a basis. Later we will give an equivalent definition

which will be basis-independent.

Exercise 2.9.11. Explain why a representation of a Lie algebra is

the same thing as a representation of its universal enveloping algebra.

Example 2.9.12. The associative algebra U(sl(2)) is the algebra

generated by e, f , h, with relations

he− eh = 2e, hf − fh = −2f, ef − fe = h.

Example 2.9.13. The algebra U(H), where H is the Heisenberg Lie

algebra, is the algebra generated by x, y, c with the relations

yx− xy = c, yc− cy = 0, xc− cx = 0.

Note that the Weyl algebra is the quotient of U(H) by the relation

c = 1.

Remark 2.9.14. Lie algebras were introduced by Sophus Lie (see

Section 2.10) as an infinitesimal version of Lie groups (in early texts
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they were called “infinitesimal groups” and were called Lie algebras

by Hermann Weyl in honor of Lie). A Lie group is a group G which is

also a manifold (i.e., a topological space which locally looks like Rn)

such that the multiplication operation is differentiable. In this case,

one can define the algebra of smooth functions C∞(G) which carries

an action of G by right translations ((g ◦ f)(x) := f(xg)), and the

Lie algebra Lie(G) of G consists of derivations of this algebra which

are invariant under this action (with the Lie bracket being the usual

commutator of derivations). Clearly, such a derivation is determined

by its action at the unit element e ∈ G, so Lie(G) can be identified

as a vector space with the tangent space TeG to G at e.

Sophus Lie showed that the attachment G 7→ Lie(G) is a bijec-

tion between isomorphism classes of simply connected Lie groups (i.e.,

connected Lie groups on which every loop contracts to a point) and

finite dimensional Lie algebras over R. This allows one to study (dif-

ferentiable) representations of Lie groups by studying representations

of their Lie algebras, which is easier since Lie algebras are “linear” ob-

jects while Lie groups are “nonlinear”. Namely, a finite dimensional

representation of G can be differentiated at e to yield a representa-

tion of Lie(G), and conversely, a finite dimensional representation of

Lie(G) can be exponentiated to give a representation of G. Moreover,

this correspondence extends to certain classes of infinite dimensional

representations.

The most important examples of Lie groups are linear algebraic

groups, which are subgroups of GLn(R) defined by algebraic equa-

tions (such as, for example, the group of orthogonal matrices On(R)).

Also, given a Lie subalgebra g ⊂ gln(R) (which, by Ado’s theo-

rem, can be any finite dimensional real Lie algebra), we can define G

to be the subgroup of GLn(R) generated by the elements eX , X ∈ g.

One can show that this group has a natural structure of a connected

Lie group, whose Lie algebra is g (even though it is not always a

closed subgroup). While this group is not always simply connected,

its universal covering G̃ is, and it is the Lie group corresponding to g

under Lie’s correspondence.

For more on Lie groups and their relation to Lie algebras, the

reader is referred to textbooks on this subject, e.g. [Ki].
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2.10. Historical interlude: Sophus Lie’s trials

and transformations

To call Sophus Lie (1842–1899) an overachiever would be an under-

statement. Scoring first at the 1859 entrance examinations to the

University of Christiania (now Oslo) in Norway, he was determined

to finish first as well. When problems with his biology class derailed

this project, Lie received only the second-highest graduation score.

He became depressed, suffered from insomnia, and even contemplated

suicide. At that time, he had no desire to become a mathematician.

He began working as a mathematics tutor to support himself, read

more and more on the subject, and eventually began publishing re-

search papers. He was 26 when he finally decided to devote himself

to mathematics.

The Norwegian government realized that the best way to edu-

cate their promising scientists was for them to leave Norway, and

Lie received a fellowship to travel to Europe. Lie went straight to

Berlin, a leading European center of mathematical research, but the

mathematics practiced by local stars — Weierstrass and Kronecker —

did not impress him. There Lie met young Felix Klein, who eagerly

shared this sentiment. The two had a common interest in line geome-

try and became friends. Klein’s and Lie’s personalities complemented

each other very well. As the mathematician Hans Freudenthal put it,

“Lie and Klein had quite different characters as humans and math-

ematicians: the algebraist Klein was fascinated by the peculiarities

of charming problems; the analyst Lie, parting from special cases,

sought to understand a problem in its appropriate generalization”

[16, p. 323].

Lie liked to bounce ideas off his friend’s head, and Klein’s returns

were often quite powerful. In particular, Klein pointed out an anal-

ogy between Lie’s research on the tetrahedral complex and the Galois

theory of commutative permutation groups. Blissfully unaware of

the difficulties on his path, Lie enthusiastically embraced this sugges-

tion. Developing a continuous analog of the Galois theory of algebraic

equations became Lie’s idée fixe for the next several years.
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Lie and Klein traveled to Paris together, and there Lie produced

the famous contact transformation, which mapped straight lines into

spheres. An application of this expertise to the Earth sphere, however,

did not serve him well. After the outbreak of the Franco-Prussian war,

Lie could not find a better way to return to Norway than by first

hiking to Italy. With his peculiar hiking habits, such as taking off his

clothes in the rain and putting them into his backpack, he was not

able to flee very far. The French quickly apprehended him and found

papers filled with mysterious symbols. Lie’s efforts to explain the

meaning of his mathematical notation did not dispel the authorities’

suspicion that he was a German spy. A short stay in prison afforded

him some quiet time to complete his studies, and upon return to

Norway, Lie successfully defended his doctoral dissertation. Unable

to find a job in Norway, Lie resolved to go to Sweden, but Norwegian

patriots intervened, and the Norwegian National Assembly voted by

a large majority to establish a personal extraordinary professorship

for Lie at the University of Christiania. Although the salary offered

was less than extraordinary, he stayed.

Lie’s research on sphere mapping and his lively exchanges with

Klein led both of them to think of more general connections between

group theory and geometry. In 1872 Klein presented his famous Er-

langen Program, in which he suggested unifying specific geometries

under a general framework of projective geometry and using group

theory to organize all geometric knowledge. Lie and Klein clearly ar-

ticulated the notion of a transformation group, the continuous analog

of a permutation group, with promising applications to geometry and

differential equations, but they lacked a general theory of the sub-

ject. The Erlangen Program implied one aspect of this project — the

group classification problem — but Lie had no intention of attacking

this bastion at the time. As he later wrote to Klein, “[I]n your essay

the problem of determining all groups is not posited, probably on the

grounds that at the time such a problem seemed to you absurd or

impossible, as it did to me” [22, pp. 41–42].

By the end of 1873, Lie’s pessimism gave way to a much brighter

outlook. After dipping into the theory of first order differential equa-

tions, developed by Jacobi and his followers, and making considerable
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advances with his idée fixe, Lie finally acquired the mathematical

weaponry needed to answer the challenge of the Erlangen Program

and to tackle the theory of continuous transformation groups.

Living on the outskirts of Europe, Lie felt quite marginalized in

the European mathematics community. No students and very few for-

eign colleagues were interested in his research. He wrote his papers

in German but published them almost exclusively in Norwegian jour-

nals, preferring publication speed over wide accessibility. A few years

later he learned, however, that one French mathematician had won

the Grand Prix from the Académie des Sciences for independently

obtained results that yielded some special cases of Lie’s work on dif-

ferential equations. Lie realized that his Norwegian publications were

not the greatest publicity vehicle, and that he needed to make his

work better known in Europe. “If only I could collect together and

edit all my results,” he wistfully wrote to Klein [22, p. 77]. Klein’s

practical mind quickly found a solution. Klein, who then taught at

Leipzig, arranged for the young mathematician Friedrich Engel, a re-

cent doctoral student of his colleague, to go to Christiania and to

render Lie a helping mathematical hand.

Lie and Engel met twice daily for a polite conversation about

transformation groups. As Engel recalled, Lie carried his theory al-

most entirely in his head and dictated to Engel an outline of each

chapter, “a sort of skeleton, to be clothed by me with flesh and blood”

[22, p. 77]. Lie read and revised Engel’s notes, eventually producing

the first draft of a book-length manuscript.

When Klein left Leipzig to take up a professorship at Göttingen,

he arranged for the vacated chair of geometry to be offered to Lie.

Lie somewhat reluctantly left his homeland and arrived at Leipzig

with the intention of building “a healthy mathematical school” there

[22, p. 226]. He continued his collaboration with Engel, which cul-

minated in the publication of their joint three-volume work, Theorie

der Transformationsgruppen.

Lie’s ideas began to spread around Europe, finding a particularly

fertile ground in Paris. Inspired by Lie, Henri Poincaré remarked that

all mathematics was a tale about groups, and Émile Picard wrote to

Lie, “Paris is becoming a center for groups; it is all fermenting in
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young minds, and one will have an excellent wine after the liquors

have settled a bit”. German mathematicians were less impressed.

Weierstrass believed that Lie’s theory lacked rigor and had to be re-

built from the foundations, and Frobenius labeled it a “theory of

methods” for solving differential equations in a roundabout way, in-

stead of the natural methods of Euler and Lagrange [22, pp. 186,

188–189].

Students flocked to Lie’s lectures on his own research, but this

only exacerbated his heavy teaching load at Leipzig — 8–10 lectures

per week — compared to the leisurely pace of his work in Christia-

nia. An outdoor man, who was used to weeks-long hikes in Norway,

Lie felt homesick, longing for the forests and mountains of his native

country. All this began taking its toll on Lie. Most importantly, he

felt underappreciated and became obsessed with the idea that others

plundered his work and betrayed his trust. His relations with col-

leagues gradually deteriorated, particularly with those closest to him.

He broke with Engel and eventually with Klein. Lie felt that his role

in the development of the Erlangen Program was undervalued, and he

publicly attacked Klein, claiming, “I am no pupil of Klein, nor is the

opposite the case, although this might be closer to the truth. I value

Klein’s talent highly and will never forget the sympathetic interest

with which he has always followed my scientific endeavors. But I do

not feel that he has a satisfactory understanding of the difference be-

tween induction and proof, or between a concept and its application”

[56, p. 371]. Whoever was right in this dispute, Lie’s public accu-

sations against widely respected and influential Klein reflected badly

on Lie’s reputation.

Eventually Lie suffered a nervous breakdown and was diagnosed

with “neurasthenia”, a popular mental disease dubbed the “American

Nervousness”, or “Americanitis”. Its cause was ascribed to the stress

of modern urban life and the exhaustion of an individual’s “nervous

energy”. Lie spent some months in the supposedly less stressful envi-

ronment of a psychiatric clinic and upon some reflection decided that

he was better off in his mathematics department. His mathemati-

cal abilities returned, but his psyche never fully recovered. Rumors
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spread of his mental illness, possibly fueled by his opponents, who

tried to invalidate his accusations.

In the meantime, trying to assert its cultural (and eventually

political) independence from Sweden, Norway took steps to bring back

its leading intellectuals. The Norwegian National Assembly voted to

establish a personal chair in transformation group theory for Lie,

matching his high Leipzig salary. Lie was anxious to return to his

homeland, but his wife and three children did not share his nostalgia.

He eventually returned to Norway in 1898 with only a few months to

live.

Lie “thought and wrote in grandiose terms, in a style that has

now gone out of fashion, and that would be censored by our scientific

journals”, wrote one commentator [26, p. iii]. Lie was always more

concerned with originality than with rigor. “Let us reason with con-

cepts!” he often exclaimed during his lectures and drew geometrical

pictures instead of providing analytical proofs [22, p. 244]. “With-

out Phantasy one would never become a Mathematician”, he wrote.

“[W]hat gave me a Place among the Mathematicians of our Day,

despite my Lack of Knowledge and Form, was the Audacity of my

Thinking” [56, p. 409]. Hardly lacking relevant knowledge, Lie indeed

had trouble putting his ideas into publishable form. Due to Engel’s

diligence, Lie’s research on transformation groups was summed up

in three grand volumes, but Lie never liked this ghost-written work

and preferred citing his own earlier papers [47, p. 310]. He had even

less luck with the choice of assistant to write up results on contact

transformations and partial differential equations. Felix Hausdorff’s

interests led him elsewhere, and Lie’s thoughts on these subjects were

never completely spelled out [16, p. 324]. Thus we may never discover

the “true Lie”.

2.11. Tensor products

In this subsection we recall the notion of tensor product of vector

spaces, which will be extensively used below.

Definition 2.11.1. The tensor product V ⊗W of vector spaces V

and W over a field k is the quotient of the space V ∗W whose basis
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is given by formal symbols v ⊗ w, v ∈ V , w ∈ W , by the subspace

spanned by the elements

(v1 + v2) ⊗ w − v1 ⊗ w − v2 ⊗ w,

v ⊗ (w1 + w2) − v ⊗ w1 − v ⊗ w2,

av ⊗ w − a(v ⊗ w),

v ⊗ aw − a(v ⊗ w),

where v ∈ V,w ∈ W,a ∈ k.

Exercise 2.11.2. Show that V ⊗W can be equivalently defined as

the quotient of the free abelian group V • W generated by v ⊗ w,

v ∈ V,w ∈W by the subgroup generated by

(v1 + v2) ⊗ w − v1 ⊗ w − v2 ⊗ w,

v ⊗ (w1 + w2) − v ⊗ w1 − v ⊗ w2,

av ⊗ w − v ⊗ aw,

where v ∈ V,w ∈ W,a ∈ k.

The elements v ⊗ w ∈ V ⊗W , for v ∈ V,w ∈ W are called pure

tensors. Note that in general, there are elements of V ⊗W which are

not pure tensors.

This allows one to define the tensor product of any number of

vector spaces, V1 ⊗· · ·⊗Vn. Note that this tensor product is associa-

tive, in the sense that (V1 ⊗ V2)⊗ V3 can be naturally identified with

V1 ⊗ (V2 ⊗ V3).

In particular, people often consider tensor products of the form

V
N

n = V ⊗ · · · ⊗ V (n times) for a given vector space V , and, more

generally, E := V
N

n ⊗ (V ∗)
N

m. This space is called the space of

tensors of type (m,n) on V . For instance, tensors of type (0, 1)

are vectors, tensors of type (1, 0) — linear functionals (covectors),

tensors of type (1, 1) — linear operators, of type (2, 0) — bilinear

forms, tensors of type (2, 1) — algebra structures, etc.

If V is finite dimensional with basis ei, i = 1, . . . , N , and ei is the

dual basis of V ∗, then a basis of E is the set of vectors

ei1 ⊗ · · · ⊗ ein
⊗ ej1 ⊗ · · · ⊗ ejm ,
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and a typical element of E is

N∑

i1,...,in,j1,...,jm=1

T i1...in

j1...jm
ei1 ⊗ · · · ⊗ ein

⊗ ej1 ⊗ · · · ⊗ ejm ,

where T is a multidimensional table of numbers.

Physicists define a tensor as a collection of such multidimensional

tables TB attached to every basis B in V , which change according to a

certain rule when the basis B is changed (derive this rule!). Here it is

important to distinguish upper and lower indices, since lower indices

of T correspond to V and upper ones to V ∗. The physicists don’t

write the sum sign, but remember that one should sum over indices

that repeat twice — once as an upper index and once as lower. This

convention is called the Einstein summation, and it also stipulates

that if an index appears once, then there is no summation over it,

while no index is supposed to appear more than once as an upper

index or more than once as a lower index.

One can also define the tensor product of linear maps. Namely,

if A : V → V ′ and B : W →W ′ are linear maps, then one can define

the linear map A ⊗ B : V ⊗ W → V ′ ⊗ W ′ given by the formula

(A ⊗ B)(v ⊗ w) = Av ⊗ Bw (check that this is well defined!). The

most important properties of tensor products are summarized in the

following problem.

Problem 2.11.3. (a) Let U be any k-vector space. Construct a

natural bijection between bilinear maps V ×W → U and linear maps

V ⊗W → U (“natural” means that the bijection is defined without

choosing bases).

(b) Show that if {vi} is a basis of V and {wj} is a basis of W ,

then {vi ⊗ wj} is a basis of V ⊗W .

(c) Construct a natural isomorphism V ∗ ⊗W → Hom(V,W ) in

the case when V is finite dimensional.

(d) Let V be a vector space over a field k. Let SnV be the quotient

of V
N

n (n-fold tensor product of V ) by the subspace spanned by the

tensors T − s(T ) where T ∈ V
N

n and s is a transposition. Also let

∧nV be the quotient of V
N

n by the subspace spanned by the tensors

T such that s(T ) = T for some transposition s. These spaces are
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called the nth symmetric power, respectively exterior power of

V . If {vi} is a basis of V , can you construct a basis of SnV,∧nV ?

If dimV = m, what are their dimensions?

(e) If k has characteristic zero, find a natural identification of SnV

with the space of T ∈ V
N

n such that T = sT for all transpositions s,

and find a natural identification of ∧nV with the space of T ∈ V
N

n

such that T = −sT for all transpositions s.

(f) Let A : V → W be a linear operator. Then we have an op-

erator A
N

n : V
N

n → W
N

n and its symmetric and exterior powers

SnA : SnV → SnW , ∧nA : ∧nV → ∧nW which are defined in an

obvious way. Suppose that V = W and that dimV = N , and that

the eigenvalues of A are λ1, . . . , λN . Find Tr(SnA) and Tr(∧nA).

(g) Show that ∧NA = det(A)Id, and use this equality to give a

one-line proof of the fact that det(AB) = det(A) det(B).

Remark 2.11.4. Note that a similar definition to the above can be

used to define the tensor product V ⊗A W , where A is any ring, V

is a right A-module, and W is a left A-module. Namely, V ⊗A W

is the abelian group which is the quotient of the group V •W freely

generated by formal symbols v ⊗ w, v ∈ V , w ∈ W , modulo the

relations

(v1 + v2) ⊗ w − v1 ⊗ w − v2 ⊗ w,

v ⊗ (w1 + w2) − v ⊗ w1 − v ⊗ w2,

va⊗ w − v ⊗ aw, a ∈ A.

Exercise 2.11.5. Let K be a field, and let L be an extension of K.

If A is an algebra over K, show that A⊗K L is naturally an algebra

over L. Show that if V is an A-module, then V ⊗K L has a natural

structure of a module over the algebra A⊗K L.

Problem 2.11.6. Throughout this problem, we let k be an arbi-

trary field (not necessarily of characteristic zero and not necessarily

algebraically closed).

If A and B are two k-algebras, then an (A,B)-bimodule will

mean a k-vector space V with both a left A-module structure and a

right B-module structure which satisfy (av) b = a (vb) for any v ∈ V ,

a ∈ A, and b ∈ B. Note that both the notions of “left A-module”
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and “right A-module” are particular cases of the notion of bimodules;

namely, a left A-module is the same as an (A, k)-bimodule, and a right

A-module is the same as a (k,A)-bimodule.

Let B be a k-algebra, W a left B-module, and V a right B-

module. We denote by V ⊗B W the k-vector space

(V ⊗k W ) / 〈vb⊗ w − v ⊗ bw | v ∈ V, w ∈W, b ∈ B〉. We denote the

projection of a pure tensor v ⊗ w (with v ∈ V and w ∈ W ) onto the

space V ⊗B W by v ⊗B w. (Note that this tensor product V ⊗B W

is the one defined in Remark 2.11.4.)

If, additionally, A is another k-algebra and if the right B-module

structure on V is part of an (A,B)-bimodule structure, then V ⊗BW

becomes a left A-module by a (v ⊗B w) = av ⊗B w for any a ∈ A,

v ∈ V , and w ∈ W .

Similarly, if C is another k-algebra, and if the left B-module

structure on W is part of a (B,C)-bimodule structure, then V ⊗B W

becomes a right C-module by (v ⊗B w) c = v ⊗B wc for any c ∈ C,

v ∈ V , and w ∈ W .

If V is an (A,B)-bimodule and W is a (B,C)-bimodule, then

these two structures on V ⊗B W can be combined into one (A,C)-

bimodule structure on V ⊗B W .

(a) Let A, B, C, D be four algebras. Let V be an (A,B)-

bimodule, W a (B,C)-bimodule, and X a (C,D)-bimodule. Prove

that (V ⊗B W ) ⊗C X ∼= V ⊗B (W ⊗C X) as (A,D)-bimodules. The

isomorphism (from left to right) is given by the formula

(v ⊗B w) ⊗C x 7→ v ⊗B (w ⊗C x)

for all v ∈ V , w ∈W , and x ∈ X .

(b) If A, B, C are three algebras and if V is an (A,B)-bimodule

and W an (A,C)-bimodule, then the vector space HomA (V,W ) (the

space of all left A-linear homomorphisms from V to W ) canonically

becomes a (B,C)-bimodule by setting (bf) (v) = f (vb) for all b ∈ B,

f ∈ HomA (V,W ), and v ∈ V and setting (fc) (v) = f (v) c for all

c ∈ C, f ∈ HomA (V,W ) and v ∈ V .
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Let A, B, C, D be four algebras. Let V be a (B,A)-bimodule,

W a (C,B)-bimodule, and X a (C,D)-bimodule. Prove that

HomB (V,HomC (W,X)) ∼= HomC (W ⊗B V,X)

as (A,D)-bimodules. The isomorphism (from left to right) is given

by

f 7→ (w ⊗B v 7→ f (v)w)

for all v ∈ V , w ∈W and f ∈ HomB (V,HomC (W,X)).

Exercise 2.11.7. Show that if M and N are modules over a commu-

tative ring A, then M ⊗A N has a natural structure of an A-module.

2.12. The tensor algebra

The notion of tensor product allows us to give more conceptual (i.e.,

coordinate-free) definitions of the free algebra, polynomial algebra,

exterior algebra, and universal enveloping algebra of a Lie algebra.

Namely, given a vector space V , define its tensor algebra TV

over a field k to be TV =
⊕

n≥0 V
N

n, with multiplication defined by

a · b := a⊗ b, a ∈ V
N

n, b ∈ V
N

m. Observe that a choice of a basis

x1, . . . , xN in V defines an isomorphism of TV with the free algebra

k〈x1, . . . , xn 〉.
Also, one can make the following definition.

Definition 2.12.1. (i) The symmetric algebra SV of V is the

quotient of TV by the ideal generated by v ⊗ w − w ⊗ v, v, w ∈ V .

(ii) The exterior algebra ∧V of V is the quotient of TV by the

ideal generated by v ⊗ v, v ∈ V .

(iii) If V is a Lie algebra, the universal enveloping alge-

bra U(V ) of V is the quotient of TV by the ideal generated by

v ⊗ w − w ⊗ v − [v, w], v, w ∈ V .

It is easy to see that a choice of a basis x1, . . . , xN in V identifies

SV with the polynomial algebra k[x1, . . . , xN ], ∧V with the exterior

algebra ∧k(x1, . . . , xN ), and the universal enveloping algebra U(V )

with one defined previously.
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Moreover, it is easy to see that we have decompositions

SV =
⊕

n≥0

SnV, ∧V =
⊕

n≥0

∧nV.

2.13. Hilbert’s third problem

Problem 2.13.1. It is known that if A and B are two polygons of the

same area, then A can be cut by finitely many straight cuts into pieces

from which one can make B (check it — it is fun!). David Hilbert

asked in 1900 whether it is true for polyhedra in three dimensions. In

particular, is it true for a cube and a regular tetrahedron of the same

volume?

The answer is “no”, as was found by Dehn in 1901. The proof is

very beautiful. Namely, to any polyhedron A, let us attach its “Dehn

invariant” D(A) in V = R ⊗ (R/Q) (the tensor product of Q-vector

spaces). Namely,

D(A) =
∑

a

l(a) ⊗ β(a)

π
,

where a runs over edges of A and l(a), β(a) are the length of a and

the angle at a.

(a) Show that if you cut A into B and C by a straight cut, then

D(A) = D(B) +D(C).

(b) Show that α = arccos(1/3)/π is not a rational number.

Hint: Assume that α = 2m/n, for integers m,n. Deduce that

roots of the equation x + x−1 = 2/3 are roots of unity of degree n.

Then show that xk +x−k has denominator 3k and get a contradiction.

(c) Using (a) and (b), show that the answer to Hilbert’s question

is negative. (Compute the Dehn invariant of the regular tetrahedron

and the cube.)

2.14. Tensor products and duals of

representations of Lie algebras

Definition 2.14.1. The tensor product of two representations

V,W of a Lie algebra g is the space V ⊗W with

ρV ⊗W (x) = ρV (x) ⊗ Id + Id⊗ρW (x).
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Definition 2.14.2. The dual representation V ∗ to a representa-

tion V of a Lie algebra g is the dual space V ∗ to V with ρV ∗(x) =

−ρV (x)∗.

It is easy to check that these are indeed representations.

Problem 2.14.3. Let V,W,U be finite dimensional representations

of a Lie algebra g. Show that the space Homg(V ⊗W,U) is isomorphic

to Homg(V, U ⊗W ∗). (Here Homg := HomU(g).)

2.15. Representations of sl(2)

This subsection is devoted to the representation theory of sl(2), which

is of central importance in many areas of mathematics. It is useful to

study this topic by solving the following sequence of exercises, which

every mathematician should do, in one form or another.

Problem 2.15.1. According to the above, a representation of sl(2)

is just a vector space V with a triple of operators E,F,H such that

HE−EH = 2E, HF −FH = −2F, EF −FE = H (the correspond-

ing map ρ is given by ρ(e) = E, ρ(f) = F , ρ(h) = H).

Let V be a finite dimensional representation of sl(2) (the ground

field in this problem is C).

(a) Take eigenvalues of H and pick one with the biggest real part.

Call it λ. Let V̄ (λ) be the generalized eigenspace corresponding to λ.

Show that E|V̄ (λ) = 0.

(b) Let W be any representation of sl(2) and let w ∈ W be a

nonzero vector such that Ew = 0. For any k > 0 find a polynomial

Pk(x) of degree k such that EkF kw = Pk(H)w. (First compute

EF kw; then use induction in k.)

(c) Let v ∈ V̄ (λ) be a generalized eigenvector ofH with eigenvalue

λ. Show that there exists N > 0 such that FNv = 0.

(d) Show that H is diagonalizable on V̄ (λ). (Take N to be such

that FN = 0 on V̄ (λ), and compute ENFNv, v ∈ V̄ (λ), by (b). Use

the fact that Pk(x) does not have multiple roots.)

(e) LetNv be the smallestN satisfying (c). Show that λ = Nv−1.
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(f) Show that for each N > 0, there exists a unique up to isomor-

phism irreducible representation of sl(2) of dimension N . Compute

the matrices E,F,H in this representation using a convenient basis.

(For V finite dimensional irreducible take λ as in (a) and v ∈ V (λ)

an eigenvector of H . Show that v, Fv, . . . , F λv is a basis of V , and

compute the matrices of the operators E,F,H in this basis.)

Denote the (λ+1)-dimensional irreducible representation from (f)

by Vλ. Below you will show that any finite dimensional representation

is a direct sum of Vλ.

(g) Show that the operator C = EF + FE +H2/2 (the so-called

Casimir operator) commutes with E,F,H and equals λ(λ+2)
2 Id on

Vλ.

Now it is easy to prove the direct sum decomposition. Namely,

assume the contrary, and let V be a reducible representation of the

smallest dimension, which is not a direct sum of smaller representa-

tions.

(h) Show that C has only one eigenvalue on V , namely λ(λ+2)
2

for some nonnegative integer λ (use the fact that the generalized

eigenspace decomposition of C must be a decomposition of represen-

tations).

(i) Show that V has a subrepresentation W = Vλ such that

V/W = nVλ for some n (use (h) and the fact that V is the smallest

reducible representation which cannot be decomposed).

(j) Deduce from (i) that the eigenspace V (λ) of H is (n + 1)-

dimensional. If v1, . . . , vn+1 is its basis, show that F jvi, 1 ≤ i ≤ n+1,

0 ≤ j ≤ λ, are linearly independent and therefore form a basis of V

(establish that if Fx = 0 and Hx = µx for x 6= 0, then Cx = µ(µ−2)
2 x

and hence µ = −λ).
(k) Define Wi = span(vi, F vi, . . . , F

λvi). Show that Wi are sub-

representations of V and derive a contradiction to the fact that V

cannot be decomposed.

(l) (Jacobson-Morozov lemma) Let V be a finite dimensional com-

plex vector space and A : V → V a nilpotent operator. Show that

there exists a unique, up to an isomorphism, representation of sl(2)
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on V such that E = A. (Use the classification of the representations

and the Jordan normal form theorem.)

(m) (Clebsch-Gordan decomposition) Find the decomposition of

the representation Vλ ⊗ Vµ of sl(2) into irreducibles components.

Hint: For a finite dimensional representation V of sl(2) it is use-

ful to introduce the character χV (x) = Tr(exH), x ∈ C. Show that

χV ⊕W (x) = χV (x) + χW (x) and χV ⊗W (x) = χV (x)χW (x). Then

compute the character of Vλ and of Vλ ⊗Vµ and derive the decompo-

sition. This decomposition is of fundamental importance in quantum

mechanics.

(n) Let V = CM ⊗ CN and A = J0,M ⊗ IdN + IdM ⊗J0,N , where

J0,n is the Jordan block of size n with eigenvalue zero (i.e., J0,nei =

ei−1, i = 2, . . . , n, and J0,ne1 = 0). Find the Jordan normal form of

A using (l) and (m).

2.16. Problems on Lie algebras

Problem 2.16.1 (Lie’s theorem). The commutant K(g) of a Lie

algebra g is the linear span of elements [x, y], x, y ∈ g. This is an ideal

in g (i.e., it is a subrepresentation of the adjoint representation). A

finite dimensional Lie algebra g over a field k is said to be solvable if

there exists n such that Kn(g) = 0. Prove the Lie theorem: if k = C
and V is a finite dimensional irreducible representation of a solvable

Lie algebra g, then V is 1-dimensional.

Hint: Prove the result by induction in dimension. By the in-

duction assumption, K(g) has a common eigenvector v in V ; that is,

there is a linear function χ : K(g) → C such that av = χ(a)v for any

a ∈ K(g). Show that g preserves common eigenspaces of K(g). (For

this you will need to show that χ([x, a]) = 0 for x ∈ g and a ∈ K(g).

To prove this, consider the smallest subspace U containing v and

invariant under x. This subspace is invariant under K(g) and any

a ∈ K(g) acts with trace dim(U)χ(a) in this subspace. In particular

0 = Tr([x, a]) = dim(U)χ([x, a]).)
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Problem 2.16.2. Classify irreducible finite dimensional representa-

tions of the two-dimensional Lie algebra with basis X,Y and commu-

tation relation [X,Y ] = Y . Consider the cases of zero and positive

characteristic. Is the Lie theorem true in positive characteristic?

Problem 2.16.3. (Hard!) For any element x of a Lie algebra g

let ad(x) denote the operator g → g, y 7→ [x, y]. Consider the Lie

algebra gn generated by two elements x, y with the defining relations

ad(x)2(y) = ad(y)n+1(x) = 0.

(a) Show that the Lie algebras g1, g2, g3 are finite dimensional

and find their dimensions.

(b) (Harder!) Show that the Lie algebra g4 has infinite dimension.

Construct explicitly a basis of this algebra.

Problem 2.16.4. Classify irreducible representations of the Lie al-

gebra sl(2) over an algebraically closed field k of characteristic p > 2.

Problem 2.16.5. Let k be an algebraically closed field of character-

istic zero, and let q ∈ k×, q 6= ±1. The quantum enveloping algebra

Uq(sl(2)) is the algebra generated by e, f,K,K−1 with relations

KeK−1 = q2e, KfK−1 = q−2f, [e, f ] =
K −K−1

q − q−1

(if you formally set K = qh, you’ll see that this algebra, in an appro-

priate sense, “degenerates” to U(sl(2)) as q → 1). Classify irreducible

representations of Uq(sl(2)). Consider separately the cases of q being

a root of unity and q not being a root of unity.



Chapter 3

General results of
representation theory

3.1. Subrepresentations in semisimple

representations

Let A be an algebra.

Definition 3.1.1. A semisimple (or completely reducible) rep-

resentation of A is a direct sum of irreducible representations.

Example 3.1.2. Let V be an irreducible representation of A of di-

mension n. Then Y = End(V ), with action of A by left multipli-

cation, is a semisimple representation of A, isomorphic to nV (the

direct sum of n copies of V ). Indeed, any basis v1, . . . , vn of V gives

rise to an isomorphism of representations End(V ) → nV , given by

x→ (xv1, . . . , xvn).

Remark 3.1.3. Note that by Schur’s lemma, any semisimple repre-

sentation V of A is canonically identified with
⊕

X HomA(X,V )⊗X ,

where X runs over all irreducible representations of A. Indeed, we

have a natural map f :
⊕

X Hom(X,V ) ⊗X → V , given by g ⊗ x→
g(x), x ∈ X , g ∈ Hom(X,V ), and it is easy to verify that this map is

an isomorphism.

41



42 3. General results of representation theory

We’ll see now how Schur’s lemma allows us to classify subrepre-

sentations in finite dimensional semisimple representations.

Proposition 3.1.4. Let Vi, 1 ≤ i ≤ m, be irreducible finite dimen-

sional pairwise nonisomorphic representations of A, and let W be

a subrepresentation of V =
⊕m

i=1 niVi. Then W is isomorphic to⊕m
i=1 riVi, ri ≤ ni, and the inclusion φ : W → V is a direct sum

of inclusions φi : riVi → niVi given by multiplication of a row vector

of elements of Vi (of length ri) by a certain ri × ni matrix Xi with

linearly independent rows: φ(v1, . . . , vri
) = (v1, . . . , vri

)Xi.

Proof. The proof is by induction in n :=
∑m

i=1 ni. The base of

induction (n = 1) is clear. To perform the induction step, let us

assume that W is nonzero, and fix an irreducible subrepresentation

P ⊂ W . Such P exists (Problem 2.3.15).1 Now, by Schur’s lemma,

P is isomorphic to Vi for some i, and the inclusion φ|P : P → V

factors through niVi and upon identification of P with Vi is given by

the formula v 7→ (vq1, . . . , vqni
), where ql ∈ k are not all zero.

Now note that the group Gi = GLni
(k) of invertible ni × ni

matrices over k acts on niVi by (v1, . . . , vni
) → (v1, . . . , vni

)gi (and

by the identity on njVj , j 6= i) and therefore acts on the set of

subrepresentations of V , preserving the property we need to estab-

lish: namely, under the action of gi, the matrix Xi goes to Xigi,

while the matrices Xj , j 6= i, don’t change. Take gi ∈ Gi such

that (q1, . . . , qni
)gi = (1, 0, . . . , 0). Then Wgi contains the first sum-

mand Vi of niVi (namely, it is Pgi); hence Wgi = Vi ⊕W ′, where

W ′ ⊂ n1V1 ⊕· · ·⊕ (ni −1)Vi ⊕· · ·⊕nmVm is the kernel of the projec-

tion of Wgi to the first summand Vi along the other summands. Thus

the required statement follows from the induction assumption. �

Remark 3.1.5. In Proposition 3.1.4, it is not important that k is

algebraically closed, nor does it matter that V is finite dimensional.

If these assumptions are dropped, the only change needed is that the

entries of the matrix Xi are no longer in k but in Di = EndA(Vi),

1Another proof of the existence of P , which does not use the finite dimensionality
of V , is by induction in n. Namely, if W itself is not irreducible, let K be the kernel
of the projection of W to the first summand V1. Then K is a subrepresentation of
(n1 − 1)V1 ⊕ · · · ⊕ nmVm, which is nonzero since W is not irreducible, so K contains
an irreducible subrepresentation by the induction assumption.
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which is, as we know, a division algebra. The proof of this generalized

version of Proposition 3.1.4 is the same as before (check it!).

3.2. The density theorem

Let A be an algebra over an algebraically closed field k.

Corollary 3.2.1. Let V be an irreducible finite dimensional repre-

sentation of A, and let v1, . . . , vn ∈ V be any linearly independent

vectors. Then for any w1, . . . , wn ∈ V there exists an element a ∈ A

such that avi = wi.

Proof. Assume the contrary. Then the image of the map A → nV

given by a → (av1, . . . , avn) is a proper subrepresentation, so by

Proposition 3.1.4 it corresponds to an r × n matrix X , r < n. Thus,

taking a = 1, we see that there exist vectors u1, . . . , ur ∈ V such

that (u1, . . . , ur)X = (v1, . . . , vn). Let (q1, . . . , qn) be a nonzero vec-

tor such that X(q1, . . . , qn)T = 0 (it exists because r < n). Then∑
qivi = (u1, . . . , ur)X(q1, . . . , qn)T = 0, i.e.

∑
qivi = 0 — a contra-

diction to the linear independence of vi. �

Theorem 3.2.2 (The density theorem). (i) Let V be an irreducible

finite dimensional representation of A. Then the map ρ : A → EndV

is surjective.

(ii) Let V = V1 ⊕ · · · ⊕ Vr, where Vi are irreducible pairwise

nonisomorphic finite dimensional representations of A. Then the map⊕r
i=1 ρi : A →

⊕r
i=1 End(Vi) is surjective.

Proof. (i) Let B be the image of A in End(V ). We want to show

that B = End(V ). Let c ∈ End(V ), let v1, . . . , vn be a basis of V ,

and let wi = cvi. By Corollary 3.2.1, there exists a ∈ A such that

avi = wi. Then a maps to c, so c ∈ B, and we are done.

(ii) Let Bi be the image of A in End(Vi), and let B be the im-

age of A in
⊕r

i=1 End(Vi). Recall that as a representation of A,⊕r
i=1 End(Vi) is semisimple: it is isomorphic to

⊕r
i=1 diVi, where

di = dimVi. Then by Proposition 3.1.4, B =
⊕

i Bi. On the other

hand, (i) implies that Bi = End(Vi). Thus (ii) follows. �
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3.3. Representations of direct sums of matrix

algebras

In this section we consider representations of algebrasA =
⊕

i Matdi
(k)

for any field k.

Theorem 3.3.1. Let A =
⊕r

i=1 Matdi
(k). Then the irreducible rep-

resentations of A are V1 = kd1 , . . . , Vr = kdr , and any finite dimen-

sional representation of A is a direct sum of copies of V1, . . . , Vr.

In order to prove Theorem 3.3.1, we shall need the notion of a

dual representation.

Definition 3.3.2 (Dual representation). Let V be a representation

of any algebra A. Then the dual representation V ∗ is the represen-

tation of the opposite algebra Aop (or, equivalently, right A-module)

with the action

(f · a)(v) := f(av).

Proof of Theorem 3.3.1. First, the given representations are clearly

irreducible, since for any v 6= 0, w ∈ Vi, there exists a ∈ A such that

av = w. Next, let X be an n-dimensional representation of A. Then,

X∗ is an n-dimensional representation of Aop. But (Matdi
(k))

op ∼=
Matdi

(k) with isomorphism ϕ(X) = XT , as (BC)T = CTBT . Thus,

A ∼= Aop and X∗ may be viewed as an n-dimensional representation

of A. Define

φ : A⊕ · · · ⊕A︸ ︷︷ ︸
n copies

−→ X∗

by

φ(a1, . . . , an) = a1y1 + · · · + anyn

where {yi} is a basis of X∗. The map φ is clearly surjective, as

k ⊂ A. Thus, the dual map φ∗ : X −→ An∗ is injective. But

An∗ ∼= An as representations of A (check it!). Hence, Imφ∗ ∼= X is a

subrepresentation of An. Next, Matdi
(k) = diVi, so A =

⊕r
i=1 diVi,

An =
⊕r

i=1 ndiVi, as a representation of A. Hence by Proposition

3.1.4, X =
⊕r

i=1 miVi, as desired. �
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Problem 3.3.3. The goal of this problem is to give an alternative

proof of Theorem 3.3.1, not using any of the previous results of Chap-

ter 3.

Let A1, A2, . . . , An be n algebras with units 11, 12, . . . , 1n,

respectively. Let A = A1 ⊕A2 ⊕ · · · ⊕An. Clearly, 1i1j = δij1i, and

the unit of A is 1 = 11 + 12 + · · · + 1n.

For every representation V of A, it is easy to see that 1iV is a

representation of Ai for every i ∈ {1, 2, . . . , n}. Conversely, if V1,

V2, . . . , Vn are representations of A1, A2, . . . , An, respectively, then

V1 ⊕ V2 ⊕ · · · ⊕ Vn canonically becomes a representation of A (with

(a1, a2, . . . , an) ∈ A acting on V1 ⊕V2 ⊕ · · · ⊕Vn as (v1, v2, . . . , vn) 7→
(a1v1, a2v2, . . . , anvn)).

(a) Show that a representation V of A is irreducible if and only

if 1iV is an irreducible representation of Ai for exactly one i ∈
{1, 2, . . . , n}, while 1iV = 0 for all the other i. Thus, classify the

irreducible representations of A in terms of those of A1, A2, . . . , An.

(b) Let d ∈ N. Show that the only irreducible representation of

Matd(k) is kd, and every finite dimensional representation of Matd(k)

is a direct sum of copies of kd.

Hint: For every (i, j) ∈ {1, 2, . . . , d}2
, let Eij ∈ Matd(k) be the

matrix with 1 in the ith row of the jth column and 0’s everywhere

else. Let V be a finite dimensional representation of Matd(k). Show

that V = E11V ⊕ E22V ⊕ · · · ⊕ EddV , and that Φi : E11V → EiiV ,

v 7→ Ei1v is an isomorphism for every i ∈ {1, 2, . . . , d}. For every

v ∈ E11V , denote S (v) = 〈E11v, E21v, . . . , Ed1v〉. Prove that S (v)

is a subrepresentation of V isomorphic to kd (as a representation of

Matd(k)), and that v ∈ S (v). Conclude that V = S (v1) ⊕ S (v2) ⊕
· · · ⊕ S (vk), where {v1, v2, . . . , vk} is a basis of E11V .

(c) Deduce Theorem 3.3.1.

3.4. Filtrations

Let A be an algebra. Let V be a representation of A.

Definition 3.4.1. A (finite) filtration of V is a sequence of subrep-

resentations 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V .
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Lemma 3.4.2. Any finite dimensional representation V of an algebra

A admits a finite filtration 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V such that the

successive quotients Vi/Vi−1 are irreducible.

Proof. The proof is by induction in dim(V ). The base is clear, and

only the induction step needs to be justified. Pick an irreducible

subrepresentation V1 ⊂ V , and consider the representation U = V/V1.

Then by the induction assumption U has a filtration 0 = U0 ⊂ U1 ⊂
· · · ⊂ Un−1 = U such that Ui/Ui−1 are irreducible. Define Vi for

i ≥ 2 to be the preimages of Ui−1 under the tautological projection

V → V/V1 = U . Then 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = V is a

filtration of V with the desired property. �

3.5. Finite dimensional algebras

Definition 3.5.1. The radical of a finite dimensional algebra A is

the set of all elements of A which act by 0 in all irreducible represen-

tations of A. It is denoted Rad(A).

Proposition 3.5.2. Rad(A) is a two-sided ideal.

Proof. Easy. �

Proposition 3.5.3. Let A be a finite dimensional algebra.

(i) Let I be a nilpotent two-sided ideal in A; i.e., In = 0 for some

n. Then I ⊂ Rad(A).

(ii) Rad(A) is a nilpotent ideal. Thus, Rad(A) is the largest

nilpotent two-sided ideal in A.

Proof. (i) Let V be an irreducible representation of A. Let v ∈ V .

Then Iv ⊂ V is a subrepresentation. If Iv 6= 0, then Iv = V so there

is x ∈ I such that xv = v. Then xn 6= 0, a contradiction. Thus

Iv = 0, so I acts by 0 in V and hence I ⊂ Rad(A).

(ii) Let 0 = A0 ⊂ A1 ⊂ · · · ⊂ An = A be a filtration of the

regular representation of A by subrepresentations such that Ai+1/Ai

are irreducible. It exists by Lemma 3.4.2. Let x ∈ Rad(A). Then x

acts on Ai+1/Ai by zero, so x maps Ai+1 to Ai. This implies that

Rad(A)n = 0, as desired. �
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Theorem 3.5.4. A finite dimensional algebra A has only finitely

many irreducible representations Vi up to an isomorphism. These

representations are finite dimensional, and

A/Rad(A) ∼=
⊕

i

EndVi.

Proof. First, for any irreducible representation V of A and for any

nonzero v ∈ V , Av ⊆ V is a finite dimensional subrepresentation

of V . (It is finite dimensional as A is finite dimensional.) As V is

irreducible and Av 6= 0, V = Av and V is finite dimensional.

Next, suppose we have nonisomorphic irreducible representations

V1, V2, . . . , Vr. By Theorem 3.2.2, the homomorphism
⊕

i

ρi : A −→
⊕

i

EndVi

is surjective. So r ≤ ∑
i dim EndVi ≤ dimA. Thus, A has only

finitely many nonisomorphic irreducible representations (not more

than dimA).

Now, let V1, V2, . . . , Vr be all nonisomorphic irreducible finite di-

mensional representations of A. By Theorem 3.2.2, the homomor-

phism ⊕

i

ρi : A −→
⊕

i

EndVi

is surjective. The kernel of this map, by definition, is exactly Rad(A).

�

Corollary 3.5.5.
∑

i (dimVi)
2 ≤ dimA, where the Vi’s are the irre-

ducible representations of A.

Proof. As dim EndVi = (dimVi)
2
, Theorem 3.5.4 implies that dimA

− dim Rad(A) =
∑

i dim EndVi =
∑

i (dim Vi)
2
. As dim Rad(A) ≥ 0,∑

i (dimVi)
2 ≤ dimA. �

Example 3.5.6. 1. Let A = k[x]/(xn). This algebra has a unique

irreducible representation, which is a 1-dimensional space k, in which

x acts by zero. So the radical Rad(A) is the ideal (x).

2. Let A be the algebra of upper triangular n × n matrices.

It is easy to check that the irreducible representations of A are Vi,

i = 1, . . . , n, which are 1-dimensional, and any matrix x acts by xii.
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So the radical Rad(A) is the ideal of strictly upper triangular matrices

(as it is a nilpotent ideal and contains the radical). A similar result

holds for block-triangular matrices.

Definition 3.5.7. A finite dimensional algebra A is said to be semi-

simple if Rad(A) = 0.

Proposition 3.5.8. For a finite dimensional algebra A, the following

are equivalent:

(1) A is semisimple.

(2)
∑

i (dimVi)
2

= dimA, where the Vi’s are the irreducible

representations of A.

(3) A ∼=
⊕

i Matdi
(k) for some di.

(4) Any finite dimensional representation of A is completely re-

ducible (that is, isomorphic to a direct sum of irreducible

representations).

(5) A is a completely reducible representation of A.

Proof. As dimA − dim Rad(A) =
∑

i (dimVi)
2
, clearly dimA =∑

i (dimVi)
2

if and only if Rad(A) = 0. Thus, (1) ⇔ (2).

By Theorem 3.5.4, if Rad(A) = 0, then clearly A ∼=
⊕

i Matdi
(k)

for di = dimVi. Thus, (1) ⇒ (3). Conversely, if A ∼=
⊕

i Matdi
(k),

then by Theorem 3.3.1, Rad(A) = 0, so A is semisimple. Thus (3) ⇒
(1).

Next, (3) ⇒ (4) by Theorem 3.3.1. Clearly (4) ⇒ (5). To see

that (5) ⇒ (3), let A =
⊕

i niVi. Consider EndA(A) (endomorphisms

of A as a representation of A). As the Vi’s are pairwise nonisomor-

phic, by Schur’s lemma, no copy of Vi in A can be mapped to a

distinct Vj . Also, again by Schur’s lemma, EndA (Vi) = k. Thus,

EndA(A) ∼=
⊕

i Matni
(k). But EndA(A) ∼= Aop by Problem 2.3.17,

so Aop ∼=
⊕

i Matni
(k). Thus, A ∼= (

⊕
i Matni

(k))
op

=
⊕

i Matni
(k),

as desired. �

3.6. Characters of representations

Let A be an algebra and V a finite dimensional representation of

A with action ρ. Then the character of V is the linear function
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χV : A → k given by

χV (a) = Tr|V (ρ(a)).

If [A,A] is the span of commutators [x, y] := xy−yx over all x, y ∈ A,

then [A,A] ⊆ kerχV . Thus, we may view the character as a mapping

χV : A/[A,A] → k.

Exercise 3.6.1. Show that if W ⊂ V are finite dimensional repre-

sentations of A, then χV = χW + χV/W .

Theorem 3.6.2. (i) Characters of (distinct) irreducible finite dimen-

sional representations of A are linearly independent.

(ii) If A is a finite dimensional semisimple algebra, then these

characters form a basis of (A/[A,A])∗.

Proof. (i) If V1, . . . , Vr are nonisomorphic irreducible finite dimension-

al representations of A, then the map

ρV1 ⊕ · · · ⊕ ρVr
: A → End V1 ⊕ · · · ⊕ End Vr

is surjective by the density theorem, so χV1 , . . . , χVr
are linearly inde-

pendent. (Indeed, if
∑
λiχVi

(a) = 0 for all a ∈ A, then
∑
λiTr(Mi) =

0 for all Mi ∈ EndkVi. But each Tr(Mi) can range independently over

k, so it must be that λ1 = · · · = λr = 0.)

(ii) First we prove that [Matd(k),Matd(k)] = sld(k), the set of all

matrices with trace 0. It is clear that [Matd(k),Matd(k)] ⊆ sld(k). If

we denote by Eij the matrix with 1 in the ith row of the jth column

and 0’s everywhere else, we have [Eij , Ejm] = Eim for i 6= m and

[Ei,i+1, Ei+1,i] = Eii −Ei+1,i+1. Now {Eim}∪{Eii −Ei+1,i+1} forms

a basis in sld(k), so indeed [Matd(k),Matd(k)] = sld(k), as claimed.

By semisimplicity, we can write A = Matd1(k) ⊕ · · · ⊕ Matdr
(k).

Then [A,A] = sld1(k)⊕· · ·⊕sldr
(k), and A/[A,A] ∼= kr. By Theorem

3.3.1, there are exactly r irreducible representations of A (isomor-

phic to kd1 , . . . , kdr , respectively) and therefore r linearly indepen-

dent characters on the r-dimensional vector space A/[A,A]. Thus,

the characters form a basis. �
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3.7. The Jordan-Hölder theorem

We will now state and prove two important theorems about represen-

tations of finite dimensional algebras — the Jordan-Hölder theorem

and the Krull-Schmidt theorem.

Theorem 3.7.1 (Jordan-Hölder theorem). Let V be a finite dimen-

sional representation of A, and let 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V ,

0 = V ′
0 ⊂ · · · ⊂ V ′

m = V be filtrations of V , such that the represen-

tations Wi := Vi/Vi−1 and W ′
i := V ′

i /V
′
i−1 are irreducible for all i.

Then n = m, and there exists a permutation σ of 1, . . . , n such that

Wσ(i) is isomorphic to W ′
i .

Proof. First proof (for k of characteristic zero). The character of

V obviously equals the sum of characters of Wi and also the sum of

characters of W ′
i . But by Theorem 3.6.2, the characters of irreducible

representations are linearly independent, so the multiplicity of every

irreducible representation W of A among Wi and among W ′
i is the

same. This implies the theorem.2

Second proof (general). The proof is by induction on dimV .

The base of induction is clear, so let us prove the induction step.

If W1 = W ′
1 (as subspaces), we are done, since by the induction

assumption the theorem holds for V/W1. So assume W1 6= W ′
1. In

this case W1 ∩ W ′
1 = 0 (as W1,W

′
1 are irreducible), so we have an

embedding f : W1 ⊕ W ′
1 → V . Let U = V/(W1 ⊕ W ′

1), and let

0 = U0 ⊂ U1 ⊂ · · · ⊂ Up = U be a filtration of U with simple

quotients Zi = Ui/Ui−1 (it exists by Lemma 3.4.2). Then we see the

following:

1) V/W1 has a filtration with successive quotients W ′
1, Z1, . . . , Zp

and another filtration with successive quotients W2, . . . .,Wn.

2) V/W ′
1 has a filtration with successive quotients W1, Z1, . . . , Zp

and another filtration with successive quotients W ′
2, . . . .,W

′
n.

2This proof does not work in characteristic p because it only implies that the
multiplicities of Wi and W ′

i are the same modulo p, which is not sufficient. In fact,
the character of the representation pV , where V is any representation, is zero.
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By the induction assumption, this means that the collection of

irreducible representations with multiplicities W1,W
′
1, Z1, . . . , Zp co-

incides on one hand with W1, . . . ,Wn and on the other hand with

W ′
1, . . . ,W

′
m. We are done. �

The Jordan-Hölder theorem shows that the number n of terms in

a filtration of V with irreducible successive quotients does not depend

on the choice of a filtration and depends only on V . This number is

called the length of V . It is easy to see that n is also the maximal

length of a filtration of V in which all the inclusions are strict.

The sequence of the irreducible representations W1, . . . ,Wn enu-

merated in the order they appear from some filtration of V as succes-

sive quotients is called a Jordan-Hölder series of V .

3.8. The Krull-Schmidt theorem

Theorem 3.8.1 (Krull-Schmidt theorem). Any finite dimensional

representation of A can be uniquely (up to an isomorphism and the

order of summands) decomposed into a direct sum of indecomposable

representations.

Proof. It is clear that a decomposition of V into a direct sum of in-

decomposable representations exists, so we just need to prove unique-

ness. We will prove it by induction on dimV . Let V = V1⊕· · ·⊕Vm =

V ′
1 ⊕ · · · ⊕ V ′

n. Let is : Vs → V , i′s : V ′
s → V , ps : V → Vs,

p′s : V → V ′
s be the natural maps associated with these decompo-

sitions. Let θs = p1i
′
sp

′
si1 : V1 → V1. We have

∑n
s=1 θs = 1. Now we

need the following lemma.

Lemma 3.8.2. Let W be a finite dimensional indecomposable repre-

sentation of A. Then:

(i) Any homomorphism θ : W →W is either an isomorphism or

nilpotent.

(ii) If θs : W → W , s = 1, . . . , n, are nilpotent homomorphisms,

then so is θ := θ1 + · · · + θn.
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Proof. (i) Generalized eigenspaces of θ are subrepresentations of W ,

and W is their direct sum. Thus, θ can have only one eigenvalue λ.

If λ is zero, θ is nilpotent; otherwise it is an isomorphism.

(ii) The proof is by induction in n. The base is clear. To make

the induction step (n− 1 to n), assume that θ is not nilpotent. Then

by (i), θ is an isomorphism, so
∑n

i=1 θ
−1θi = 1. The morphisms

θ−1θi are not isomorphisms, so they are nilpotent. Thus 1− θ−1θn =

θ−1θ1 + · · ·+ θ−1θn−1 is an isomorphism, which is a contradiction to

the induction assumption. �

By the lemma, we find that for some s, θs must be an isomor-

phism; we may assume that s = 1. In this case, V ′
1 = Im(p′1i1) ⊕

Ker(p1i
′
1), so since V ′

1 is indecomposable, we get that f := p′1i1 :

V1 → V ′
1 and g := p1i

′
1 : V ′

1 → V1 are isomorphisms.

Let B =
⊕

j>1 Vj , B
′ =

⊕
j>1 V

′
j ; then we have V = V1 ⊕ B =

V ′
1 ⊕ B′. Consider the map h : B → B′ defined as a composition of

the natural maps B → V → B′ attached to these decompositions.

We claim that h is an isomorphism. To show this, it suffices to show

that Kerh = 0 (as h is a map between spaces of the same dimension).

Assume that v ∈ Kerh ⊂ B. Then v ∈ V ′
1 . On the other hand, the

projection of v to V1 is zero, so gv = 0. Since g is an isomorphism,

we get v = 0, as desired.

Now by the induction assumption, m = n, and Vj
∼= V ′

σ(j) for

some permutation σ of 2, . . . , n. The theorem is proved. �

Problem 3.8.3. The above proof of Lemma 3.8.2 uses the condition

that k is an algebraically closed field. Prove Lemma 3.8.2 (and hence

the Krull-Schmidt theorem) without this condition.

Problem 3.8.4. (i) Let V,W be finite dimensional representations

of an algebra A over a (not necessarily algebraically closed) field K.

Let L be a field extension of K. Suppose that V ⊗K L is isomorphic

to W ⊗K L as a module over the L-algebra A ⊗K L. Show that V

and W are isomorphic as A-modules.

Hint: Reduce to the case of finitely generated, then finite ex-

tension, of some degree n. Then regard V ⊗K L and W ⊗K L as
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A-modules, and show that they are isomorphic to V n and Wn, re-

spectively. Deduce that V n is isomorphic to W n, and use the Krull-

Schmidt theorem (valid over any field by Problem 3.8.3) to deduce

that V is isomorphic to W .

(ii) (The Noether-Deuring theorem) In the setting of (i), suppose

that V ⊗K L is a direct summand in W ⊗K L (i.e., W ⊗K L ∼=
V ⊗K L⊕ Y , where Y is a module over A⊗K L). Show that V is a

direct summand in W .

Problem 3.8.5. Let A be the algebra of real-valued continuous func-

tions on R which are periodic with period 1. Let M be the A-module

of continuous functions f on R which are antiperiodic with period 1,

i.e., f(x+ 1) = −f(x).

(i) Show that A and M are indecomposable A-modules.

(ii) Show that A is not isomorphic to M but A⊕A is isomorphic

to M ⊕M .

Remark 3.8.6. Thus, we see that, in general, the Krull-Schmidt

theorem fails for infinite dimensional modules. However, it still holds

for modules of finite length, i.e., modules M such that any filtration

of M has length bounded above by a certain constant l = l(M).

3.9. Problems

Problem 3.9.1. Extensions of representations. Let A be an

algebra, and let V,W be a pair of representations of A. We would like

to classify representations U of A such that V is a subrepresentation of

U and U/V = W . Of course, there is an obvious example U = V ⊕W ,

but are there any others?

Suppose we have a representation U as above. As a vector space,

it can be (nonuniquely) identified with V ⊕W , so that for any a ∈ A

the corresponding operator ρU (a) has block triangular form

ρU (a) =

(
ρV (a) f(a)

0 ρW (a)

)
,

where f : A→ Homk(W,V ) is a linear map.

(a) What is the necessary and sufficient condition on f(a) under

which ρU (a) is a representation? Maps f satisfying this condition are
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called 1-cocycles (of A with coefficients in Homk(W,V )). They form

a vector space denoted by Z1(W,V ).

(b) Let X : W → V be a linear map. The coboundary of X , dX ,

is defined to be the function A → Homk(W,V ) given by dX(a) =

ρV (a)X − XρW (a). Show that dX is a cocycle which vanishes if

and only if X is a homomorphism of representations. Thus cobound-

aries form a subspace B1(W,V ) ⊂ Z1(W,V ), which is isomorphic

to Homk(W,V )/HomA(W,V ). The quotient Z1(W,V )/B1(W,V ) is

denoted by Ext1(W,V ).

(c) Show that if f, f ′ ∈ Z1(W,V ) and f − f ′ ∈ B1(W,V ), then

the corresponding extensions U,U ′ are isomorphic representations of

A. Conversely, if φ : U → U ′ is an isomorphism such that

φ(a) =

(
1V ∗
0 1W

)
,

then f − f ′ ∈ B1(V,W ). Thus, the space Ext1(W,V ) “classifies”

extensions of W by V .

(d) Assume that W,V are finite dimensional irreducible represen-

tations of A. For any f ∈ Ext1(W,V ), let Uf be the corresponding

extension. Show that Uf is isomorphic to Uf ′ as representations if

and only if f and f ′ are proportional. Thus isomorphism classes

(as representations) of nontrivial extensions of W by V (i.e., those

not isomorphic to W ⊕ V ) are parametrized by the projective space

PExt1(W,V ). In particular, every extension is trivial if and only if

Ext1(W,V ) = 0.

Problem 3.9.2. (a) Let A = C[x1, . . . , xn], and let Va, Vb be 1-

dimensional representations in which the elements xi act by ai and bi,

respectively (ai, bi ∈ C). Find Ext1(Va, Vb) and classify 2-dimensional

representations of A.

(b) Let B be the algebra over C generated by x1, . . . , xn with the

defining relations xixj = 0 for all i, j. Show that for n > 1 the algebra

B has infinitely many nonisomorphic indecomposable representations.

Problem 3.9.3. Let Q be a quiver without oriented cycles, and let

PQ be the path algebra of Q. Find irreducible representations of PQ

and compute Ext1 between them. Classify 2-dimensional representa-

tions of PQ.
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Problem 3.9.4. Let A be an algebra, and let V be a representation

of A. Let ρ : A → EndV . A formal deformation of V is a formal

series

ρ̃ = ρ0 + tρ1 + · · · + tnρn + . . . ,

where ρi : A → End(V ) are linear maps, ρ0 = ρ, and ρ̃(ab) = ρ̃(a)ρ̃(b).

If b(t) = 1+b1t+b2t
2 + . . . , where bi ∈ End(V ), and ρ̃ is a formal

deformation of ρ, then bρ̃b−1 is also a deformation of ρ, which is said

to be isomorphic to ρ̃.

(a) Show that if Ext1(V, V ) = 0, then any deformation of ρ is

trivial, i.e., isomorphic to ρ.

(b) Is the converse to (a) true? (Consider the algebra of dual

numbers A = k[x]/x2.)

Problem 3.9.5. The Clifford algebra. Let V be a finite dimen-

sional complex vector space equipped with a symmetric bilinear form

( , ). The Clifford algebra Cl(V ) is the quotient of the tensor alge-

bra TV by the ideal generated by the elements v⊗ v− (v, v)1, v ∈ V .

More explicitly, if xi, 1 ≤ i ≤ N , is a basis of V and (xi, xj) = aij

then Cl(V ) is generated by xi with defining relations

xixj + xjxi = 2aij , x
2
i = aii.

Thus, if ( , ) = 0, Cl(V ) = ∧V .

(i) Show that if ( , ) is nondegenerate, then Cl(V ) is semisimple

and has one irreducible representation of dimension 2n if dimV = 2n

(so in this case Cl(V ) is a matrix algebra) and two such representa-

tions if dim(V ) = 2n + 1 (i.e., in this case Cl(V ) is a direct sum of

two matrix algebras).

Hint: In the even case, pick a basis a1, . . . , an, b1, . . . , bn of V

in which (ai, aj) = (bi, bj) = 0, (ai, bj) = δij/2, and construct a

representation of Cl(V ) on S := ∧(a1, . . . , an) in which bi acts as

“differentiation” with respect to ai. Show that S is irreducible. In the

odd case the situation is similar, except there should be an additional

basis vector c such that (c, ai) = (c, bi) = 0, (c, c) = 1 and the action

of c on S may be defined either by (−1)degree or by (−1)degree+1,

giving two representations S+, S− (why are they nonisomorphic?).
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Show that there is no other irreducible representations by finding a

spanning set of Cl(V ) with 2dimV elements.

(ii) Show that Cl(V ) is semisimple if and only if ( , ) is nonde-

generate. If ( , ) is degenerate, what is Cl(V )/Rad(Cl(V ))?

3.10. Representations of tensor products

Let A,B be algebras. Then A⊗ B is also an algebra, with multipli-

cation (a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2.

Exercise 3.10.1. Show that Matm(k) ⊗ Matn(k) ∼= Matmn(k).

The following theorem describes irreducible finite dimensional

representations of A ⊗ B in terms of irreducible finite dimensional

representations of A and those of B.

Theorem 3.10.2. (i) Let V be an irreducible finite dimensional rep-

resentation of A and let W be an irreducible finite dimensional rep-

resentation of B. Then V ⊗ W is an irreducible representation of

A⊗B.

(ii) Any irreducible finite dimensional representation M of A⊗B
has the form (i) for unique V and W .

Remark 3.10.3. Part (ii) of the theorem typically fails for infinite

dimensional representations; e.g. it fails when A is the Weyl algebra

in characteristic zero. Part (i) may also fail. E.g. let A = B = V =

W = C(x). Then (i) fails, as A⊗B is not a field.

Proof. (i) By the density theorem, the maps A → EndV and B →
EndW are surjective. Therefore, the map A⊗B → EndV ⊗EndW =

End(V ⊗W ) is surjective. Thus, V ⊗W is irreducible.

(ii) First we show the existence of V and W . Let A′, B′ be the

images of A,B in EndM . Then A′, B′ are finite dimensional algebras,

and M is a representation of A′ ⊗B′, so we may assume without loss

of generality that A and B are finite dimensional.

In this case, we claim that

Rad(A⊗B) = Rad(A) ⊗B +A⊗ Rad(B).
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Indeed, denote the latter by J . Then J is a nilpotent ideal in A⊗B, as

Rad(A) and Rad(B) are nilpotent. On the other hand, (A⊗B)/J =

(A/Rad(A))⊗(B/Rad(B)), which is a product of two semisimple al-

gebras, hence semisimple. This implies J ⊃ Rad(A⊗B). Altogether,

by Proposition 3.5.3, we see that J = Rad(A⊗B), proving the claim.

Thus, we see that

(A⊗B)/Rad(A⊗B) = A/Rad(A) ⊗B/Rad(B).

Now, M is an irreducible representation of (A ⊗ B)/Rad(A ⊗ B),

so it is clearly of the form M = V ⊗W , where V is an irreducible

representation of A/Rad(A) and W is an irreducible representation

of B/Rad(B). Also, V,W are uniquely determined by M (as all of

the algebras involved are direct sums of matrix algebras). �





Chapter 4

Representations of finite
groups: Basic results

Recall that a representation of a group G over a field k is a k-vector

space V together with a group homomorphism ρ : G → GL(V ). As

we have explained above, a representation of a group G over k is the

same thing as a representation of its group algebra k[G].

In this section, we begin a systematic development of representa-

tion theory of finite groups.

4.1. Maschke’s theorem

Theorem 4.1.1 (Maschke). Let G be a finite group and let k be a

field whose characteristic does not divide |G|. Then:

(i) The algebra k[G] is semisimple.

(ii) There is an isomorphism of algebras ψ : k[G] → ⊕
i EndVi

defined by g 7→ ⊕
i g|Vi

, where Vi are the irreducible representations

of G. In particular, this is an isomorphism of representations of G

(where G acts on both sides by left multiplication). Hence, the regu-

lar representation k[G] decomposes into irreducibles as
⊕

i dim(Vi)Vi,

and one has the “sum of squares formula”

|G| =
∑

i

dim(Vi)
2.

59
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Proof. By Proposition 3.5.8, (i) implies (ii), and to prove (i), it is

sufficient to show that if V is a finite dimensional representation of

G and W ⊂ V is any subrepresentation, then there exists a subrep-

resentation W ′ ⊂ V such that V = W ⊕W ′ as representations.

Choose any complement Ŵ of W in V . (Thus V = W ⊕ Ŵ

as vector spaces, but not necessarily as representations.) Let P be

the projection along Ŵ onto W , i.e., the operator on V defined by

P |W = Id and P |cW = 0. Let

P :=
1

|G|
∑

g∈G

ρ(g)Pρ(g−1),

where ρ(g) is the action of g on V , and let

W ′ = kerP .

Now P |W = Id and P (V ) ⊆W , so P
2

= P , and so P is a projection

along W ′. Thus, V = W ⊕W ′ as vector spaces.

Moreover, for any h ∈ G and any y ∈ W ′,

Pρ(h)y =
1

|G|
∑

g∈G

ρ(g)Pρ(g−1h)y

=
1

|G|
∑

`∈G

ρ(h`)Pρ(`−1)y = ρ(h)Py = 0,

so ρ(h)y ∈ kerP = W ′. Thus, W ′ is invariant under the action of G

and is therefore a subrepresentation of V . Thus, V = W ⊕W ′ is the

desired decomposition into subrepresentations. �

The converse to Theorem 4.1.1(i) also holds.

Proposition 4.1.2. If k[G] is semisimple, then the characteristic of

k does not divide |G|.

Proof. Write k[G] =
⊕r

i=1 End Vi, where the Vi are irreducible rep-

resentations and V1 = k is the trivial 1-dimensional representation.

Then

k[G] = k ⊕
r⊕

i=2

End Vi = k ⊕
r⊕

i=2

diVi,
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where di = dimVi. By Schur’s lemma,

Homk[G](k, k[G]) = kΛ,

Homk[G](k[G], k) = kε,

for nonzero homomorphisms of representations ε : k[G] → k and

Λ : k → k[G] unique up to scaling. We can take ε such that ε(g) = 1

for all g ∈ G, and we can take Λ such that Λ(1) =
∑

g∈G g. Then

ε ◦ Λ(1) = ε

(∑

g∈G

g

)
=

∑

g∈G

1 = |G|.

If |G| = 0, then Λ has no left inverse, as (aε)◦Λ(1) = 0 for any a ∈ k.

This is a contradiction. �

Example 4.1.3. If G = Z/pZ and k has characteristic p, then every

irreducible representation of G over k is trivial (so k[Z/pZ] indeed is

not semisimple). Indeed, an irreducible representation of this group

is a 1-dimensional space on which the generator acts by a pth root of

unity. But every pth root of unity in k equals 1, as xp − 1 = (x− 1)p

over k.

Problem 4.1.4. Let G be a group of order pn. Show that every

irreducible representation of G over a field k of characteristic p is

trivial.

4.2. Characters

If V is a finite dimensional representation of a finite group G, then its

character χV : G → k is defined by the formula χV (g) = Tr|V (ρ(g)).

Obviously, χV (g) is simply the restriction of the character χV (a) of

V as a representation of the algebra A = k[G] to the basis G ⊂ A, so

it carries exactly the same information. The character is a central

function, or class function: χV (g) depends only on the conjugacy

class of g; i.e., χV (hgh−1) = χV (g).

Denote by F (G, k) the space of k-valued functions on G and by

Fc(G, k) ⊂ F (G, k) the subspace of class functions.

Theorem 4.2.1. If the characteristic of k does not divide |G|, char-

acters of irreducible representations of G form a basis in the space

Fc(G, k).
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Proof. By the Maschke theorem, k[G] is semisimple, so by Theo-

rem 3.6.2, the characters are linearly independent and are a basis of

(A/[A,A])∗, where A = k[G]. It suffices to note that, as vector spaces

over k,

(A/[A,A])∗ ∼= {ϕ ∈ Homk(k[G], k) | gh− hg ∈ kerϕ ∀g, h ∈ G}
∼= {f ∈ F (G, k) | f(gh) = f(hg) ∀g, h ∈ G},

which is precisely Fc(G, k). �

Corollary 4.2.2. The number of isomorphism classes of irreducible

representations of G equals the number of conjugacy classes of G (if

|G| 6= 0 in k).

Exercise 4.2.3. Show that if |G| = 0 in k, then the number of iso-

morphism classes of irreducible representations of G over k is strictly

less than the number of conjugacy classes in G.

Hint: Let P =
∑

g∈G g ∈ k[G]. Then P 2 = 0. So P has zero

trace in every finite dimensional representation of G over k.

Corollary 4.2.4. Any representation of G is determined by its char-

acter if k has characteristic 0; namely, χV = χW implies V ∼= W .

4.3. Examples

The following are examples of representations of finite groups over C.

(1) Finite abelian groups G = Zn1 ×· · ·×Znk
. Let G∨ be the set

of irreducible representations of G. Every element of G forms a con-

jugacy class, so |G∨| = |G|. Recall that all irreducible representations

over C (and algebraically closed fields in general) of commutative al-

gebras and groups are 1-dimensional. Thus, G∨ is an abelian group:

if ρ1, ρ2 : G → C× are irreducible representations, then so are the

representations ρ1(g)ρ2(g) and ρ1(g)
−1. The group G∨ is called the

dual group or character group of G.

For given n ≥ 1, define ρ : Zn → C× by ρ(m) = e2πim/n. Then

Z∨
n = {ρk : k = 0, . . . , n− 1}, so Z∨

n
∼= Zn. In general,

(G1 ×G2 × · · · ×Gn)∨ = G∨
1 ×G∨

2 × · · · ×G∨
n ,

so G∨ ∼= G for any finite abelian group G. This isomorphism is,

however, noncanonical: the particular decomposition of G as
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Zn1 ×· · ·×Znk
is not unique as far as which elements of G correspond

to Zn1 , etc., is concerned. On the other hand, G ∼= (G∨)∨ is a canon-

ical isomorphism, given by ϕ : G→ (G∨)∨, where ϕ(g)(χ) = χ(g).

(2) The symmetric group S3. In the symmetric group Sn, con-

jugacy classes are determined by cycle decomposition sizes: two per-

mutations are conjugate if and only if they have the same number

of cycles of each length. For S3, there are three conjugacy classes,

so there are three different irreducible representations over C. If

their dimensions are d1, d2, d3, then d2
1 + d2

2 + d2
3 = 6, so S3 must

have two 1-dimensional and one 2-dimensional representations. The

1-dimensional representations are the trivial representation C+ given

by ρ(σ) = 1 and the sign representation C− given by ρ(σ) = (−1)σ.

The 2-dimensional representation can be visualized as represent-

ing the symmetries of the equilateral triangle with vertices 1, 2, 3 at

the points (cos 120◦, sin 120◦), (cos 240◦, sin 240◦), (1, 0) of the coor-

dinate plane, respectively. Thus, for example,

ρ((12)) =

(
1 0

0 −1

)
, ρ((123)) =

(
cos 120◦ − sin 120◦

sin 120◦ cos 120◦

)
.

To show that this representation is irreducible, consider any subrep-

resentation V . The space V must be the span of a subset of the

eigenvectors of ρ((12)), which are the nonzero multiples of (1, 0) and

(0, 1). Also, V must be the span of a subset of the eigenvectors of

ρ((123)), which are different vectors. Thus, V must be either C2 or

0.

(3) The quaternion group Q8 = {±1,±i,±j,±k}, with defining

relations

i = jk = −kj, j = ki = −ik, k = ij = −ji, −1 = i2 = j2 = k2.

The five conjugacy classes are {1}, {−1}, {±i}, {±j}, {±k}, so there

are five different irreducible representations, the sum of the squares

of whose dimensions is 8, so their dimensions must be 1, 1, 1, 1, and

2.

The center Z(Q8) is {±1}, and Q8/Z(Q8) ∼= Z2 × Z2. The four

1-dimensional irreducible representations of Z2 × Z2 can be “pulled

back” to Q8. That is, if q : Q8 → Q8/Z(Q8) is the quotient map and
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ρ is any representation of Q8/Z(Q8), then ρ◦ q gives a representation

of Q8.

The 2-dimensional representation is V = C2, given by ρ(−1) =

−Id and

(4.3.1)

ρ(i) =

(
0 1

−1 0

)
,

ρ(j) =

(√
−1 0

0 −
√
−1

)
,

ρ(k) =

(
0 −

√
−1

−
√
−1 0

)
.

These are the Pauli matrices, which arise in quantum mechanics.

Exercise 4.3.1. Show that the 2-dimensional irreducible representa-

tion of Q8 can be realized in the space of functions f : Q8 → C such

that f(gi) =
√
−1f(g) (the action of G is by right multiplication,

g ◦ f(x) = f(xg)).

(4) The symmetric group S4. The order of S4 is 24, and there are

five conjugacy classes: e, (12), (123), (1234), (12)(34). Thus the sum

of the squares of the dimensions of five irreducible representations

is 24. As with S3, there are two of dimension 1: the trivial and

sign representations, C+ and C−. The other three must then have

dimensions 2, 3, and 3. Because S3
∼= S4/Z2 × Z2, where Z2 × Z2

is {e, (12)(34), (13)(24), (14)(23)}, the 2-dimensional representation

of S3 can be pulled back to the 2-dimensional representation of S4,

which we will call C2.

We can consider S4 as the group of rotations of a cube acting by

permuting the interior diagonals (or, equivalently, on a regular octahe-

dron permuting pairs of opposite faces); this gives the 3-dimensional

representation C3
+.

The last 3-dimensional representation is C3
−, the product of C3

+

with the sign representation. C3
+ and C3

− are different, for if g is

a transposition, det g|C3
+

= 1 while det g|C3
−

= (−1)3 = −1. Note

that another realization of C3
− is by action of S4 by symmetries (not

necessarily rotations) of the regular tetrahedron. Yet another real-

ization of this representation is the space of functions on the set of
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four elements (on which S4 acts by permutations) with zero sum of

values.

4.4. Duals and tensor products of

representations

If V is a representation of a group G, then V ∗ is also a representation,

via

ρV ∗(g) = (ρV (g)∗)−1 = (ρV (g)−1)∗ = ρV (g−1)∗.

The character is χV ∗(g) = χV (g−1).

We have χV (g) =
∑
λi, where the λi are the eigenvalues of g

in V . These eigenvalues must be roots of unity because ρ(g)|G| =

ρ(g|G|) = ρ(e) = Id. Thus for complex representations

χV ∗(g) = χV (g−1) =
∑

λ−1
i =

∑
λi =

∑
λi = χV (g).

In particular, V ∼= V ∗ as representations (not just as vector spaces)

if and only if χV (g) ∈ R for all g ∈ G.

If V,W are representations of G, then V ⊗W is also a represen-

tation, via

ρV ⊗W (g) = ρV (g) ⊗ ρW (g).

Therefore, χV ⊗W (g) = χV (g)χW (g).

An interesting problem discussed below is decomposing V ⊗W

(for irreducible V,W ) into the direct sum of irreducible representa-

tions.

4.5. Orthogonality of characters

We define a positive definite Hermitian inner product on Fc(G,C)

(the space of central functions) by

(f1, f2) =
1

|G|
∑

g∈G

f1(g)f2(g).

The following theorem says that characters of irreducible represen-

tations of G form an orthonormal basis of Fc(G,C) under this inner

product.
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Theorem 4.5.1. For any representations V,W

(χV , χW ) = dim HomG(W,V ),

and

(χV , χW ) =

{
1, if V ∼= W,

0, if V � W

if V,W are irreducible.

Proof. By the definition

(χV , χW ) =
1

|G|
∑

g∈G

χV (g)χW (g) =
1

|G|
∑

g∈G

χV (g)χW∗(g)

=
1

|G|
∑

g∈G

χV ⊗W∗(g) = Tr |V ⊗W∗(P ),

where P = 1
|G|

∑
g∈G g ∈ Z(C[G]). (Here Z(C[G]) denotes the center

of C[G].) If X is an irreducible representation of G, then

P |X =

{
Id if X = C,
0, X 6= C.

Therefore, for any representation X the operator P |X is the G-invari-

ant projector onto the subspace XG of G-invariants in X . Thus,

Tr |V ⊗W∗(P ) = dim HomG(C, V ⊗W ∗)

= dim(V ⊗W ∗)G = dim HomG(W,V ).

�

Theorem 4.5.1 gives a powerful method of checking if a given

complex representation V of a finite group G is irreducible. Indeed,

it implies that V is irreducible if and only if (χV , χV ) = 1.

Problem 4.5.2. Let G be a finite group. Let Vi be the irreducible

complex representations of G.

For every i, let

ψi =
dimVi

|G|
∑

g∈G

χVi
(g) · g−1 ∈ C [G] .
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(i) Prove that ψi acts on Vj as the identity if j = i, and as the

null map if j 6= i.

(ii) Prove that ψi are idempotents; i.e., ψ2
i = ψi for any i, and

ψiψj = 0 for any i 6= j.

Hint: In (i), notice that ψi commutes with any element of k [G]

and thus acts on Vj as an intertwining operator. Corollary 2.3.10 thus

yields that ψi acts on Vj as a scalar. Compute this scalar by taking

its trace in Vj .

Remark 4.5.3. We see that characters of irreducible complex rep-

resentations of G can be defined without mentioning irreducible rep-

resentations. Namely, equip the space F (G,C) of complex-valued

functions on G with the convolution product

(f ∗ g)(z) =
∑

x,y∈G:xy=z

f(x)g(y).

This product turns F (G,C) into an associative algebra, with unit

δe (the characteristic function of the unit e ∈ G), and the space

of class functions Fc(G,C) is a commutative subalgebra. Then one

can define renormalized characters χ̃i ∈ Fc(G,C) to be the primitive

idempotents in this algebra, i.e., solutions of the equation f ∗ f = f

which cannot be decomposed into a sum of other nonzero solutions.

Then one can define the characters by the formula

χi(g) =

√
|G|
χ̃i(1)

χ̃i(g)

(check it!). This is, essentially, how Frobenius defined characters (see

[Cu], equation (7)). Note that Frobenius defined representations at

approximately the same time, but for some time it was not clear

that there is a simple relation between irreducible representations

and characters (namely, that irreducible characters are simply traces

of group elements in irreducible representations). Even today, many

group theorists sometimes talk of irreducible characters of a finite

group rather than irreducible representations.

Here is another “orthogonality formula” for characters, in which

summation is taken over irreducible representations rather than group

elements.
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Theorem 4.5.4. Let g, h ∈ G, and let Zg denote the centralizer of g

in G. Then

∑

V

χV (g)χV (h) =

{
|Zg|, if g is conjugate to h,

0, otherwise,

where the summation is taken over all irreducible representations of

G.

Proof. As noted above, χV (h) = χV ∗(h), so the left-hand side equals

(using Maschke’s theorem):

∑

V

χV (g)χV ∗(h) = Tr |L
V V ⊗V ∗(g ⊗ (h∗)−1)

= Tr |L
V End V (x 7→ gxh−1) = Tr |C[G](x 7→ gxh−1).

If g and h are not conjugate, this trace is clearly zero, since the matrix

of the operator x 7→ gxh−1 in the basis of group elements has zero

diagonal entries. On the other hand, if g and h are in the same

conjugacy class, the trace is equal to the number of elements x such

that x = gxh−1, i.e., the order of the centralizer Zg of g. We are

done. �

Remark 4.5.5. Another proof of this result is as follows. Consider

the matrix U whose rows are labeled by irreducible representations of

G and whose columns are labeled by conjugacy classes, with entries

UV,g = χV (g)/
√
|Zg |. Note that the conjugacy class of g isG/Zg; thus

|G|/|Zg| is the number of elements conjugate to G. Thus, by Theorem

4.5.1, the rows of the matrix U are orthonormal. This means that U

is unitary and hence its columns are also orthonormal, which implies

the statement.

4.6. Unitary representations. Another proof of

Maschke’s theorem for complex

representations

Definition 4.6.1. A unitary finite dimensional representation of

a group G is a representation of G on a complex finite dimensional

vector space V over C equipped with a G-invariant positive definite
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Hermitian form1 ( , ), i.e., such that ρV (g) are unitary operators:

(ρV (g)v, ρV (g)w) = (v, w).

Theorem 4.6.2. If G is finite, then any finite dimensional repre-

sentation of G has a unitary structure. If the representation is irre-

ducible, this structure is unique up to scaling by a positive real number.

Proof. Take any positive definite form B on V and define another

form B as follows:

B(v, w) =
∑

g∈G

B(ρV (g)v, ρV (g)w).

Then B is a positive definite Hermitian form on V, and ρV (g) are

unitary operators. If V is an irreducible representation and B1, B2

are two positive definite Hermitian forms on V, then B1(v, w) =

B2(Av,w) for some homomorphism A : V → V (since any posi-

tive definite Hermitian form is nondegenerate). By Schur’s lemma,

A = λId, and clearly λ > 0. �

Theorem 4.6.2 implies that if V is a finite dimensional representa-

tion of a finite group G, then the complex conjugate representa-

tion V (i.e., the same space V with the same addition and the same

action of G, but complex conjugate action of scalars) is isomorphic to

the dual representation V ∗. Indeed, a homomorphism of representa-

tions V → V ∗ is obviously the same thing as an invariant sesquilinear

form on V (i.e., a form additive on both arguments which is linear on

the first one and antilinear on the second one), and an isomorphism is

the same thing as a nondegenerate invariant sesquilinear form. So one

can use a unitary structure on V to define an isomorphism V → V ∗.

Theorem 4.6.3. A finite dimensional unitary representation V of

any group G is completely reducible.

Proof. Let W be a subrepresentation of V . Let W⊥ be the orthogo-

nal complement of W in V under the Hermitian inner product. Then

W⊥ is a subrepresentation of W , and V = W ⊕W⊥. This implies

that V is completely reducible. �

1We agree that Hermitian forms are linear in the first argument and antilinear in
the second one.
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Theorems 4.6.2 and 4.6.3 imply Maschke’s theorem for complex

representations (Theorem 4.1.1). Thus, we have obtained a new proof

of this theorem over the field of complex numbers.

Remark 4.6.4. Theorem 4.6.3 shows that for infinite groups G, a

finite dimensional representation may fail to admit a unitary structure

(as there exist finite dimensional representations, e.g., for G = Z,

which are indecomposable but not irreducible).

4.7. Orthogonality of matrix elements

Let V be an irreducible representation of a finite group G, and let

v1, v2, . . . , vn be an orthonormal basis of V under the invariant Her-

mitian form. The matrix elements of V are tVij(x) = (ρV (x)vi, vj).

Proposition 4.7.1. (i) Matrix elements of nonisomorphic irreducible

representations are orthogonal in F (G,C) under the form (f, g) =
1
|G|

∑
x∈G f(x)g(x).

(ii) One has (tVij , t
V
i′j′) = δii′δjj′ · 1

dimV .

Thus, matrix elements of irreducible representations of G form

an orthogonal basis of F (G,C).

Proof. Let V and W be two irreducible representations of G. Take

{vi} to be an orthonormal basis of V and {wi} to be an orthonormal

basis of W under their positive definite invariant Hermitian forms.

Let w∗
i ∈ W ∗ be the linear function on W defined by taking the

inner product with wi: w∗
i (u) = (u,wi). Then for x ∈ G we have

(xw∗
i , w

∗
j ) = (xwi, wj). Therefore, putting P = 1

|G|
∑

x∈G x, we have

(tVij , t
W
i′j′ ) = |G|−1

∑

x∈G

(xvi, vj)(xwi′ , wj′ )

= |G|−1
∑

x∈G

(xvi, vj)(xw
∗
i′ , w

∗
j′ ) = (P (vi ⊗ w∗

i′), vj ⊗ w∗
j′ ).

If V 6= W, this is zero, since P projects to the trivial representation,

which does not occur in V ⊗ W ∗. If V = W, we need to consider
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(P (vi ⊗ v∗i′ ), vj ⊗ v∗j′). We have a G-invariant decomposition

V ⊗ V ∗ = C ⊕ L,

C = span(
∑

vk ⊗ v∗k),

L = spana:
P

k akk=0(
∑

k,l

aklvk ⊗ v∗l ),

and P projects to the first summand along the second one. The

projection of vi ⊗ v∗i′ to C ⊂ C ⊕ L is thus

δii′

dimV

∑
vk ⊗ v∗k .

This shows that

(P (vi ⊗ v∗i′), vj ⊗ v∗j′ ) =
δii′δjj′

dimV
,

which finishes the proof of (i) and (ii). The last statement follows

immediately from the sum of squares formula. �

4.8. Character tables, examples

The characters of all the irreducible representations of a finite group

can be arranged into a character table, with conjugacy classes of

elements as the columns and characters as the rows. More specifically,

the first row in a character table lists representatives of conjugacy

classes, the second one lists the numbers of elements in the conjugacy

classes, and the other rows list the values of the characters on the

conjugacy classes. Due to Theorems 4.5.1 and 4.5.4, the rows and

columns of a character table are orthonormal with respect to the

appropriate inner products.

Note that in any character table, the row corresponding to the

trivial representation consists of ones, and the column corresponding

to the neutral element consists of the dimensions of the representa-

tions.

Here is, for example, the character table of S3 :
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S3 Id (12) (123)

# 1 3 2

C+ 1 1 1

C− 1 −1 1

C2 2 0 −1

It is obtained by explicitly computing traces in the irreducible repre-

sentations.

For another example consider A4, the group of even permutations

of four items. There are three 1-dimensional representations (as A4

has a normal subgroup Z2 ⊕ Z2 and A4/(Z2 ⊕ Z2) = Z3). Since

there are four conjugacy classes in total, there is one more irreducible

representation of dimension 3. Finally, the character table is

A4 Id (123) (132) (12)(34)

# 1 4 4 3

C 1 1 1 1

Cε 1 ε ε2 1

Cε2 1 ε2 ε 1

C3 3 0 0 −1

where ε = exp( 2πi
3 ).

The last row can be computed using the orthogonality of rows.

Another way to compute the last row is to note that C3 is the repre-

sentation of A4 by rotations of the regular tetrahedron: in this case

(123), (132) are the rotations by 1200 and 2400 around a perpendicu-

lar to a face of the tetrahedron, while (12)(34) is the rotation by 1800

around an axis perpendicular to two opposite edges.

Example 4.8.1. The following three character tables are of Q8, S4,

and A5, respectively:

Q8 1 −1 i j k

# 1 1 2 2 2

C++ 1 1 1 1 1

C+− 1 1 1 −1 −1

C−+ 1 1 −1 1 −1

C−− 1 1 −1 −1 1

C2 2 −2 0 0 0
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S4 Id (12) (12)(34) (123) (1234)

# 1 6 3 8 6

C+ 1 1 1 1 1

C− 1 −1 1 1 −1

C2 2 0 2 −1 0

C3
+ 3 −1 −1 0 1

C3
− 3 1 −1 0 −1

A5 Id (123) (12)(34) (12345) (13245)

# 1 20 15 12 12

C 1 1 1 1 1

C3
+ 3 0 −1 1+

√
5

2
1−

√
5

2

C3
− 3 0 −1 1−

√
5

2
1+

√
5

2

C4 4 1 0 −1 −1

C5 5 −1 1 0 0

Indeed, the computation of the characters of the 1-dimensional

representations is straightforward.

The character of the 2-dimensional representation of Q8 is ob-

tained from the explicit formula (4.3.1) for this representation, or by

using orthogonality.

For S4, the 2-dimensional irreducible representation is obtained

from the 2-dimensional irreducible representation of S3 via the surjec-

tive homomorphism S4 → S3, which allows one to obtain its character

from the character table of S3.

The character of the 3-dimensional representation C3
+ is com-

puted from its geometric realization by rotations of the cube. Namely,

by rotating the cube, S4 permutes the main diagonals. Thus (12) is

the rotation by 1800 around an axis that is perpendicular to two op-

posite edges, (12)(34) is the rotation by 1800 around an axis that

is perpendicular to two opposite faces, (123) is the rotation around

a main diagonal by 1200, and (1234) is the rotation by 900 around

an axis that is perpendicular to two opposite faces; this allows us

to compute the traces easily, using the fact that the trace of a rota-

tion by the angle φ in R3 is 1 + 2 cosφ. Now the character of C3
− is

found by multiplying the character of C3
+ by the character of the sign

representation.
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Finally, we explain how to obtain the character table of A5 (even

permutations of five items). The group A5 is the group of rotations

of the regular icosahedron. Thus it has a 3-dimensional “rotation

representation” C3
+, in which (12)(34) is the rotation by 1800 around

an axis perpendicular to two opposite edges, (123) is the rotation by

1200 around an axis perpendicular to two opposite faces, and (12345),

(13254) are the rotations by 720, respectively 1440, around axes going

through two opposite vertices. The character of this representation

is computed from this description in a straightforward way.

Another representation of A5, which is also 3-dimensional, is C3
+

twisted by the automorphism of A5 given by conjugation by (12) in-

side S5. This representation is denoted by C3
−. It has the same char-

acter as C3
+, except that the conjugacy classes (12345) and (13245)

are interchanged.

There are two remaining irreducible representations, and by the

sum of squares formula their dimensions are 4 and 5. So we call them

C4 and C5.

The representation C4 is realized on the space of functions on

the set {1, 2, 3, 4, 5} with zero sum of values, where A5 acts by per-

mutations (check that it is irreducible!). The character of this repre-

sentation is equal to the character of the 5-dimensional permutation

representation minus the character of the 1-dimensional trivial repre-

sentation (constant functions). The former at an element g is equal

to the number of items among 1, 2, 3, 4, 5 which are fixed by g.

The representation C5 is realized on the space of functions on

pairs of opposite vertices of the icosahedron which has zero sum of

values (check that it is irreducible!). The character of this repre-

sentation is computed similarly to the character of C4, or from the

orthogonality formula.

4.9. Computing tensor product multiplicities

using character tables

Character tables allow us to compute the tensor product multiplicities

Nk
ij using

Vi ⊗ Vj =
∑

Nk
ijVk, Nk

ij = (χiχj , χk).
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Example 4.9.1. The following tables represent computed tensor

product multiplicities of irreducible representations of S3, S4, and A5,

respectively:

S3 C+ C− C2

C+ C+ C− C2

C− C+ C2

C2 C+ ⊕ C− ⊕ C2

S4 C+ C− C2 C3
+ C3

−

C+ C+ C− C2 C3
+ C3

−

C− C+ C2 C3
− C3

+

C2 C+ ⊕ C− ⊕ C2 C3
+ ⊕ C3

− C3
+ ⊕ C3

−

C3
+ C+ ⊕ C2 ⊕ C3

+ ⊕ C3
− C− ⊕ C2 ⊕ C3

+ ⊕ C3
−

C3
− C+ ⊕ C2 ⊕ C3

+ ⊕ C3
−

A5 C C3
+ C3

− C4 C5

C C C+
3 C3

− C4 C5

C3
+ C ⊕ C5 ⊕ C3

+ C4 ⊕ C5 C3
− ⊕ C4 ⊕ C5 C3

+ ⊕ C3
− ⊕ C4 ⊕ C5

C3
− C ⊕ C5 ⊕ C3

+ C3
+ ⊕ C4 ⊕ C5 C3

+ ⊕ C3
− ⊕ C4 ⊕ C5

C4 C3
+ ⊕ C3

− ⊕ C C3
+ ⊕ C3

− ⊕ 2C5 ⊕ C4

⊕C4 ⊕ C5

C5 C ⊕ C3
+ ⊕ C3

−
⊕2C4 ⊕ 2C5

4.10. Frobenius determinant

Enumerate the elements of a finite group G as follows: g1, g2, . . . , gn.

Introduce n variables indexed with the elements of G :

xg1 , xg2 , . . . , xgn
.

Definition 4.10.1. Consider the matrix XG with entries aij = xgigj
.

The determinant ofXG is some polynomial of degree n of xg1 , xg2 , . . . ,

xgn
that is called the Frobenius determinant, or group deter-

minant.
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The following theorem, discovered by Dedekind and proved by

Frobenius, became the starting point for creation of representation

theory (see [Cu] and Section 4.11).

Theorem 4.10.2.

detXG =

r∏

j=1

Pj(x)deg Pj

for some pairwise nonproportional irreducible polynomials Pj(x),

where r is the number of conjugacy classes of G.

We will need the following simple lemma.

Lemma 4.10.3. Let Y be an n × n matrix with entries yij . Then

detY is an irreducible polynomial of {yij}.

Proof. Let X = t · Id +
∑n

i=1 xiEi,i+1, where i + 1 is computed

modulo n, and Ei,j are the elementary matrices. Then det(X) =

tn − (−1)nx1 . . . xn, which is obviously irreducible. Hence det(Y ) is

irreducible (since it is so when Y is specialized to X , and since ir-

reducible factors of a homogeneous polynomial are homogeneous, so

cannot specialize to nonzero constants). �

Now we are ready to proceed to the proof of Theorem 4.10.2.

Proof. Let V = C[G] be the regular representation of G. Consider

the operator-valued polynomial

L(x) =
∑

g∈G

xgρ(g),

where ρ(g) ∈ EndV is induced by g. The action of L(x) on an element

h ∈ G is

L(x)h =
∑

g∈G

xgρ(g)h =
∑

g∈G

xggh =
∑

z∈G

xzh−1z.

So the matrix of the linear operator L(x) in the basis g1, g2, . . . , gn is

XG with permuted columns and hence has the same determinant up

to sign.
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Further, by Maschke’s theorem, we have

detV L(x) =
r∏

i=1

(detVi
L(x))dim Vi ,

where Vi are the irreducible representations of G. We set Pi =

detVi
L(x). Let {eim} be bases of Vi and let Ei,jk ∈ EndVi be the

matrix units in these bases. Then {Ei,jk} is a basis of C[G] and

L(x)|Vi
=

∑

j,k

yi,jkEi,jk ,

where yi,jk are new coordinates on C[G] related to xg by a linear

transformation. Then

Pi(x) = det |Vi
L(x) = det(yi,jk).

Hence, Pi are irreducible (by Lemma 4.10.3) and not proportional to

each other (as they depend on different collections of variables yi,jk).

The theorem is proved. �

4.11. Historical interlude: Georg Frobenius’s

“Principle of Horse Trade”

Ferdinand Georg Frobenius (1849–1917) studied at the famous Berlin

University under both Karl Weierstrass and Leopold Kronecker, two

great mathematicians who later became bitter opponents. Weier-

strass considered Frobenius one of his brightest doctoral students and

greased the wheels of his career by securing him a full professorship at

the Zürich Polytechnikum. In Zürich Frobenius quickly got married,

but the joys of happy matrimony did not prevent him from continu-

ing productive research. Frobenius earned a high reputation for his

studies of elliptic and theta functions, determinant and matrix the-

ory, and bilinear forms. Some fifteen years later, Kronecker’s passing

opened a vacant slot in Berlin, and Weierstrass got posthumous re-

venge on his old opponent by hiring his own student, Frobenius, for

Kronecker’s chair. In 1892 Frobenius left for Berlin, just four years

before Einstein enrolled as a student in the Zürich Polytechnikum.

Praised by his colleagues as “a first-rate stylist”, who “writes

clearly and understandably without ever attempting to delude the
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reader with empty phrases”, Frobenius was soon elected to the presti-

gious Prussian Academy of Sciences [11, p. 38]. At this point, Frobe-

nius began reevaluating his research interests. As he explained in

his inaugural speech, the “labyrinth of formulas” in the theory of

theta functions was having “a withering effect upon the mathemat-

ical imagination”. He intended “to overcome this paralysis of the

mathematical creative powers by time and again seeking renewal at

the fountain of youth of arithmetic”, i.e., number theory (quoted in

[24, p. 220]). In his 40s, Frobenius indeed found this “fountain of

youth” in “arithmetic”, that is, in the theory of finite groups linked

to the theory of numbers by Galois theory.

In 1896 Frobenius’s comfortable life in Berlin was unceremoni-

ously disrupted by several letters from Richard Dedekind, his old ac-

quaintance and a predecessor at the Zürich Polytechnikum, now the

dean of abstract algebra in Germany. After dealing with epistolary

niceties and thanking Frobenius for brightening “the African dark-

ness of the theory of groups”, Dedekind shared some of his recent

results on group theory, including his concept of the group deter-

minant and the statement of his theorem about its factorization for

abelian groups. Since Dedekind had not bothered to publish his work

on the topic, Frobenius had never even heard of the group determi-

nant, but he quickly grasped this concept and never let it go again.

In his reply, Frobenius mildly chastised Dedekind for keeping back

these “extremely beautiful results from your friends and admirers”,

and asked for more details. Dedekind then stumped his colleague

with a “conjectured theorem” that the number of linear factors in

the group determinant is equal to the index of the commutator sub-

group and admitted, “I distinctly feel that I will not achieve anything

here” (quoted in [24, pp. 223, 224]).

Dedekind’s challenge was perfectly timed for the spring break,

and Frobenius, having some free time on his hands, immediately took

the bait. Employing military metaphors to describe his own work,

he waged a war against the group determinant. He invented gen-

eralized group characters and assaulted Dedekind’s conjecture with

their help. Frobenius’s initial results seemed unsatisfactory, and he

reported them to Dedekind with a disclaimer that “my conclusions
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are so complicated that I myself do not rightly know where the main

point of the proof is, and in fact I am still slightly mistrustful of it”

(quoted in [24, pp. 225, 230]).

A few days later a jubilant Frobenius wrote to Dedekind that he

finally saw the way to a solution. Citing his former colleague Friedrich

Schottky, Frobenius now looked at his own earlier frustration as the

harbinger of a forthcoming breakthrough: “If in an investigation,

after difficult mental exertion, the feeling arises that nothing will be

achieved on the matter in question, then one can rejoice for he is

standing before the solution” (quoted in [24, p. 230]). Within ten

days, Frobenius proved all the main theorems of the theory of group

determinants, except for one most important result.

The missing theorem stated, in modern language, that an irre-

ducible representation occurs in the regular representation as often as

its degree and was called by Frobenius “the Fundamental Theorem of

the theory of group determinants”. “It would be wonderful” if it were

true, he wrote, “for then my theory would supply everything need-

ful” for the determination of prime factors (quoted in [24, p. 235]).

The proof took five months, during which Frobenius repeatedly used

a new, effective technique, which he kept secret and shared privately

only with Dedekind. The new method drew on the well-known bar-

gaining strategy: “At the market, the desired horse is ignored as much

as possible and at last is allowed to be formally recognized” (quoted

in [24, p. 236]). In Frobenius’s interpretation, in order to solve a

mathematical problem, one had to preoccupy oneself with activities

totally unrelated to mathematics. He applied this “Principle of the

Horse Trade” widely, taking his wife to trade exhibits and art shows,

reading fiction, and clearing his garden of caterpillars. Frobenius im-

plored Dedekind to keep this ingenious method a secret, promising to

disclose it in a posthumous volume, On the Methods of Mathematical

Research, with an appendix on caterpillar catching [24, p. 237]. Un-

fortunately, this volume never came out, which was a huge setback

for the science of caterpillar-catching.

Miraculously, taking a break from research, combined with a

healthy dose of working desk disorder, did help Frobenius refresh his
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thoughts and find a new approach. After returning home from vaca-

tion, Frobenius failed to find his earlier proof of one particular case

of the missing theorem among his “highly scattered and disorganized

papers”. After “much torment”, however, he discovered a new proof

and recognized the crucial possibility of generalization [24, p. 237].

The same year Frobenius announced his results to the world in

a series of papers. This was a wise move, since most of his corre-

spondence with Dedekind eventually ended up in the hands of an

American lawyer, who kept it in his drawer for thirty odd years and

parted with it only after his retirement by giving it to a mathematics

professor in exchange for $25 [27].

Wielding the group determinant as his main weapon, within a

few years Frobenius demolished a whole range of targets in repre-

sentation theory. Although his proofs have now been supplanted by

easier modern versions, his skills as a group determinant virtuoso

remain unsurpassed, as the tool itself went out of use.

Frobenius labored mightily to keep things at the University of

Berlin just the way they were in the glorious days of his student youth,

and he accused the advocates of applied mathematics of trying to re-

duce this venerable institution to the rank of a technical school. His

personality, which has been described as “occasionally choleric, quar-

relsome, and given to invectives” [21], alienated him from many of his

colleagues. Despite (or maybe partly due to?) Frobenius’s uncom-

promising stance, the numbers of doctorates and teaching staff at the

University gradually declined. Frobenius advised nineteen doctoral

students, and only one of them wrote a dissertation on representation

theory. Training that one student, however, proved fortuitous, for

that student was the brilliant mathematician Issai Schur, who kept

the Frobenius tradition alive for decades to come.

In the meantime, Berlin was losing its reputation as the leading

center of German mathematics to Göttingen. This did not endear

Göttingen-style mathematics to Frobenius’s heart, and he disaffec-

tionately called it “a school, in which one amuses oneself more with

rosy images than hard ideas” (quoted in [11, p. 47]). His aversion to

the Göttingen patriarch Felix Klein and to Sophus Lie, according to

one commentator, “knew no limits” (Biermann in [11, p. 47]).
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Despite Frobenius’s best efforts to keep the subject pure, repre-

sentation theory has since been irretrievably polluted by applications

in quantum physics and chemistry, crystallography, spectroscopy, and

even virology. Worse still, thanks to the efforts of Hermann Weyl

and Claude Chevalley, his beloved representation theory eventually

merged with the theory of Lie groups. Frobenius thus was eventually

reconciled with Lie, if only in the Platonic world of eternal mathe-

matical objects.

4.12. Problems

Problem 4.12.1. Let G be the group of symmetries of a regular

N -gon (it has 2N elements).

(a) Describe all irreducible complex representations of this group

(consider the cases of odd and even N).

(b) Let V be the 2-dimensional complex representation of G ob-

tained by complexification of the standard representation on the real

plane (the plane of the polygon). Find the decomposition of V ⊗ V

in a direct sum of irreducible representations.

Problem 4.12.2. Let p be a prime. Let G be the group of 3×3 matri-

ces over Fp which are upper triangular and have 1’s on the diagonal,

under multiplication (its order is p3). It is called the Heisenberg

group. For any complex number z such that zp = 1, we define a

representation of G on the space V of complex functions on Fp by

(ρ




1 1 0

0 1 0

0 0 1


 f)(x) = f(x− 1),

(ρ




1 0 0

0 1 1

0 0 1


 f)(x) = zxf(x)

(note that zx makes sense since zp = 1).

(a) Show that such a representation exists and is unique, and

compute ρ(g) for all g ∈ G.

(b) Denote this representation by Rz . Show that Rz is irreducible

if and only if z 6= 1.
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(c) Classify all 1-dimensional representations of G. Show that R1

decomposes into a direct sum of 1-dimensional representations, where

each of them occurs exactly once.

(d) Use (a)—(c) and the “sum of squares” formula to classify all

irreducible representations of G.

Problem 4.12.3. Let V be a finite dimensional complex vector

space, and let GL(V ) be the group of invertible linear transforma-

tions of V . Then SnV and ΛmV (m ≤ dim(V )) are representations

of GL(V ) in a natural way. Show that they are irreducible represen-

tations.

Hint: Choose a basis {ei} in V . Find a diagonal element H of

GL(V ) such that ρ(H) has distinct eigenvalues (where ρ is one of the

above representations). This shows that if W is a subrepresentation,

then it is spanned by a subset S of a basis of eigenvectors of ρ(H).

Use the invariance of W under the operators ρ(1 +Eij) (where Eij is

defined by Eijek = δjkei) for all i 6= j to show that if the subset S is

nonempty, it is necessarily the entire basis.

Problem 4.12.4. Recall that the adjacency matrix of a graph Γ

(without multiple edges) is the matrix in which the ijth entry is 1 if

the vertices i and j are connected with an edge, and zero otherwise.

Let Γ be a finite graph whose automorphism group is nonabelian.

Show that the adjacency matrix of Γ must have repeated eigenvalues.

Problem 4.12.5. Let I be the set of vertices of a regular icosahedron

(|I | = 12). Let F (I) be the space of complex functions on I . Recall

that the group G = A5 of even permutations of five items acts on

the icosahedron, so we have a 12-dimensional representation of G on

F (I).

(a) Decompose this representation in a direct sum of irreducible

representations (i.e., find the multiplicities of occurrence of all irre-

ducible representations).

(b) Do the same for the representation of G on the space of func-

tions on the set of faces and the set of edges of the icosahedron.

Problem 4.12.6. Let Fq be a finite field with q elements, and let G

be the group of nonconstant inhomogeneous linear transformations,
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x→ ax+b, over Fq (i.e., a ∈ F×
q , b ∈ Fq). Find all irreducible complex

representations of G, and compute their characters. Compute the

tensor products of irreducible representations.

Hint: Let V be the representation of G on the space of func-

tions on Fq with sum of all values equal to zero. Show that V is an

irreducible representation of G.

Problem 4.12.7. Let G = SU(2) (the group of unitary 2×2 matrices

with determinant 1), and let V = C2 be the standard 2-dimensional

representation of SU(2). We regard V as a real representation, so it

is 4-dimensional.

(a) Show that V is irreducible (as a real representation).

(b) Let H be the subspace of EndR(V ) consisting of endomor-

phisms of V as a real representation. Show that H is 4-dimensional

and closed under multiplication. Show that every nonzero element in

H is invertible, i.e., H is an algebra with division.

(c) Find a basis 1, i, j, k of H such that 1 is the unit and

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Thus we have that Q8 is a subgroup of the group H× of invertible

elements of H under multiplication.

The algebra H is called the quaternion algebra, and its el-

ements are called quaternions. Quaternions were discovered by

W. R. Hamilton in 1843 (see Section 4.13).

(d) For q = a+ bi+ cj+ dk, a, b, c, d ∈ R, let q̄ = a− bi− cj − dk

and ||q||2 = qq̄ = a2 + b2 + c2 + d2. Show that q1q2 = q̄2q̄1 and

||q1q2|| = ||q1|| · ||q2||.
(e) Let G be the group of quaternions of norm 1. Show that

this group is isomorphic to SU(2). (Thus geometrically SU(2) is the

3-dimensional sphere.)

(f) Consider the action ofG on the space V ⊂ H spanned by i, j, k,

by x → qxq−1, q ∈ G, x ∈ V . Since this action preserves the norm

on V , we have a homomorphism h : SU(2) → SO(3), where SO(3)

is the group of rotations of the 3-dimensional Euclidean space. Show

that this homomorphism is surjective and that its kernel is {1,−1}.
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Problem 4.12.8. It is known that the classification of finite sub-

groups of SO(3) is as follows:

1) the cyclic group Z/nZ, n ≥ 1, generated by a rotation by 2π/n

around an axis;

2) the dihedral group Dn of order 2n, n ≥ 2 (the group of rota-

tional symmetries in 3-space of a plane containing a regular n-gon2;

3) the group of rotations of a regular tetrahedron (A4);

4) the group of rotations of a cube or regular octahedron (S4);

5) the group of rotations of a regular dodecahedron or icosahedron

(A5).

(a) Derive this classification.

Hint: Let G be a finite subgroup of SO(3). Consider the action

of G on the unit sphere. A point of the sphere preserved by some

nontrivial element of G is called a pole. Show that every nontriv-

ial element of G fixes a unique pair of opposite poles and that the

subgroup of G fixing a particular pole P is cyclic, of some order m

(called the order of P ). Thus the orbit of P has n/m elements, where

n = |G|. Now let P1, . . . , Pk be a collection of poles representing all

the orbits of G on the set of poles (one representative per orbit), and

let m1, . . . ,mk be their orders. By counting nontrivial elements of G,

show that

2

(
1 − 1

n

)
=

∑

i

(
1 − 1

mi

)
.

Then find all possible mi and n that can satisfy this equation and

classify the corresponding groups.

(b) Using this classification, classify finite subgroups of SU(2)

(use the homomorphism SU(2) → SO(3)).

Problem 4.12.9. Find the characters and tensor products of irre-

ducible complex representations of the Heisenberg group from Prob-

lem 4.12.2.

Problem 4.12.10. Let G be a finite group and let V be a complex

representation of G which is faithful, i.e., the corresponding map G→

2A regular 2-gon is just a line segment.
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GL(V ) is injective. Show that any irreducible representation of G

occurs inside SnV (and hence inside V
N

n) for some n.

Hint: Show that there exists a vector u ∈ V ∗ whose stabilizer in

G is 1. Now define the map SV → F (G,C) sending a polynomial f

on V ∗ to the function fu on G given by fu(g) = f(gu). Show that

this map is surjective and use this to deduce the desired result.

Problem 4.12.11. This problem is about an application of repre-

sentation theory to physics (elasticity theory). We first describe the

physical motivation and then state the mathematical problem.

Imagine a material which occupies a certain region U in the phys-

ical space V = R3 (a space with a positive definite inner product).

Suppose the material is deformed. This means, we have applied a dif-

feomorphism (= change of coordinates) g : U → U ′. The question in

elasticity theory is how much stress in the material this deformation

will cause.

For every point P ∈ U , let AP : V → V be defined by AP =

dg(P ). Here AP is nondegenerate, so it has a polar decomposition

AP = DPOP , where OP is orthogonal and DP is symmetric. The

matrix OP characterizes the rotation part of AP (which clearly pro-

duces no stress), and DP is the distortion part, which actually causes

stress. If the deformation is small, DP is close to 1, so DP = 1 + dP ,

where dP is a small symmetric matrix, i.e., an element of S2V . This

matrix is called the deformation tensor at P .

Now we define the stress tensor, which characterizes stress. Let v

be a small nonzero vector in V , and let σ be a small disk perpendicular

to v centered at P of area ||v||. Let Fv be the force with which the

part of the material on the v-side of σ acts on the part on the opposite

side. It is easy to deduce from Newton’s laws that Fv is linear in v,

so there exists a linear operator SP : V → V such that Fv = SP v. It

is called the stress tensor.

An elasticity law is an equation SP = f(dP ), where f is a func-

tion. The simplest such law is a linear law (Hooke’s law): f : S2V →
End(V ) is a linear function. In general, such a function is defined by

9 · 6 = 54 parameters, but we will show there are actually only two
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essential ones — the compression modulus K and the shearing

modulus µ. For this purpose we will use representation theory.

Recall that the group SO(3) of rotations acts on V , so S2V ,

End(V ) are representations of this group. The laws of physics must

be invariant under this group (Galileo transformations), so f must be

a homomorphism of representations.

(a) Show that End(V ) admits a decomposition R⊕V ⊕W , where

R is the trivial representation, V is the standard 3-dimensional rep-

resentation, and W is a 5-dimensional representation of SO(3). Show

that S2V = R ⊕W .

(b) Show that V and W are irreducible, even after complexifica-

tion. Deduce using Schur’s lemma that SP is always symmetric, and

for x ∈ R, y ∈ W one has f(x+ y) = Kx+ µy for some real numbers

K,µ.

In fact, it is clear from physics that K,µ are positive. Physically,

the compression modulus K characterizes resistance of the material to

compression or dilation, while the shearing modulus µ characterizes

its resistance to changing the shape of the object without changing

its volume. For instance, clay (used for sculpting) has a large com-

pression modulus but a small shearing modulus.

4.13. Historical interlude: William Rowan

Hamilton’s quaternion of geometry,

algebra, metaphysics, and poetry

At age 17, William Rowan Hamilton’s interest in mathematics was

sparked by his discovery of an error in Laplace’s Celestial Mechan-

ics. The Royal Astronomer of Ireland was so impressed that in a few

years he secured for Hamilton the appointment as Royal Astronomer

at Dunsinsk Observatory, where Hamilton was stuck for the rest of his

life. Hamilton ploughed through university studies by winning every

conceivable honor and took his job at the Observatory even before

graduation, but as a practical astronomer he proved to be a failure.

Tedious observations did not appeal to him; he found theoretical sub-

jects much more exciting.
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Hamilton’s social circle included major Romantic poets and philo-

sophers. Hamilton himself harbored poetic aspirations, but William

Wordsworth gently channeled his creative energies back to mathe-

matics. Hamilton immersed himself in the reading of Kant, absorbed

the Kantian notions of space and time as pure intuitions, and be-

came intrigued by Kant’s casual remark that just as geometry was

the “science of space”, algebra could be thought of as the “science

of pure time” [61]. Later Hamilton insisted that Kant merely con-

firmed his own ideas and reading him was more “recognizing” than

“discovering” [17, 2:96, 2:98].

Hamilton made his reputation as a mathematician by his studies

in optics and mechanics, based on his notion of the characteristic

function. He saw his greatest achievement in reducing the solution of

3n ordinary differential equations of the second order to the solution of

two partial differential equations of the first order and second degree.

It was not obvious that this represented any progress toward actually

solving the problem, but Hamilton was convinced that even if “no

practical facility is gained” from his method, the reduction of all

complex calculations to the study of one characteristic function should

give one “an intellectual pleasure” (quoted in [18, p. 89]).

Hamilton divided all algebraists into three schools of thought:

the practical, the philological, and the theoretical. The practical

school viewed algebra as an art and was interested in computation;

the philological school viewed it as a language, a set of symbols to be

manipulated according to some rules; and only the theoretical school,

to which Hamilton modestly assigned himself, treated algebra as a

science, “strict, pure, and independent, deduced by valid reasonings

from its own intuitive principles” [17, 2:48].

“I am never satisfied unless I think that I can look beyond or

through the signs to the things signified”, wrote Hamilton. He was

frustrated by the inability to find “things signified” behind the notions

of negative and imaginary numbers, which therefore looked absurd to

him. By 1828 he became “greatly dissatisfied with the phrases, if

not the reasonings, of even very eminent analysts”. He believed that

in order to “clear away the metaphysical stumbling-blocks that beset

the entrance of analysis”, one needed either to discard negative and
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imaginary numbers or to explain their “true sense” [17, 2:143, 1:304].

Hamilton soon learned of the so-called Argand diagram representing

the complex number as a point on a plane, with its real and imaginary

parts plotted on two rectangular axes. Inspired by this geometrical

representation, he began looking for an algebraic representation of

complex numbers for which all valid operations could be defined and

soon developed the concept of algebraic couples. Echoing the Kan-

tian vision of algebra as a science of time, Hamilton viewed these

number couples as “steps” in time, rather than magnitudes, and he

interpreted negative signs as reversals of temporality [43, p. 281]. He

sought a new foundation of algebra in the intuitive notion of pure or

mathematical time: the moment was to algebra what the point was

to geometry, time intervals were finite straight lines, and an indefinite

straight line represented Time itself. Being awfully busy prevented

Hamilton from pursuing this promising line of reasoning further. As

he remarked, “Time is needed, with all its gross reality of hours and

days, even to write upon Pure Time” [17, 2:144].

The 2-dimensional representation of complex numbers also in-

spired Hamilton to seek hypercomplex numbers related to the “real”

3-dimensional space, or “triplets”, as he called them. “Triplets” fit

nicely with his philosophical interest in the idealistic triad “thesis-

antithesis-synthesis” [20]. Adding triplets was easy, but they stub-

bornly refused to multiply. They did it for a good reason, for, as

Frobenius would prove only after Hamilton’s death, no such algebra

was possible. In desperation, Hamilton tried ordered sets of four num-

bers, or “quaternions”. They agreed to multiply only if the commu-

tative law was lifted. This realization came to Hamilton on October

16th, 1843, as he was walking with his wife along the Royal Canal in

Dublin. “I then and there felt the galvanic circuit of thought close;

and the sparks which fell from it were the fundamental equations”

of quaternions, he later recalled. In a less poetic metaphor, he com-

pared his satisfaction upon solving the problem to “an intellectual

want relieved” [17, 2:435–436]. Hamilton immediately pulled out

his notebook and jotted down the fundamental quaternion formula.

Anxious to check the consistency of his new algebra, he continued

scribbling in a carriage on the way to a meeting of the Council of the

Royal Irish Academy and later while presiding over that meeting as
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Academy President. Neither chatting with his wife nor chairing an

academic meeting apparently interfered with the train of his mathe-

matical thought.

Hamilton felt that he might explore the ramifications of the quater-

nion theory for 10–15 years — as long as he had spent trying to work

it out. He speculated that the scalar part of the quaternion might

express quantity (say, of electricity), while the imaginary parts might

determine direction and intensity, for example, electrical polarity. He

even gave the calculus of quaternions a “semi-metaphysical” inter-

pretation as a “calculus of polarities”, echoing his earlier interest in

idealist philosophy [17, 2:436, 2:440]. In an even stronger metaphys-

ical vein, he came to view quaternions as a natural algebra of space

and time, in which the three dimensions of space were joined by the

fourth dimension of time. “The quaternion (was) born, as a curious

offspring of a quaternion of parents, say of geometry, algebra, meta-

physics, and poetry”, he wrote and quoted his own sonnet addressed

to Sir John Herschel as the clearest expression of the quaternion idea:

“And how the one of Time, of Space the Three,

Might in the Chain of Symbols girdled be”

(quoted in [20, p. 176]).

Hamilton did everything he could to make his theory unpalat-

able to the reader, choosing from the outset a “metaphysical style

of expression”. Herschel implored him to make his ideas “clear and

familiar down to the level of ordinary unmetaphysical apprehension”

and to “introduce the new phrases as strong meat gradually given to

babes” [17, 2:633], but to no avail. Hamilton loaded his 800-page-long

Lectures on Quaternions (1853) with new impenetrable terminology,

such as vector, vehend, vection, vectum, revector, revehend, revec-

tion, revectum, provector, transvector, factor, profactor, versor, and

quandrantal versor [10, p. 36]. His attempt at a more basic introduc-

tion, Elements of Quaternions, ended up being even longer than the

Lectures.

Quaternions were popularized by Hamilton’s disciple Peter Tait,

who fought a protracted battle with Josiah Willard Gibbs and Oliver

Heaviside, promoters of the rival vector analysis. If quaternion multi-

plication lacked commutativity, the dot product and the cross product
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of vectors seemed to have even greater problems, and Tait branded

vector analysis a “hermaphrodite monster” [10, p. 185].

Telling his great discovery story to his son 23 years after the

fact, Hamilton added that at his eureka moment he could not “resist

the impulse — unphilosophical as it may have been — to cut (the

quaternion formula) with a knife on a stone” of a nearby bridge [17,

2:435]. Whether this was true or Hamilton simply could not resist

the impulse to embellish his story, we will never know, as Time has

long erased the etching off the bridge stone — but not off the annals

of mathematics. Today the site of Hamilton’s vandalism is marked by

a plaque which reads, “Here as he walked by on the 16th of October

1843 Sir William Rowan Hamilton in a flash of genius discovered the

fundamental formula for quaternion multiplication i2 = j2 = k2 =

ijk = −1 & cut it on a stone of this bridge”. The bridge is now a

pilgrimage site for mathematicians seeking to ignite their imagination

off the sparks of the original flash.



Chapter 5

Representations of finite
groups: Further results

5.1. Frobenius-Schur indicator

Suppose that G is a finite group and V is an irreducible representation

of G over C.

Definition 5.1.1. We say that V is

- of complex type if V � V ∗,

- of real type if V has a nondegenerate symmetric form in-

variant under G,

- of quaternionic type if V has a nondegenerate skew form

invariant under G.

Problem 5.1.2. (a) Show that EndR[G] V is C for V of complex type,

Mat2(R) for V of real type, and H for V of quaternionic type, which

motivates the names above.

Hint: Show that the complexification VC of V decomposes as

V ⊕ V ∗. Use this to compute the dimension of EndR[G] V in all three

cases. Using the fact that C ⊂ EndR[G] V , prove the result in the

complex case. In the remaining two cases, let B be the invariant

bilinear form on V and let ( , ) be the invariant positive Hermitian

form (they are defined up to a nonzero complex scalar and a positive

91
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real scalar, respectively). Define the operator j : V → V such that

B(v, w) = (v, jw). Show that j is complex antilinear (ji = −ij), and

j2 = λ · Id, where λ is a real number, positive in the real case and

negative in the quaternionic case (if B is renormalized, j multiplies by

a nonzero complex number z and j2 by zz̄, as j is antilinear). Thus

j can be normalized so that j2 = 1 in the real case and j2 = −1 in

the quaternionic case. Deduce the claim from this.

(b) Show that V is of real type if and only if V is the complexi-

fication of a representation VR over the field of real numbers.

Example 5.1.3. For Z/nZ all irreducible representations are of com-

plex type except the trivial one and, if n is even, the “sign” representa-

tion, m→ (−1)m, which are of real type. For S3 all three irreducible

representations C+,C−,C2 are of real type. For S4 there are five ir-

reducible representations C+, C−, C2, C3
+, C3

−, which are all of real

type. Similarly, all five irreducible representations of A5 — C, C3
+,

C3
−, C4, C5 — are of real type. As for Q8, its 1-dimensional represen-

tations are of real type, and the 2-dimensional one is of quaternionic

type.

Definition 5.1.4. The Frobenius-Schur indicator FS(V ) of an

irreducible representation V is 0 if it is of complex type, 1 if it is of

real type, and −1 if it is of quaternionic type.

Theorem 5.1.5 (Frobenius-Schur). The number of involutions (=

elements of order ≤ 2) in G is equal to
∑

V dim(V )FS(V ), i.e., the

sum of dimensions of all representations of G of real type minus the

sum of dimensions of its representations of quaternionic type.

Proof. Let A : V → V have eigenvalues λ1, λ2, . . . , λn. We have

Tr |S2V (A⊗A) =
∑

i≤j

λiλj ,

Tr |Λ2V (A⊗A) =
∑

i<j

λiλj .

Thus,

Tr |S2V (A⊗A) − Tr |Λ2V (A⊗A) =
∑

1≤i≤n

λ2
i = Tr(A2).
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Thus for g ∈ G we have

χV (g2) = χS2V (g) − χΛ2V (g).

Therefore, setting P = |G|−1
∑

g∈G g, we get

|G|−1χV (
∑

g∈G

g2) = χS2V (P ) − χ∧2V (P ) = dim(S2V )G − dim(∧2V )G

=





1 if V is of real type,

−1 if V is of quaternionic type,

0 if V is of complex type.

Finally, the number of involutions in G equals

1

|G|
∑

V

dimV χV (
∑

g∈G

g2) =
∑

real V

dimV −
∑

quat. V

dimV.

�

Corollary 5.1.6. Assume that all representations of a finite group G

are defined over real numbers (i.e., all complex representations of G

are obtained by complexifying real representations). Then the sum of

the dimensions of all the irreducible representations of G equals the

number of involutions in G.

Exercise 5.1.7. Show that any nontrivial finite group of odd order

has an irreducible representation which is not defined over R (i.e., not

realizable by real matrices).

5.2. Algebraic numbers and algebraic integers

We are now passing to deeper results in the representation theory of

finite groups. These results require the theory of algebraic numbers,

which we will now briefly review.

Definition 5.2.1. z ∈ C is an algebraic number (respectively, an

algebraic integer ) if z is a root of a monic polynomial with rational

(respectively, integer) coefficients.

Definition 5.2.2. z ∈ C is an algebraic number, (respectively, an

algebraic integer), if z is an eigenvalue of a matrix with rational

(respectively, integer) entries.
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Proposition 5.2.3. Definitions (5.2.1) and (5.2.2) are equivalent.

Proof. To show that the condition of Definition 5.2.2 implies the

condition of Definition 5.2.1, notice that z is a root of the charac-

teristic polynomial of the matrix (a monic polynomial with rational,

respectively integer, coefficients). To establish the converse, suppose

z is a root of

p(x) = xn + a1x
n−1 + . . .+ an−1x+ an.

Then the characteristic polynomial of the following matrix (called the

companion matrix) is p(x):




0 0 0 . . . 0 −an

1 0 0 . . . 0 −an−1

0 1 0 . . . 0 −an−2

...

0 0 0 . . . 1 −a1



.

Since z is a root of the characteristic polynomial of this matrix, it is

an eigenvalue of this matrix. �

The set of algebraic numbers is denoted by Q, and the set of

algebraic integers is denoted by A.

Proposition 5.2.4. (i) A is a ring.

(ii) Q is a field. Namely, it is an algebraic closure of the field of

rational numbers.

Proof. We will be using Definition 5.2.2. Let α be an eigenvalue of

A ∈ Matn(C)

with eigenvector v, and let β be an eigenvalue of

B ∈ Matm(C)

with eigenvector w. Then α± β is an eigenvalue of

A⊗ Idm ± Idn ⊗B,
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and αβ is an eigenvalue of

A⊗B.
The corresponding eigenvector is in both cases v⊗w. This shows that

both A and Q are rings. To show that the latter is a field, it suffices

to note that if α 6= 0 is a root of a polynomial p(x) of degree d, then

α−1 is a root of xdp(1/x). The last statement is easy, since a number

α is algebraic if and only if it defines a finite extension of Q. �

Proposition 5.2.5. A ∩ Q = Z.

Proof. We will be using Definition 5.2.1. Let z be a root of

p(x) = xn + a1x
n−1 + . . .+ an−1x+ an,

and suppose

z =
p

q
∈ Q, gcd (p, q) = 1.

Notice that the leading term of p(x) will have qn in the denominator,

whereas all the other terms will have a lower power of q there. Thus,

if q 6= ±1, then p(z) /∈ Z, a contradiction. Thus, z ∈ A ∩ Q ⇒ z ∈ Z.
The reverse inclusion follows because n ∈ Z is a root of x− n. �

Every algebraic number α has a minimal polynomial p(x)

which is the monic polynomial with rational coefficients of the small-

est degree such that p(α) = 0. Any other polynomial q(x) with ra-

tional coefficients such that q(α) = 0 is divisible by p(x). Roots of

p(x) are called the algebraic conjugates of α; they are roots of any

polynomial q with rational coefficients such that q(α) = 0.

Note that any algebraic conjugate of an algebraic integer is obvi-

ously also an algebraic integer. Therefore, by the Vieta theorem, the

minimal polynomial of an algebraic integer has integer coefficients.

Below we will need the following lemma:

Lemma 5.2.6. If α1, . . . , αm are algebraic numbers, then all alge-

braic conjugates to α1 + · · ·+αm are of the form α′
1 + · · ·+α′

m, where

α′
i are some algebraic conjugates of αi.

Proof. It suffices to prove this for two summands. If αi are eigenval-

ues of rational matrices Ai of smallest size (i.e., their characteristic
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polynomials are the minimal polynomials of αi), then α1 + α2 is an

eigenvalue of A := A1 ⊗ Id + Id⊗A2. Therefore, so is any algebraic

conjugate to α1+α2. But all eigenvalues of A are of the form α′
1+α′

2,

so we are done. �

Problem 5.2.7. (a) Show that for any finite group G there exists a

finite Galois extension K ⊂ C of Q such that any finite dimensional

complex representation of G has a basis in which the matrices of the

group elements have entries in K.

Hint: Consider the representations of G over the field Q of alge-

braic numbers.

(b) Show that if V is an irreducible complex representation of a

finite group G of dimension > 1, then there exists g ∈ G such that

χV (g) = 0.

Hint: Assume the contrary. Use orthonormality of characters to

show that the arithmetic mean of the numbers |χV (g)|2 for g 6= 1 is

< 1. Deduce that their product β satisfies 0 < β < 1. Show that all

conjugates of β satisfy the same inequalities (consider the Galois con-

jugates of the representation V , i.e., representations obtained from V

by the action of the Galois group ofK over Q on the matrices of group

elements in the basis from part (a)). Then derive a contradiction.

Remark 5.2.8. Here is a modification of this argument, which does

not use (a). Let N = |G|. For any 0 < j < N coprime to N ,

show that the map g 7→ gj is a bijection G → G. Deduce that∏
g 6=1 |χV (gj)|2 = β. Then show that β ∈ K := Q(ζ), ζ = e2πi/N ,

and that it does not change under the automorphism of K given by

ζ 7→ ζj . Deduce that β is an integer, and derive a contradiction.

5.3. Frobenius divisibility

Theorem 5.3.1. Let G be a finite group, and let V be an irreducible

representation of G over C. Then

dim V divides |G|.
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Proof. Let C1, C2, . . . , Cn be the conjugacy classes of G. Let gCi
be

representatives of Ci. Set

λi = χV (gCi
)

|Ci|
dimV

.

Proposition 5.3.2. The numbers λi are algebraic integers for all i.

Proof. Let C be a conjugacy class in G, and let P =
∑

h∈C h. Then

P is a central element of Z[G], so it acts on V by some scalar λ, which

is an algebraic integer (indeed, since Z[G] is a finitely generated Z-

module, any element of Z[G] is integral over Z, i.e., satisfies a monic

polynomial equation with integer coefficients). On the other hand,

taking the trace of P in V , we get |C|χV (g) = λ dimV , g ∈ C, so

λ = |C|χV (g)
dimV . �

Now, consider ∑

i

λiχV (gCi
).

This is an algebraic integer, since:

(i) λi are algebraic integers by Proposition 5.3.2,

(ii) χV (gCi
) is a sum of roots of unity (it is the sum of eigenvalues

of the matrix of ρ(gCi
), and since g

|G|
Ci

= e in G, the eigenvalues of

ρ(gCi
) are roots of unity), and

(iii) A is a ring (Proposition 5.2.4).

On the other hand, from the definition of λi,

∑

Ci

λiχV (gCi
) =

∑

i

|Ci|χV (gCi
)χV (gCi

)

dimV
.

Recalling that χV is a class function, this is equal to

∑

g∈G

χV (g)χV (g)

dimV
=

|G|(χV , χV )

dim V
.

Since V is an irreducible representation, (χV , χV ) = 1, so

∑

Ci

λiχV (gCi
) =

|G|
dimV

.
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Since |G|
dimV ∈ Q and

∑
Ci
λiχV (gCi

) ∈ A, by Proposition 5.2.5,
|G|

dimV ∈ Z. �

5.4. Burnside’s theorem

Definition 5.4.1. A groupG is called solvable if there exists a series

of nested normal subgroups

{e} = G1 / G2 / . . . / Gn = G

where Gi+1/Gi is abelian for all 1 ≤ i ≤ n− 1.

Remark 5.4.2. Such groups are called solvable because they first

arose as Galois groups of polynomial equations which are solvable in

radicals.

Theorem 5.4.3 (Burnside). Any group G of order paqb, where p and

q are primes and a, b ≥ 0, is solvable.

This famous result in group theory was proved by the British

mathematician William Burnside in the early 20th century, using

representation theory (see Section 5.5 and [Cu]). Here is this proof,

presented in modern language.

Before proving Burnside’s theorem, we will prove several other

results which are of independent interest.

Theorem 5.4.4. Let V be an irreducible representation of a finite

group G and let C be a conjugacy class of G with gcd(|C|, dim(V )) =

1. Then for any g ∈ C, either χV (g) = 0 or g acts as a scalar on V .

The proof will be based on the following lemma.

Lemma 5.4.5. If ε1, ε2, . . . , εn are roots of unity such that
1

n
(ε1 + ε2 + · · ·+ εn) is an algebraic integer, then either ε1 = · · · = εn

or ε1 + · · · + εn = 0.

Proof. Let a = 1
n (ε1 + · · ·+ εn). If not all εi are equal, then |a| < 1.

Moreover, since any algebraic conjugate of a root of unity is also a

root of unity, |a′| ≤ 1 for any algebraic conjugate a′ of a. But the

product of all algebraic conjugates of a is an integer. Since it has

absolute value < 1, it must equal zero. Therefore, a = 0. �
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Proof of Theorem 5.4.4. Let dimV = n. Let ε1, ε2, . . . , εn be the

eigenvalues of ρV (g). They are roots of unity, so χV (g) is an algebraic

integer. Also, by Proposition 5.3.2, 1
n |C|χV (g) is an algebraic integer.

Since gcd(n, |C|) = 1, there exist integers a, b such that a|C|+bn = 1.

This implies that

a|C|χV (g)

n
+ bχV (g) =

χV (g)

n
=

1

n
(ε1 + · · · + εn)

is an algebraic integer. Thus, by Lemma 5.4.5, we get that either

ε1 = · · · = εn or ε1 + · · · + εn = χV (g) = 0. In the first case,

since ρV (g) is diagonalizable, it must be scalar. In the second case,

χV (g) = 0. The theorem is proved. �

Theorem 5.4.6. Let G be a finite group, and let C be a conjugacy

class in G of order pk where p is a prime and k > 0. Then G has a

proper nontrivial normal subgroup (i.e., G is not simple).

Proof. Choose an element g ∈ C. Since g 6= e, by orthogonality of

columns of the character table,

(5.4.1)
∑

V ∈Irr G

dimV χV (g) = 0.

We can divide IrrG into three parts:

(1) the trivial representation,

(2) D, the set of irreducible representations whose dimension is

divisible by p, and

(3) N , the set of nontrivial irreducible representations whose

dimension is not divisible by p.

Lemma 5.4.7. There exists V ∈ N such that χV (g) 6= 0.

Proof. If V ∈ D, the number 1
p dim(V )χV (g) is an algebraic integer,

so

a =
∑

V ∈D

1

p
dim(V )χV (g)

is an algebraic integer.
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Now, by (5.4.1), we have

0 = χC(g) +
∑

V ∈D

dimV χV (g) +
∑

V ∈N

dimV χV (g)

= 1 + pa+
∑

V ∈N

dimV χV (g).

This means that the last summand is nonzero. �

Now pick V ∈ N such that χV (g) 6= 0; it exists by Lemma 5.4.7.

Theorem 5.4.4 implies that g (and hence any element of C) acts by a

scalar in V . Now let H be the subgroup of G generated by elements

ab−1, a, b ∈ C. It is normal and acts trivially in V , so H 6= G, as V

is nontrivial. Also H 6= 1, since |C| > 1. �

Proof of Burnside’s theorem. Assume Burnside’s theorem is false.

Then there exists a nonsolvable group G of order paqb. Let G be the

smallest such group. Then G is simple, and by Theorem 5.4.6, it

cannot have a conjugacy class of order pk or qk, k ≥ 1. So the or-

der of any conjugacy class in G either equals 1 or is divisible by pq.

Adding the orders of conjugacy classes and equating the sum to paqb,

we see that there has to be more than one conjugacy class consist-

ing just of one element. So G has a nontrivial center, which gives a

contradiction. �

5.5. Historical interlude: William Burnside and

intellectual harmony in mathematics

While at Cambridge, William Burnside (1852–1927) distinguished

himself in rowing; his other achievements include emerging from the

1875 Mathematical Tripos as Second Wrangler and then beating First

Wrangler in an even more grueling mathematical competition for the

Smith Prize. Afterwards, he taught at Cambridge as a mathematics

lecturer and a coach for both the Math Tripos and for the rowing

crews. In 1885, true to his aquatic interests, Burnside accepted the

position of professor of mathematics in the Royal Naval College at

Greenwich, where he taught until retirement. When his enthusiasm

for rowing subsided, fishing became Burnside’s favorite hobby. Even
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in mathematical research he stayed close to water, making major con-

tributions to hydrodynamics.

On the strength of his contributions to mathematical physics and

complex function theory, Burnside was elected to the Royal Society

in 1893. Once this worthy goal was achieved, however, he abandoned

such trifle subjects and dipped into the theory of groups. Four years

later Burnside published the first English textbook on the subject,

Theory of Groups of Finite Order. He was apparently delighted to

take a break from applied studies and to immerse himself in an ab-

stract theory, for he wrote in the preface: “The present treatise is

intended to introduce to the reader the main outlines of the the-

ory of groups of finite order apart from any applications”. Burnside

noted that group theory was not yet particularly popular in England.

“It will afford me much satisfaction”, he remarked, “if, by means of

this book, I shall succeed in arousing interest among English mathe-

maticians in a branch of pure mathematics which becomes the more

fascinating the more it is studied” (quoted in [11, pp. 88-89]).

The interest of English mathematicians, however, proved not to

be easily aroused, and ten years later Burnside bitterly remarked in

his retiring Presidential address to the London Mathematical Soci-

ety: “It is undoubtedly the fact that the theory of groups of finite

order has failed, so far, to arouse the interest of any but a very small

number of English mathematicians”. Burnside cited the proliferation

of courses on group theory in France, the United States, and espe-

cially Germany (attended by thirty students in Göttingen!), and he

lamented the total indifference of British students toward the sub-

ject. His explanation was that group theory was treated in a highly

abstract manner, “one which the young mind grasps with difficulty,

if at all”. As an example, Burnside cited a formal statement about

the properties of the icosahedral group and claimed that “a proposal

to verify the statement appears equivalent to proposing a series of

conundrums. There would be nothing here to attract the student or

to suggest anything but the driest formalism utterly divorced from

any of his previous mathematical studies” [8, pp. 1, 3, 5].

Burnside himself, however, had done much to establish the cul-

ture of purely abstract reasoning in group theory. In the preface to
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his 1897 book he wrote that his university teacher Arthur Cayley’s

“dictum that ‘a group is defined by means of the laws of combina-

tion of its symbols’ would imply that, in dealing with the theory of

groups, no more concrete mode of representation should be used than

is absolutely necessary” (quoted in [11, p. 90]). No wonder Burnside

omitted any applications from his book, while his 1899 article on the

simple group of order 504 mentioned a concrete example only in the

last paragraph [1, p. 13]. He cultivated conciseness as a highest virtue.

When a friend once asked for a more expanded treatment of certain

topics from Theory of Groups, Burnside responded by “a declaration

of regret that he had been unable to effect further condensation” [15,

p. 70]. Burnside’s ideal lived on in the tradition of Bourbaki, causing

the wrath of the champions of “mathematics with a human face”,

led by Vladimir Arnold: “Algebraists usually define groups as sets

with operations that satisfy a long list of hard-to-remember axioms.

I think one cannot understand such a definition. I believe the alge-

braists set up such obstacles in the path of students to make it harder

for the uninitiated to penetrate their field. Perhaps their goal, if only

subconscious, is to boost the reputation of their field” [2, p. 118].

While pursuing the condensation ideal, Burnside decided to omit

any discussion of linear substitution groups from the 1897 edition of

Theory of Groups. “It would be difficult to find a result that could be

most directly obtained by the consideration of groups of linear trans-

formations”, he wrote, justifying the exclusion of this useless subject

(quoted in [11, p. 90]). Within a few months, however, Burnside had

to reevaluate the wisdom of his decision, as he came across Frobenius’s

articles on group characters. Frobenius’s results proved highly rele-

vant to Burnside’s own research on finite groups, and Burnside set out

to reformulate them in his own language. Unlike Frobenius, Burnside

felt at ease with Sophus Lie’s apparatus of continuous groups of trans-

formations, and he was able to derive all of Frobenius’s main results

on characters and on the group determinant by using the methods

of Lie groups and Lie algebras. Burnside published his research with

a modest disclaimer that his paper was “not original, as the results

arrived at are, with one or two slight exceptions, due to Herr Frobe-

nius. The modes of proof, however, are in general quite distinct from

those used by Herr Frobenius” (quoted in [11, p. 106]).
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Herr Frobenius was hardly impressed by what he saw as a lame

excuse for stepping on his toes. Richard Dedekind was similarly out-

raged, when he recognized in one of Burnside’s papers his own the-

orem on the factorization of the group determinant of an abelian

group. Frobenius consoled his friend by recounting his own losses:

“This is the same Herr Burnside who annoyed me several years ago

by quickly rediscovering all the theorems I had published on the the-

ory of groups, in the same order and without exception: first my proof

of Sylow’s Theorems, then the theorem on groups with square-free or-

ders, on groups of order pαq, on groups whose order is a product of

four or five prime numbers, etc., etc. In any case, a very remark-

able and amazing example of intellectual harmony, probably as is

possible only in England and perhaps America” (quoted in [24, p.

242]). Burnside, for his part, began stressing that he had “obtained

independently the chief results of Prof. Frobenius’ earlier memoirs”

(quoted in [23, p. 278]). Herren Burnside and Frobenius never cor-

responded to straighten things out, leaving the matter to historians,

who somewhat qualified Burnside’s claim of independence. Burnside

was clearly inspired by Frobenius’s work, although he did not know

all of the relevant Frobenius papers, which left him enough space to

explore on his own [23, p. 278].

Burnside and Frobenius worked neck and neck on the solvability

of pαqβ groups. While Sylow (1872), Frobenius (1895), and Jordan

(1898) proved some special cases, Burnside succeeded in proving the

general case in 1904. Burnside’s character theoretic proof has been

described as “so easy and pleasant” that later group-theoretic proofs

would not even come close to its “compelling simplicity” and “strik-

ing beauty” [30, p. 469]. As Walter Feit suggested, “[T]he elegance

of both the statement and the proof have attracted more people to

the study of characters than any other result in the subject” [14, p.

4]. In particular, they attracted Feit, who in 1962 proved (with J.

G. Thompson) Burnside’s conjecture that every group of odd order

is solvable. Another seminal conjecture, Burnside’s Problem, related

to the structure of torsion groups, has preoccupied group theory and

representation theory specialists for over a century, yielding the 1994

Fields Medal to Efim Zelmanov for the solution of its restricted ver-

sion.
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The appreciation of the beauty of Burnside’s work took quite a

while. His employment at the Royal Naval College separated him

geographically from his university colleagues. He apparently had no

“extensive direct contacts with other mathematicians interested in

the subject (of group theory). It appears that he worked in isolation,

possibly even more so than was normal for his times, with little op-

portunity (or, perhaps, inclination) to discuss his ideas with others”,

according to his biographer [41, p. 32]. Burnside taught several gen-

erations of navy officers but created no mathematical school of his

own.

In December 1925 Burnside suffered a stroke, and his doctor for-

bade him, among other unhealthy activities, from doing mathematics.

Burnside naturally disobeyed and did not live very long. His obitu-

ary in the London Evening News barely mentioned his mathematical

studies but reported that “rowing men will regret to hear of the death

of W. Burnside, one of the best known Cambridge athletes of his day”

(quoted in [11, p. 96]).

Shortly before his death Burnside answered a query from a young

mathematician named Philip Hall, who asked for advice on topics of

group theory. Burnside sent him a postcard listing a few problems

worth investigating. This message in a bottle, thrown into the sea,

miraculously found a perfect addressee. The same volume of the Jour-

nal of the London Mathematical Society that contained Burnside’s

obituary featured Hall’s “Note on Soluble Groups”, which marked

the beginning of his lifetime career in this field. Hall eventually suc-

ceeded Burnside as the chief promoter of group theory in England.

“The aim of my researches”, he later wrote, “has been to a very con-

siderable extent that of extending and completing in certain directions

the work of Burnside” (quoted in [11, p. 96]).

5.6. Representations of products

Theorem 5.6.1. Let G,H be finite groups, let {Vi} be the irreducible

representations of G over a field k (of any characteristic), and let

{Wj} be the irreducible representations of H over k. Then the irre-

ducible representations of G×H over k are {Vi ⊗Wj}.
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Proof. This follows from Theorem 3.10.2. �

5.7. Virtual representations

Definition 5.7.1. A virtual representation of a finite group G

is an integer linear combination of irreducible representations of G,

V =
∑
niVi, ni ∈ Z (i.e., ni are not assumed to be nonnegative).

The character of V is χV :=
∑
niχVi

.

The following lemma is often very useful (and will be used several

times below).

Lemma 5.7.2. Let V be a virtual representation with character χV .

If (χV , χV ) = 1 and χV (1) > 0, then χV is a character of an irre-

ducible representation of G.

Proof. Let V1, V2, . . . , Vm be the irreducible representations of G,

and let V =
∑
niVi. Then by orthonormality of characters, (χV , χV ) =∑

i n
2
i . So

∑
i n

2
i = 1, meaning that ni = ±1 for exactly one i and

nj = 0 for j 6= i. But χV (1) > 0, so ni = +1 and we are done. �

5.8. Induced representations

Given a representation V of a group G and a subgroup H ⊂ G, there

is a natural way to construct a representation of H . The restriction

of V to H , ResG
HV is the representation given by the vector space V ,

and the action ρResG
HV = ρV |H .

There is also a natural, but less trivial, way to construct a rep-

resentation of a group G given a representation V of its subgroup

H .

Definition 5.8.1. If G is a group, H ⊂ G, and V is a representation

of H , then the induced representation IndG
HV , is the representa-

tion of G with

IndG
HV = {f : G → V |f(hx) = ρV (h)f(x) ∀x ∈ G, h ∈ H}

and the action g(f)(x) = f(xg) ∀g ∈ G.

Remark 5.8.2. In fact, IndG
HV is naturally isomorphic to the repre-

sentation HomH(k[G], V ).
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Let us check that IndG
H V is well defined as a representation. In-

deed, we have

g(f)(hx) = f(hxg) = ρV (h)f(xg) = ρV (h)g(f)(x),

and

g(g′(f))(x) = g′(f)(xg) = f(xgg′) = (gg′)(f)(x)

for any g, g′, x ∈ G and h ∈ H .

Remark 5.8.3. Notice that if we choose a representative xσ from ev-

ery right H-coset σ of G, then any f ∈ IndG
HV is uniquely determined

by {f(xσ)}.
Because of this,

dim(IndG
HV ) = dimV · |G||H | .

Problem 5.8.4. Check that if K ⊂ H ⊂ G are groups and if V is a

representation of K, then IndG
H IndH

K V is isomorphic to IndG
K V .

Exercise 5.8.5. Let K ⊂ G be finite groups, and let χ : K → C∗

be a homomorphism. Let Cχ be the corresponding 1-dimensional

representation of K. Let

eχ =
1

|K|
∑

g∈K

χ(g)−1g ∈ C[K]

be the idempotent corresponding to χ. Show that the G-representa-

tion IndG
KCχ is naturally isomorphic to C[G]eχ (with G acting by left

multiplication).

5.9. The Frobenius formula for the character of

an induced representation

Let us now compute the character χ of IndG
HV . In each right coset

σ ∈ H\G, choose a representative xσ .

Theorem 5.9.1. One has

χ(g) =
∑

σ∈H\G:xσgx−1
σ ∈H

χV (xσgx
−1
σ ).

This formula is called the Frobenius formula.
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Remark 5.9.2. If the characteristic of the ground field k is relatively

prime to |H |, then this formula can be written as

χ(g) =
1

|H |
∑

x∈G:xgx−1∈H

χV (xgx−1).

Proof. For a right H-coset σ of G, let us define

Vσ = {f ∈ IndG
HV |f(g) = 0 ∀g 6∈ σ}.

Then one has

IndG
HV =

⊕

σ

Vσ ,

and so

χ(g) =
∑

σ

χσ(g),

where χσ(g) is the trace of the diagonal block of ρ(g) corresponding

to Vσ .

Since g(σ) = σg is a right H-coset for any right H-coset σ,

χσ(g) = 0 if σ 6= σg.

Now assume that σ = σg. Then xσg = hxσ where h = xσgx
−1
σ ∈

H . Consider the map α : Vσ → V defined by α(f) = f(xσ). Since

f ∈ Vσ is uniquely determined by f(xσ), α is an isomorphism. We

have

α(gf) = g(f)(xσ) = f(xσg) = f(hxσ) = ρV (h)f(xσ) = hα(f),

and gf = α−1hα(f). This means that χσ(g) = χV (h). Therefore

χ(g) =
∑

σ∈H\G,σg=σ

χV (xσgx
−1
σ ).

�

5.10. Frobenius reciprocity

A very important result about induced representations is the Frobe-

nius reciprocity theorem which connects the operations Ind and Res.

Theorem 5.10.1 (Frobenius reciprocity). Let H ⊂ G be groups, V

a representation of G and W a representation of H. Then the space

HomG(V, IndG
HW ) is naturally isomorphic to HomH(ResG

HV,W ).
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Proof. Let E = HomG(V, IndG
HW ) and E′ = HomH(ResG

HV,W ).

Define F : E → E′ and F ′ : E′ → E as follows: F (α)v = (αv)(e) for

any α ∈ E and (F ′(β)v)(x) = β(xv) for any β ∈ E ′.

In order to check that F and F ′ are well defined and inverse to

each other, we need to check the following five statements.

Let α ∈ E, β ∈ E′, v ∈ V , and x, g ∈ G.

(a) F (α) is an H-homomorphism; i.e., F (α)hv = hF (α)v.

Indeed, F (α)hv = (αhv)(e) = (hαv)(e) = (αv)(he) = (αv)(eh) =

h · (αv)(e) = hF (α)v.

(b) F ′(β)v ∈ IndG
HW ; i.e., (F ′(β)v)(hx) = h(F ′(β)v)(x).

Indeed, (F ′(β)v)(hx) = β(hxv) = hβ(xv) = h(F ′(β)v)(x).

(c) F ′(β) is a G-homomorphism; i.e. F ′(β)gv = g(F ′(β)v).

Indeed, (F ′(β)gv)(x) = β(xgv) = (F ′(β)v)(xg) = (g(F ′(β)v))(x).

(d) F ◦ F ′ = IdE′ .

This holds since F (F ′(β))v = (F ′(β)v)(e) = β(v).

(e) F ′ ◦ F = IdE ; i.e., (F ′(F (α))v)(x) = (αv)(x).

Indeed, (F ′(F (α))v)(x) = F (αxv) = (αxv)(e) = (xαv)(e) = (αv)(x),

and we are done. �

Problem 5.10.2. The purpose of this problem is to understand the

notions of restricted and induced representations as part of a more

advanced framework. This framework is the notion of tensor products

over k-algebras. In particular, this understanding will lead us to a

new proof of the Frobenius reciprocity and to some analogies between

induction and restriction.

Throughout this exercise, we will use the notation and results of

Problem 2.11.6.

Let G be a finite group and H ⊂ G a subgroup. We consider

k [G] as a (k [H ] , k [G])-bimodule (both module structures are given

by multiplication inside k [G]). We denote this bimodule by k [G]1.

On the other hand, we can also consider k [G] as a (k [G] , k [H ])-

bimodule (again, both module structures are given by multiplication).

We denote this bimodule by k [G]2.
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(a) Let V be a representation of G. Then, V is a left k [G]-

module. Thus, the tensor product k [G]1⊗k[G]V is a left k [H ]-module.

Prove that this tensor product is isomorphic to ResG
HV as a left k [H ]-

module. The isomorphism

ResG
HV → k [G]1 ⊗k[G] V

is given by v 7→ 1 ⊗k[G] v for every v ∈ ResG
HV .

(b) Let W be a representation of H . Then W is a left k [H ]-

module. According to Remark 5.8.2, IndG
HW

∼= HomH (k [G] ,W ). In

other words, we have IndG
HW

∼= Homk[H] (k [G]1 ,W ). Now use part

(b) of Problem 2.11.6 to conclude Theorem 5.10.1.

(c) Let V be a representation of G. Then, V is a left k [G]-module.

Prove that not only k [G]1 ⊗k[G] V but also Homk[G] (k [G]2 , V ) is

isomorphic to ResG
HV as a left k [H ]-module. The isomorphism

Homk[G] (k [G]2 , V ) → ResG
HV

is given by f 7→ f (1) for every f ∈ Homk[G] (k [G]2 , V ).

(d) Let W be a representation of H . Then, W is a left k [H ]-

module. Show that IndG
HW is isomorphic to k [G]2 ⊗k[H] W . The

isomorphism Homk[H] (k [G]1 ,W ) → k [G]2 ⊗k[H] W is given by f 7→∑
g∈P g

−1 ⊗k[H] f (g) for every f ∈ Homk[H] (k [G]1 ,W ), where P is

a set of distinct representatives for the right H-cosets in G. (This

isomorphism is independent of the choice of representatives.)

(e) Let V be a representation of G and let W be a representation

ofH . Use (b) to prove that HomG

(
IndG

HW,V
)

is naturally isomorphic

to HomH

(
W,ResG

HV
)
.

(f) Let V be a representation of H . Prove that IndG
H (V ∗) ∼=(

IndG
HV

)∗
as representations ofG. [Hint: Write IndG

HV as k [G]2⊗k[H]

V and write IndG
H (V ∗) as Homk[H] (k [G]1 , V

∗). Prove that the map

Homk[H] (k [G]1 , V
∗)×

(
IndG

H (V ∗)
)
→ k given by

(
f,

(
x⊗k[H] v

))
7→

(f (Sx)) (v) is a nondegenerate G-invariant bilinear form, where S :

k [G] → k [G] is the linear map defined by Sg = g−1 for every g ∈ G.]



110 5. Representations of finite groups: Further results

5.11. Examples

Here are some examples of induced representations (we use the nota-

tion for representations from the character tables).

(1) Let G = S3, H = Z2. Using the Frobenius reciprocity, we

obtain IndG
HC+ = C2 ⊕ C+ and IndG

HC− = C2 ⊕ C−.

(2) Let G = S3, H = Z3. Then we obtain IndG
HC+ = C+ ⊕C−,

IndG
HCε = IndG

HCε2 = C2.

(3) Let G = S4, H = S3. Then IndG
HC+ = C+⊕C3

−, IndG
HC− =

C− ⊕ C3
+, IndG

HC2 = C2 ⊕ C3
− ⊕ C3

+.

Problem 5.11.1. Compute the decomposition into irreducibles of all

the representations of A5 induced from the irreducible representations

of

(a) Z2;

(b) Z3;

(c) Z5;

(d) A4;

(e) Z2 × Z2.

5.12. Representations of Sn

In this subsection we give a description of the representations of the

symmetric group Sn for any n.

Definition 5.12.1. A partition λ of n is a representation of n in

the form n = λ1 + λ2 + · · · + λp, where λi are positive integers and

λi ≥ λi+1.

To such λ we will attach a Young diagram Yλ, which is the

union of rectangles −i ≤ y ≤ −i + 1, 0 ≤ x ≤ λi in the coordinate

plane, for i = 1, . . . , p. Clearly, Yλ is a collection of n unit squares. A

Young tableau corresponding to Yλ is the result of filling the num-

bers 1, . . . , n into the squares of Yλ in some way (without repetitions).

For example, we will consider the Young tableau Tλ obtained by filling

in the numbers in increasing order, left to right, top to bottom.

We can define two subgroups of Sn corresponding to Tλ:
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1. The row subgroup Pλ: the subgroup which maps every element

of {1, . . . , n} into an element standing in the same row in Tλ.

2. The column subgroup Qλ: the subgroup which maps every

element of {1, . . . , n} into an element standing in the same column in

Tλ.

Clearly, Pλ ∩Qλ = {1}.
Define the Young projectors

aλ :=
1

|Pλ|
∑

g∈Pλ

g,

bλ :=
1

|Qλ|
∑

g∈Qλ

(−1)gg,

where (−1)g denotes the sign of the permutation g. Set cλ = aλbλ.

Since Pλ ∩Qλ = {1}, this element is nonzero.

The irreducible representations of Sn are described by the follow-

ing theorem.

Theorem 5.12.2. The subspace Vλ := C[Sn]cλ of C[Sn] is an ir-

reducible representation of Sn under left multiplication. Every irre-

ducible representation of Sn is isomorphic to Vλ for a unique λ.

The modules Vλ are called the Specht modules.

The proof of this theorem is given in the next subsection.

Example 5.12.3. For the partition λ = (n), Pλ = Sn, Qλ = {1}, so

cλ is the symmetrizer, and hence Vλ is the trivial representation.

For the partition λ = (1, . . . , 1), Qλ = Sn, Pλ = {1}, so cλ is the

antisymmetrizer, and hence Vλ is the sign representation.

n = 3. For λ = (2, 1), Vλ = C2.

n = 4. For λ = (2, 2), Vλ = C2; for λ = (3, 1), Vλ = C3
−; for

λ = (2, 1, 1), Vλ = C3
+.

Corollary 5.12.4. All irreducible representations of Sn can be given

by matrices with rational entries.

Problem 5.12.5. Find the sum of dimensions of all irreducible rep-

resentations of the symmetric group Sn.
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Hint: Show that all irreducible representations of Sn are real,

i.e., admit a nondegenerate invariant symmetric form. Then use the

Frobenius-Schur theorem.

5.13. Proof of the classification theorem for

representations of Sn

Lemma 5.13.1. Let x ∈ C[Sn]. Then aλxbλ = `λ(x)cλ, where `λ is

a linear function.

Proof. If g ∈ PλQλ, then g has a unique representation as pq,

p ∈ Pλ, q ∈ Qλ, so aλgbλ = (−1)qcλ. Thus, to prove the required

statement, we need to show that if g is a permutation which is not in

PλQλ, then aλgbλ = 0.

To show this, it is sufficient to find a transposition t such that

t ∈ Pλ and g−1tg ∈ Qλ; then

aλgbλ = aλtgbλ = aλg(g
−1tg)bλ = −aλgbλ,

so aλgbλ = 0. In other words, we have to find two elements i, j

standing in the same row in the tableau T = Tλ and in the same

column in the tableau T ′ = gT (where gT is the tableau of the same

shape as T obtained by permuting the entries of T by the permutation

g). Thus, it suffices to show that if such a pair does not exist, then

g ∈ PλQλ, i.e., there exists p ∈ Pλ, q′ ∈ Q′
λ := gQλg

−1 such that

pT = q′T ′ (so that g = pq−1, q = g−1q′g ∈ Qλ).

Any two elements in the first row of T must be in different

columns of T ′, so there exists q′1 ∈ Q′
λ which moves all these ele-

ments to the first row. So there is p1 ∈ Pλ such that p1T and q′1T
′

have the same first row. Now do the same procedure with the second

row, finding elements p2, q
′
2 such that p2p1T and q′2q

′
1T

′ have the same

first two rows. Continuing so, we will construct the desired elements

p, q′. The lemma is proved. �

Let us introduce the lexicographic ordering on partitions:

λ > µ if the first nonvanishing λi − µi is positive.

Lemma 5.13.2. If λ > µ, then aλC[Sn]bµ = 0.
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Proof. Similarly to the previous lemma, it suffices to show that for

any g ∈ Sn there exists a transposition t ∈ Pλ such that g−1tg ∈ Qµ.

Let T = Tλ and T ′ = gTµ. We claim that there are two integers

which are in the same row of T and the same column of T ′. Indeed, if

λ1 > µ1, this is clear by the pigeonhole principle (already for the first

row). Otherwise, if λ1 = µ1, as in the proof of the previous lemma, we

can find elements p1 ∈ Pλ, q
′
1 ∈ gQµg

−1 such that p1T and q′1T
′ have

the same first row and repeat the argument for the second row, and so

on. Eventually, having done i−1 such steps, we’ll have λi > µi, which

means that some two elements of the ith row of the first tableau are

in the same column of the second tableau, completing the proof. �

Lemma 5.13.3. cλ is proportional to an idempotent. Namely, c2λ =
n!

dimVλ
cλ.

Proof. Lemma 5.13.1 implies that c2λ is proportional to cλ. Also, it

is easy to see that the trace of cλ in the regular representation is n!

(as the coefficient of the identity element in cλ is 1). This implies the

statement. �

Lemma 5.13.4. Let A be an algebra and let e be an idempotent in

A. Then for any left A-module M , one has HomA(Ae,M) ∼= eM

(namely, x ∈ eM corresponds to fx : Ae → M given by fx(a) = ax,

a ∈ Ae).

Proof. Note that 1 − e is also an idempotent in A. Thus the state-

ment immediately follows from the fact that HomA(A,M) ∼= M and

the decomposition A = Ae⊕A(1 − e). �

Now we are ready to prove Theorem 5.12.2. Let λ ≥ µ. Then by

Lemmas 5.13.3 and 5.13.4

HomSn
(Vλ, Vµ) = HomSn

(C[Sn]cλ,C[Sn]cµ) = cλC[Sn]cµ.

The latter space is zero for λ > µ by Lemma 5.13.2 and 1-dimensional

if λ = µ by Lemmas 5.13.1 and 5.13.3. Therefore, Vλ are irreducible,

and Vλ is not isomorphic to Vµ if λ 6= µ. Since the number of par-

titions equals the number of conjugacy classes in Sn, the represen-

tations Vλ exhaust all the irreducible representations of Sn. The

theorem is proved.
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5.14. Induced representations for Sn

Denote by Uλ the representation IndSn

Pλ
C. It is easy to see that Uλ

can be alternatively defined as Uλ = C[Sn]aλ.

Proposition 5.14.1. We have Hom(Uλ, Vµ) = 0 for µ < λ and

dim Hom(Uλ, Vλ) = 1. Thus, Uλ =
⊕

µ≥λ KµλVµ, where Kµλ are

nonnegative integers and Kλλ = 1.

Definition 5.14.2. The integers Kµλ are called the Kostka num-

bers.

Proof. By Lemmas 5.13.3 and 5.13.4,

Hom(Uλ, Vµ) = Hom(C[Sn]aλ,C[Sn]aµbµ) = aλC[Sn]aµbµ,

and the result follows from Lemmas 5.13.1 and 5.13.2. �

Now let us compute the character of Uλ. Let Ci be the conjugacy

class in Sn having il cycles of length l for all l ≥ 1 (here i is a shorthand

notation for (i1, . . . , il, . . . )). Also let x1, . . . , xN be variables, and let

Hm(x) =
∑

i

xm
i

be the power sum polynomials.

Theorem 5.14.3. Let N ≥ p (where p is the number of parts of λ).

Then χUλ
(Ci) is the coefficient1 of xλ :=

∏
x

λj

j in the polynomial
∏

m≥1

Hm(x)im .

Proof. The proof is obtained easily from the Frobenius formula.

Namely, χUλ
(Ci) is the number of elements x ∈ Sn such that xgx−1 ∈

Pλ (for a representative g ∈ Ci), divided by |Pλ|. The order of Pλ is∏
i λi!, and the number of elements x such that xgx−1 ∈ Pλ is the

number of elements in Pλ conjugate to g (i.e., |Ci ∩ Pλ|) times the

order of the centralizer Zg of g (which is n!/|Ci|). Thus,

χUλ
(Ci) =

|Zg|∏
j λj !

|Ci ∩ Pλ|.

1If j > p, we define λj to be zero.
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Now, it is easy to see that the centralizer Zg of g is isomorphic to
∏

m

Sim
n (Z/mZ)im ,

so

|Zg | =
∏

m

mim im!,

and we get

χUλ
(Ci) =

∏
mmim im!∏

j λj !
|Ci ∩ Pλ|.

Now, since Pλ =
∏

j Sλj
, we have

|Ci ∩ Pλ| =
∑

r

∏

j≥1

λj !∏
m≥1m

rjmrjm!
,

where r = (rjm) runs over all collections of nonnegative integers such

that ∑

m

mrjm = λj ,
∑

j

rjm = im.

Indeed, an element of Ci that is in Pλ would define an ordered parti-

tion of each λj into parts (namely, cycle lengths), with m occurring

rjm times, such that the total (over all j) number of times each part

m occurs is im. Thus we get

χUλ
(Ci) =

∑

r

∏

m

im!∏
j rjm!

.

But this is exactly the coefficient of xλ in
∏

m≥1

(xm
1 + · · · + xm

N )im

(rjm is the number of times we take xm
j ). �

5.15. The Frobenius character formula

Let ∆(x) =
∏

1≤i<j≤N (xi −xj). Let ρ = (N − 1, N − 2, . . . , 0) ∈ CN .

The following theorem, due to Frobenius, gives a character formula

for the Specht modules Vλ.
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Theorem 5.15.1. Let N ≥ p. Then χVλ
(Ci) is the coefficient of

xλ+ρ :=
∏
x

λj+N−j
j in the polynomial

∆(x)
∏

m≥1

Hm(x)im .

Remark 5.15.2. Here is an equivalent formulation of Theorem 5.15.1:

χVλ
(Ci) is the coefficient of xλ in the (Laurent) polynomial

∏

i<j

(
1 − xj

xi

) ∏

m≥1

Hm(x)im .

Proof. For brevity denote χVλ
by χλ. Let us denote the class func-

tion defined in the theorem by θλ. We claim that this function has

the property θλ =
∑

µ≥λ Lµλχµ, where Lµλ are integers and Lλλ = 1.

Indeed, from Theorem 5.14.3 we have

θλ =
∑

σ∈SN

(−1)σχUλ+ρ−σ(ρ)
,

where if the vector λ+ρ−σ(ρ) has a negative entry, the corresponding

term is dropped, and if it has nonnegative entries which fail to be

nonincreasing, then the entries should be reordered in nonincreasing

order, making a partition that we’ll denote by 〈λ+ ρ−σ(ρ)〉 (i.e., we

agree that Uλ+ρ−σ(ρ) := U〈λ+ρ−σ(ρ)〉). Now note that µ = 〈λ + ρ −
σ(ρ)〉 is obtained from λ by adding vectors of the form ei − ej , i < j,

which implies that µ > λ or µ = λ, and the case µ = λ arises only if

σ = 1, as desired.

Therefore, to show that θλ = χλ, by Lemma 5.7.2, it suffices to

show that (θλ, θλ) = 1.

We have

(θλ, θλ) =
1

n!

∑

i

|Ci|θλ(Ci)
2.

Using that

|Ci| =
n!∏

mmimim!
,

we conclude that (θλ, θλ) is the coefficient of xλ+ρyλ+ρ in the series

R(x, y) = ∆(x)∆(y)S(x, y), where

S(x, y) =
∑

i

∏

m

(
∑

j x
m
j )im(

∑
k y

m
k )im

mim im!
=

∑

i

∏

m

(
∑

j,k x
m
j y

m
k /m)im

im!
.
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Summing over i and m, we get

S(x, y) =
∏

m

exp(
∑

j,k

xm
j y

m
k /m)

= exp(−
∑

j,k

log(1 − xjyk)) =
∏

j,k

(1 − xjyk)−1.

Thus,

R(x, y) =

∏
i<j(xi − xj)(yi − yj)∏

i,j(1 − xiyj)
.

Now we need the following lemma.

Lemma 5.15.3.∏
i<j(zj − zi)(yi − yj)∏

i,j(zi − yj)
= det

(
1

zi − yj

)
.

Proof. Multiply both sides by
∏

i,j(zi − yj). Then the right-hand

side must vanish on the hyperplanes zi = zj and yi = yj (i.e., must

be divisible by ∆(z)∆(y)) and is a homogeneous polynomial of degree

N(N − 1). This implies that the right-hand side and the left-hand

side are proportional. The proportionality coefficient (which is equal

to 1) is found by induction by multiplying both sides by zN −yN and

then setting zN = yN . �

Now setting zi = 1/xi in the lemma, we get

Corollary 5.15.4 (Cauchy identity).

R(x, y) = det

(
1

1 − xiyj

)
=

∑

σ∈SN

1
∏N

j=1(1 − xjyσ(j))
.

Corollary 5.15.4 easily implies that the coefficient of xλ+ρyλ+ρ is

1. Indeed, if σ 6= 1 is a permutation in SN , the coefficient of this

monomial in 1Q
j(1−xjyσ(j))

is obviously zero. �

Remark 5.15.5. For partitions λ and µ of n, let us say that λ � µ

or µ � λ if µ− λ is a sum of vectors of the form ei − ej , i < j (called

positive roots). This is a partial order, and µ � λ implies µ ≥ λ. It

follows from Theorem 5.15.1 and its proof that

χλ =
∑

µ�λ

K̃µλχUµ
,
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where (K̃λµ) is the matrix inverse to the matrix of Kostka numbers

(Kλµ). This implies that the Kostka numbers Kµλ vanish unless

µ � λ.

5.16. Problems

In the following problems, we do not make a distinction between

Young diagrams and partitions.

Problem 5.16.1. For a Young diagram µ, let A(µ) be the set of

Young diagrams obtained by adding a square to µ, and let R(µ) be

the set of Young diagrams obtained by removing a square from µ.

(a) Show that ResSn

Sn−1
Vµ =

⊕
λ∈R(µ) Vλ.

(b) Show that IndSn

Sn−1
Vµ =

⊕
λ∈A(µ) Vλ.

Problem 5.16.2. The content c(λ) of a Young diagram λ is the

sum
∑

j

∑λj

i=1(i − j). Let C =
∑

i<j(ij) ∈ C[Sn] be the sum of

all transpositions. Show that C acts on the Specht module Vλ by

multiplication by c(λ).

Problem 5.16.3. (a) Let V be any finite dimensional representation

of Sn. Show that the element E := (12)+ · · ·+ (1n) is diagonalizable

and has integer eigenvalues on V which are between 1− n and n− 1.

Hint: Represent E as Cn − Cn−1, where Cn = C is the element

from Problem 5.16.2.

(b) Show that the element (12)+ · · ·+(1n) acts on Vλ by a scalar

if and only if λ is a rectangular Young diagram, and compute this

scalar.

5.17. The hook length formula

Let us use the Frobenius character formula to compute the dimension

of Vλ. According to the character formula, dim Vλ is the coefficient

of xλ+ρ in ∆(x)(x1 + · · · + xN )n. Let lj = λj +N − j. Then, using

the determinant formula for ∆(x) and expanding the determinant as
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a sum over permutations, we get

dim Vλ =
∑

s∈SN :lj≥N−s(j)

(−1)s n!∏
j(lj −N + s(j))!

=
n!

l1! . . . lN !

∑

s∈SN

(−1)s
∏

j

lj(lj − 1) . . . (lj −N + s(j) + 1)

=
n!∏
j lj !

det(lj(lj − 1) . . . (lj −N + i+ 1)).

Using column reduction and the Vandermonde determinant formula,

we see from this expression that

(5.17.1) dim Vλ =
n!∏
j lj !

det(lN−i
j ) =

n!∏
j lj !

∏

1≤i<j≤N

(li − lj)

(where N ≥ p).

In this formula, there are many cancellations. After making some

of these cancellations, we obtain the hook length formula. Namely,

for a square (i, j) in a Young diagram λ (i, j ≥ 1, i ≤ λj), define the

hook of (i, j) to be the set of all squares (i′, j′) in λ with i′ ≥ i, j′ = j

or i′ = i, j′ ≥ j. Let h(i, j) be the length of the hook of i, j, i.e., the

number of squares in it.

Theorem 5.17.1 (The hook length formula). One has

dimVλ =
n!∏

i≤λj
h(i, j)

.

Proof. The formula follows from formula (5.17.1). Namely, note that

l1!∏
1<j≤N (l1 − lj)

=
∏

1≤k≤l1,k 6=l1−lj

k.

It is easy to see that the factors in this product are exactly the

hook lengths h(i, 1). Now delete the first row of the diagram and

proceed by induction. �

5.18. Schur-Weyl duality for gl(V )

We start with a simple result which is called the Double Centralizer

Theorem.
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Theorem 5.18.1. Let A, B be two subalgebras of the algebra EndE

of endomorphisms of a finite dimensional vector space E, such that

A is semisimple and B = EndAE. Then:

(i) A = EndB E (i.e., the centralizer of the centralizer of A is

A).

(ii) B is semisimple.

(iii) As a representation of A⊗B, E decomposes as

E =
⊕

i∈I

Vi ⊗Wi,

where Vi are all the irreducible representations of A and Wi are all

the irreducible representations of B. In particular, we have a natural

bijection between irreducible representations of A and B.

Proof. Since A is semisimple, we have a natural decomposition E =⊕
i∈I Vi⊗Wi, where Wi := HomA(Vi, E) and A =

⊕
i EndVi. There-

fore, by Schur’s lemma, B = EndA(E) is naturally identified with⊕
i End(Wi). This implies all the statements of the theorem. �

We will now apply Theorem 5.18.1 to the following situation:

E = V
N

n, where V is a finite dimensional vector space over a field

of characteristic zero and A is the image of C[Sn] in EndE. Let us

now characterize the algebra B. Let gl(V ) be EndV regarded as a

Lie algebra with operation ab− ba.

Theorem 5.18.2. The algebra B = EndAE is the image of the

universal enveloping algebra U(gl(V )) under its natural action on E.

In other words, B is generated by elements of the form

∆n(b) := b⊗ 1 ⊗ · · · ⊗ 1 + 1⊗ b⊗ · · · ⊗ 1 + · · · + 1 ⊗ 1 ⊗ · · · ⊗ b,

b ∈ gl(V ).

Proof. Clearly, the image of U(gl(V )) is contained in B, so we just

need to show that any element of B is contained in the image of

U(gl(V )). By definition, B = Sn EndV , so the result follows from

part (ii) of the following lemma.

Lemma 5.18.3. Let k be a field of characteristic zero.
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(i) For any finite dimensional vector space U over k, the space

SnU is spanned by elements of the form u⊗ · · · ⊗ u, u ∈ U .

(ii) For any algebra A over k, the algebra SnA is generated by

elements ∆n(a), a ∈ A.

Proof. (i) The space SnU is an irreducible representation of GL(U)

(Problem 4.12.3). The subspace spanned by u⊗ · · · ⊗ u is a nonzero

subrepresentation, so it must be everything.

(ii) By the fundamental theorem on symmetric functions, there

exists a polynomial P with rational coefficients such that

P (H1(x), . . . , Hn(x)) = x1 . . . xn

(where x = (x1, . . . , xn)). Then

P (∆n(a),∆n(a2), . . . ,∆n(an)) = a⊗ · · · ⊗ a.

The rest follows from (i). �

This completes the proof of the theorem. �

Now, the algebra A is semisimple by Maschke’s theorem, so the

double centralizer theorem applies, and we get the following result,

which goes under the name “Schur-Weyl duality” (as it was discovered

by Schur and popularized by Weyl in his books The theory of groups

and quantum mechanics and Classical groups ; see Section 5.20).

Theorem 5.18.4. (i) The image A of C[Sn] and the image B of

U(gl(V )) in End(V
N

n) are centralizers of each other.

(ii) Both A and B are semisimple. In particular, V
N

n is a

semisimple gl(V )-module.

(iii) We have a decomposition of (A⊗B)-modules

V
N

n =
⊕

λ

Vλ ⊗ Lλ,

where the summation is taken over partitions of n, Vλ are Specht

modules for Sn, and Lλ are some distinct irreducible representations

of gl(V ) or zero.
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5.19. Schur-Weyl duality for GL(V )

The Schur-Weyl duality for the Lie algebra gl(V ) implies a similar

statement for the group GL(V ).

Proposition 5.19.1. The image of GL(V ) in End(V
N

n) spans B.

Proof. Denote the span of g
N

n, g ∈ GL(V ), by B′. Let b ∈ EndV

be any element.

We claim that B′ contains b
N

n. Indeed, for all values of t but

finitely many, t · Id +b is invertible, so (t · Id +b)
N

n belongs to B′.
This implies that this is true for all t, in particular for t = 0, since

(t · Id +b)
N

n is a polynomial in t.

The rest follows from Lemma 5.18.3. �

Corollary 5.19.2. As a representation of Sn × GL(V ), V
N

n de-

composes as
⊕

λ Vλ ⊗Lλ, where Lλ = HomSn
(Vλ, V

N
n) are distinct

irreducible representations of GL(V ) or zero.

Example 5.19.3. If λ = (n), then Lλ = SnV , and if λ = (1n) (n

copies of 1), then Lλ = ∧nV . It was shown in Problem 4.12.3 that

these representations are indeed irreducible (except that ∧nV is zero

if n > dim V ).

5.20. Historical interlude: Hermann Weyl at the

intersection of limitation and freedom

Hermann Weyl (1885–1955) received his doctorate at the University

of Göttingen under the guidance of David Hilbert, whom he later

paid a rather dubious compliment by calling him “the Pied Piper

. . . seducing so many rats to follow him into the deep river of mathe-

matics”. Hilbert called mathematical physics “a vital nerve” of math-

ematics, and Weyl inherited the interest in cross-fertilization of math-

ematics and physics from his teacher (quoted in [53, pp. 357, 358]).

The willingness of Göttingen mathematicians to get their formulas

dirty by engaging physical problems set them apart from the obses-

sive purism of the Berlin mathematical school.
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In 1913 Weyl was offered a professorship at the ETH in Zürich,

despite a somewhat lukewarm endorsement from Frobenius, who re-

garded the work of all candidates who came from the Göttingen school

as “very general, very deep, so abysmally deep that a shortsighted per-

son like me finds it difficult to recognize new ideas” (quoted in [22,

p. 421]). Weyl accepted and found himself in the company of Albert

Einstein, who was teaching at the ETH at the time. Yet it took a

world war to make Weyl pay attention to what Einstein was doing.

The German government initially judged Weyl unfit to fight in World

War I, but as losses were mounting, it reevaluated the concept of phys-

ical fitness and dragged him onto the battlefield. Weyl’s encounter

with the German army brought little satisfaction to either side. In

1916, at the request of the Swiss government, Weyl was discharged

and allowed to resume his work at the ETH. “My mathematical mind

was as blank as any veteran’s, and I did not know what to do”, he

later recalled. “I began to study algebraic surfaces; but before I had

gotten far, Einstein’s memoir came into my hands and set me afire”

(quoted in [52, p. 62]). The inflaming memoir was Einstein’s account

of general relativity.

In 1917 Weyl gave a lecture course on general relativity at the

ETH and soon turned it into the widely read book Space-Time-

Matter, which went through four different editions within five years

and was admired by Einstein himself as a “symphonic masterpiece”

(quoted in [46, p. 65]). Weyl, however, could hardly resist the im-

pulse to improve on Einstein’s belabored mathematics. He was con-

vinced that Riemannian geometry, on which Einstein based his theory,

was not a consistently infinitesimal geometry and set out to create a

“purely infinitesimal geometry”. When he explained to a student that

in Riemannian geometry the direction of the transported vector de-

pended on the path, the student innocently asked whether the vector

length changed as well. “Of course I gave him the orthodox answer

at that moment, but in my bosom gnawed the doubt”, Weyl recalled

(quoted in [52, p. 154]). The orthodox answer was no, but he was

tempted to see what would happen if the length indeed depended on

the path. Weyl questioned the assumption of a fixed distance scale,

or “gauge”, implicit in Riemannian geometry, and arrived at a more

general geometry, in which the gauge factor varied from point to point
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in space-time, just as railway gauge varied from country to country

in the early 20th century [42, p. 3].

Weyl aspired at a unified field theory, bringing together the grav-

itational and the electromagnetic fields. Einstein was delighted to

count Weyl among the supporters of general relativity but was less

than enthusiastic to see him compete in the construction of physical

theories. Einstein praised Weyl’s theory as a “stroke of genius of the

highest order” and concluded that “except for the agreement with

reality it is in any case a grandiose achievement of thought” (quoted

in [52, pp. 163–164]). As a true mathematician, Weyl could hardly

share Einstein’s obsession with “reality”. As he later argued, “[I]t

becomes evident that now the words ‘in reality’ must be put between

quotation marks; we have a symbolic construction, but nothing which

we could seriously pretend to be the true real world” (quoted in [42,

p. 15]). In his reply to Einstein, Weyl pointedly wrote: “It must be

emphasized that the geometry that has been developed here is, from

the mathematical viewpoint, the true local geometry. It would be

strange if, instead of this true (geometry), a partial and inconsistent

local geometry with the electromagnetic field glued to it were real-

ized in Nature”. Weyl easily matched Einstein in the degree of his

sarcasm: “If you are right with regard to the real world, then I regret

having to point out a mathematical inconsistency to the dear Lord”

(quoted in [22, p. 434]).

Recasting the tensor language of Einstein’s general relativity in

the mold of the Göttingen school, Weyl focused on the development of

tensor algebra, particularly on tensors with specific symmetry prop-

erties relevant to physical applications. He aspired to obtain a math-

ematical overview of possible symmetry types and found an appro-

priate vantage point in Frobenius’s theory of finite group represen-

tations. Gradually Weyl turned further away from relativity and

towards purely mathematical questions of group theory, trying to de-

velop a group-theoretical foundation of the tensor calculus. Drawing

on the work of Élie Cartan and Issai Schur, Weyl delved into the rep-

resentation theory of finite groups, which he called “one of the most

wonderful theories to be found in mathematics”. Weyl exchanged
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letters with Schur, who wrote that “it would be of considerable in-

terest to me to see how my latest results on the number of variables

and characters could be derived on the basis of Cartan’s methods”

(quoted in [22, pp. 456, 473]). Weyl obliged and quickly arranged

the marriage of Élie Cartan’s infinitesimal methods with Issai Schur’s

integral procedure. He did not limit himself, however, to rederiving

Schur’s results but went somewhat further and developed an entire

theory of the representations of semisimple Lie groups, including ex-

plicit formulas for the irreducible characters and for the degrees of

the corresponding representations.

The rise of quantum mechanics provided an occasion for Weyl to

mount an attack on the hegemonic status of the mathematical con-

tinuum. He believed that different branches of mathematics might

have different concepts of the number and supported the view that

“each object which is offered to mathematical analysis carries its own

kind of numbers to be defined in terms of that object and its intrinsic

constituents, instead of approaching every object by the same uni-

versal number system developed a priori and independently of the

applications” (quoted in [52, p. 240]). In his 1928 book, The Theory

of Groups and Quantum Mechanics, Weyl argued that the essence of

symmetries central to quantum mechanics was to be found not in the

continuum of real numbers but in the concepts of group theory, partic-

ularly in the “reciprocity” between the representations of symmetric

permutation groups and complete linear groups [60, p. vii].

The physics community welcomed the help of a mathematician

with cries of outrage and disgust. The American theoretical physicist

John Slater christened the approach of Weyl and his followers “Grup-

penpest”, or “the pest of group theory”. “The authors of the ‘Grup-

penpest’ wrote papers which were incomprehensible to those like me

who had not studied group theory”, he later confessed. Their results

appeared “negligible” to him, and he widely shared his “frustrating

experience, worthy of the name of a pest”, with other physicists, who

were, as he claimed, “as disgusted as I had been with the group-

theoretical approach to the problem” (quoted in [55, p. x]). As late
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as 1975, he still believed that he had “slain the ‘Gruppenfest’ ”, bliss-

fully unaware of the essential and now routine applications of group

theory in elementary particle physics.

More sympathetic physicists also had difficulty grappling with

Weyl’s mathematics, but this only heightened their admiration for

him. Julian Schwinger had to admit that he had not “ever — not

even to this day — fully mastered” Weyl’s Theory of Groups and

Quantum Mechanics. Yet he called Weyl “one of my gods”, explain-

ing that “the ways of gods are mysterious, inscrutable, and beyond

the comprehension of ordinary mortals”. When asked if he ever met

a scholar he could not understand, Paul Dirac unhesitatingly replied,

“Weyl”. Yet he found Weyl’s — purely mathematical — argument

that electrons and antielectrons must have the same mass so disarm-

ingly convincing that he reportedly derived from this encounter his

famous maxim, “[I]t is more important to have beauty in one’s equa-

tions than to have them fit experiment” (quoted in [42, p. 11, 19,

12]). Weyl expressed a similar sentiment with respect to mathemat-

ics: “My work has always tried to unite the true with the beautiful,

and when I had to choose one or the other, I usually chose the beau-

tiful” (quoted in [45, p. 161]).

Weyl’s return to Göttingen in 1930 to take up Hilbert’s chair was

badly timed to coincide with the Nazis’ rise to power. One contem-

porary privately remarked, “Prof. Weyl is a peculiar race mixture, at

least seven parts Holstein and one part Jewish blood with the par-

ticular vasomotor irritability that one encounters relatively often in

people from Holstein and Friesland” (quoted in [49, p. 52]). Whatever

vasomotor dysfunction may have resulted from the German compo-

nents of his blood, it clearly paled in comparison with the trouble

that his Jewish ancestry could cause him in Nazi Germany. Although

Weyl’s low Jewish blood count exempted him from the Nazis’ direct

attacks, his wife and children would have become targets of anti-

Semitic measures. Having barely returned to his homeland, Weyl

had to face the prospect of immigration again. The decision was dif-

ficult. At first he rejected an invitation to join the Princeton Institute

for Advanced Study, unable to overcome “the love that binds me with

every string of my heart to the German language” (quoted in [52, p.
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271]). But when Hitler came to power, Weyl’s head prevailed over his

heart, and his family left for America.

Upon his arrival at Princeton, Weyl plunged into a mathematical

culture quite inhospitable to the speculative philosophy so dear to

him. Weyl perceived the “danger of a too thorough specialization and

technicalization” of American mathematical research that produced

“a mode of writing which must give the reader the impression of

being shut up in a brightly illuminated cell where every detail sticks

out with the same dazzling clarity, but without relief ”. Personally

Weyl preferred “the open landscape under a clear sky with its depth

of perspective, where the wealth of sharply defined nearby details

gradually fades away toward the horizon” [57, p. viii].

In 1939, struggling with the “yoke of foreign language”, imposed

upon his writing, Weyl summed up his results on group invariants and

representations in the book The Classical Groups [57, p. viii]. As Sir

Michael Atiyah has noted, this volume “is not a linear book with a

beginning, middle, and end. It is more like an elaborate painting that

has to be studied from different angles and in different lights. It is the

despair of the student and the delight of the professor” [3, p. 328].

Weyl viewed his mathematical writings as works of art, as much as

science. “My own mathematical works are always quite unsystematic,

without mode or connection”, he admitted. “Expression and shape

are almost more to me than knowledge itself. But I believe that,

leaving aside my own peculiar nature, there is in mathematics itself,

in contrast to the experimental disciplines, a character which is nearer

to that of free creative art” (quoted in [3, p. 323]). Weyl believed

that “ ‘mathematizing’ may well be a creative activity of man, like

language or music, of primary originality, whose historical decisions

defy complete objective rationalization” [58, p. 550].

In the artistry of mathematical creativity, in the beauty of formu-

las, in the eternal truths of mathematics sought Weyl a refuge from

the horrors of the world wars and from the destruction of European

culture [53, p. 365]. Yet after Hiroshima he realized that even pretty

formulas may have deadly uses. “To what extent shall and can the

theorist take responsibility for the practical consequences of his dis-

coveries?” he asked. “What a beautiful theoretical edifice is quantum
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physics — and what a terrible thing is the atomic bomb!”. Weyl dis-

agreed with G. H. Hardy’s defense of pure mathematics as a useless

and harmless pursuit of beauty. Weyl insisted that the very meaning

and value of mathematics were questioned “by the deadly menace

of its misuse” (quoted in [49, p. 67–68]). He saw in mathematics

the same moral choices that one faced in real life. His earlier reflec-

tions on the “metaphysical implications” of knowledge now acquired

a broader meaning. “Mathematics is not the rigid and uninspiring

schematism which the layman is so apt to see in it”, he had written.

“On the contrary, we stand in mathematics precisely at that point

of intersection of limitation and freedom which is the essence of man

himself ” [59, p. 68].

5.21. Schur polynomials

Let λ = (λ1, . . . , λp) be a partition of n, and let N ≥ p. Let

Dλ(x) =
∑

s∈SN

(−1)s
N∏

j=1

x
λj+N−j

s(j) = det(x
λj+N−j
i ).

Define the polynomials

Sλ(x) :=
Dλ(x)

D0(x)

(clearly D0(x) is just ∆(x)). It is easy to see that these are indeed

polynomials, as Dλ is antisymmetric and therefore must be divisible

by ∆. The polynomials Sλ are called the Schur polynomials.

Proposition 5.21.1.
∏

m

(xm
1 + · · · + xm

N )im =
∑

λ:p≤N

χλ(Ci)Sλ(x).

Proof. The identity follows from the Frobenius character formula

and the antisymmetry of

∆(x)
∏

m

(xm
1 + · · · + xm

N )im .

�

Certain special values of Schur polynomials are of importance.

Namely, we have
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Proposition 5.21.2.

Sλ(1, z, z2, . . . , zN−1) =
∏

1≤i<j≤N

zλi−i − zλj−j

z−i − z−j
.

Therefore,

Sλ(1, . . . , 1) =
∏

1≤i<j≤N

λi − λj + j − i

j − i
.

Proof. The first identity is obtained from the definition using the

Vandermonde determinant. The second identity follows from the first

one by setting z = 1. �

5.22. The characters of Lλ

Proposition 5.21.1 allows us to calculate the characters of the repre-

sentations Lλ.

Namely, let dimV = N , let g ∈ GL(V ), and let x1, . . . , xN be

the eigenvalues of g on V . To compute the character χLλ
(g), let us

calculate TrV
N

n(g
N

ns), where s ∈ Sn. If s ∈ Ci, we easily get that

this trace equals
∏

m

Tr(gm)im =
∏

m

Hm(x)im .

On the other hand, by the Schur-Weyl duality

TrV
N

n(g
N

ns) =
∑

λ

χλ(Ci)TrLλ
(g).

Comparing this to Proposition 5.21.1 and using linear independence

of columns of the character table of Sn, we obtain

Theorem 5.22.1 (Weyl character formula). The representation Lλ

is zero if and only if N < p, where p is the number of parts of λ. If

N ≥ p, the character of Lλ is the Schur polynomial Sλ(x). Therefore,

the dimension of Lλ is given by the formula

dimLλ =
∏

1≤i<j≤N

λi − λj + j − i

j − i
.
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This shows that irreducible representations ofGL(V ) which occur

in V
N

n for some n are labeled by Young diagrams with any number

of squares but at most N = dimV rows.

Proposition 5.22.2. The representation Lλ+1N (where 1N = (1, 1,

. . . , 1) ∈ ZN) is isomorphic to Lλ ⊗ ∧NV .

Proof. Indeed, Lλ ⊗∧NV ⊂ V
N

n ⊗∧NV ⊂ V
N

n+N , and the only

component of V
N

n+N that has the same character as Lλ ⊗ ∧NV is

Lλ+1N . This implies the statement. �

5.23. Algebraic representations of GL(V )

Definition 5.23.1. We say that a finite dimensional representation

Y of GL(V ) is algebraic (or rational, or polynomial) if its matrix

elements are polynomial functions of the entries of g, g−1, g ∈ GL(V )

(i.e., belong to k[gij ][1/ det(g)]).

For example, V
N

n and hence all Lλ are algebraic. Also define

Lλ−r·1N := Lλ ⊗ (∧NV ∗)
N

r (this definition makes sense by Propo-

sition 5.22.2). This is also an algebraic representation. Thus we

have attached a unique irreducible algebraic representation Lλ of

GL(V ) = GLN to any sequence (λ1, . . . , λN ) of integers (not nec-

essarily positive) such that λ1 ≥ · · · ≥ λN . This sequence is called

the highest weight of Lλ.

Theorem 5.23.2. (i) Every finite dimensional algebraic representa-

tion of GL(V ) is completely reducible, and decomposes into summands

of the form Lλ (which are pairwise nonisomorphic).

(ii) (The Peter-Weyl theorem for GL(V )) Let R be the alge-

bra of polynomial functions on GL(V ). Then as a representation

of GL(V ) × GL(V ) (with action (ρ(g, h)φ)(x) = φ(g−1xh), g, h, x ∈
GL(V ), φ ∈ R), R decomposes as

R =
⊕

λ

L∗
λ ⊗ Lλ,

where the summation runs over all λ.

Proof. (i) Let Y be an algebraic representation of GL(V ). We have

an embedding ξ : Y → Y ⊗R given by (u, ξ(v))(g) := u(gv), u ∈ Y ∗.
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It is easy to see that ξ is a homomorphism of representations (where

the action of GL(V ) on the first component of Y ⊗R is trivial). Thus,

it suffices to prove the theorem for a subrepresentation Y ⊂ Rm. Now,

every element of R is a polynomial of gij times a nonpositive power of

det(g). Thus, R is a quotient of a direct sum of representations of the

form Sr(V ⊗V ∗)⊗(∧NV ∗)
N

s. So we may assume that Y is contained

in a quotient of a (finite) direct sum of such representations. As V ∗ =

∧N−1V ⊗∧NV ∗, Y is contained in a direct sum of representations of

the form V
N

n ⊗ (∧NV ∗)
N

s, and we are done.

(ii) Let Y be an algebraic representation of GL(V ), and let us

regard R as a representation of GL(V ) via (ρ(h)φ)(x) = φ(xh).

Then HomGL(V )(Y,R) is the space of polynomial functions f on

GL(V ) with values in Y ∗ which are GL(V )-equivariant (i.e., such

that f(gx) = gf(x)). This space is naturally identified with Y ∗. Tak-

ing into account the proof of (i), we deduce that R has the required

decomposition, which is compatible with the second action of GL(V )

(by left multiplications). This implies the statement. �

Remark 5.23.3. Since the Lie algebra sl(V ) of traceless operators

on V is a quotient of gl(V ) by scalars, the above results extend in a

straightforward manner to representations of the Lie algebra sl(V ).

Similarly, the results for GL(V ) extend to the case of the group

SL(V ) of operators with determinant 1. The only difference is that

in this case the representations Lλ and Lλ+1m are isomorphic, so

the irreducible representations are parametrized by integer sequences

λ1 ≥ · · · ≥ λN up to a simultaneous shift by a constant.

In particular, one can show that any finite dimensional represen-

tation of sl(V ) is completely reducible and any irreducible represen-

tation is of the form Lλ (we will not do this here). For dimV = 2 one

then recovers the representation theory of sl(2) studied in Problem

2.15.1.

5.24. Problems

Problem 5.24.1. (a) Show that the Sn-representation

V ′
λ := C[Sn]bλaλ

is isomorphic to Vλ.
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Hint: Define Sn-homomorphisms f : Vλ → V ′
λ and g : V ′

λ → Vλ

by the formulas f(x) = xaλ and g(y) = ybλ, and show that they are

inverse to each other up to a nonzero scalar.

(b) Let φ : C[Sn] → C[Sn] be the automorphism sending s to

(−1)ss for any permutation s. Show that φ maps any representation

V of Sn to V ⊗ C−. Show also that φ(C[Sn]a) = C[Sn]φ(a), for

a ∈ C[Sn]. Use (a) to deduce that Vλ ⊗ C− = Vλ∗ , where λ∗ is the

conjugate partition to λ, obtained by reflecting the Young diagram

of λ.

Problem 5.24.2. Let Rk,N be the algebra of polynomials on the

space of k-tuples of complex N × N matrices X1, . . . , Xk, invariant

under simultaneous conjugation. An example of an element of Rk,N

is the function Tw := Tr(w(X1, . . . , Xk)), where w is any finite word

on a k-letter alphabet. Show that Rk,N is generated by the elements

Tw.

Hint: Consider invariant functions that are of degree di in each

Xi, and realize this space as a tensor product
⊗

i S
di(V ⊗V ∗). Then

embed this tensor product into (V ⊗ V ∗)
N

N = End(V )
N

n, and use

the Schur-Weyl duality to get the result.

5.25. Representations of GL2(Fq)

5.25.1. Conjugacy classes in GL2(Fq). Let Fq be a finite field of

size q of characteristic other than 2 and G = GL2(Fq). Then

|G| = (q2 − 1)(q2 − q),

since the first column of an invertible 2×2 matrix must be nonzero and

the second column may not be a multiple of the first one. Factoring,

|GL2(Fq)| = q(q + 1)(q − 1)2.

The goal of this section is to describe the irreducible representations

of G.
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To begin, let us find the conjugacy classes in GL2(Fq).

Representatives

Number of ele-

ments in a conju-

gacy class
Number of classes

Scalar
(

x 0
0 x

) 1 (this is a central

element)

q−1 (one for ev-

ery nonzero x)

Parabolic
(

x 1
0 x

)
q2 − 1 (elements

that commute with

this one are of the

form
(

t u
0 t

)
, t 6= 0)

q−1 (one for ev-

ery nonzero x)

Hyperbolic(
x 0
0 y

)
, y 6= x

q2 + q (elements

that commute with

this one are of the

form
(

t 0
0 u

)
, t, u 6=

0)

1
2 (q − 1)(q − 2)

(x, y 6= 0 and

x 6= y)

Elliptic
( x εy

y x

)
, x ∈

Fq, y ∈ F×
q , ε ∈

Fq \F2
q (characteris-

tic polynomial over

Fq is irreducible)

q2 − q (the reason

will be described

below)

1
2q(q−1) (matri-

ces with y and

−y are conju-

gate)

Let us explain the structure of the conjugacy class of elliptic

matrices in more detail. These are the matrices whose character-

istic polynomial is irreducible over Fq and which therefore don’t have

eigenvalues in Fq . Let A be such a matrix, and consider a quadratic

extension of Fq , namely, Fq(
√
ε), where ε ∈ Fq \ F2

q . Over this field,

A will have eigenvalues

α = α1 +
√
εα2

and

α = α1 −
√
εα2,

with corresponding eigenvectors

v, v (Av = αv, Av = αv).
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Choose a basis

{e1 = v + v, e2 =
√
ε(v − v)}.

In this basis, the matrix A will have the form
(
α1 εα2

α2 α1

)
,

justifying the description of representative elements of this conjugacy

class.

In the basis {v, v}, matrices that commute with A will have the

form (
λ 0

0 λ

)
,

for all

λ ∈ F×
q2 ,

so the number of such matrices is q2 − 1.

5.25.2. 1-dimensional representations. First, we describe the 1-

dimensional representations of G.

Proposition 5.25.1. [G,G] = SL2(Fq).

Proof. Clearly,

det(xyx−1y−1) = 1,

so

[G,G] ⊆ SL2(Fq).

To show the converse, it suffices to show that the matrices
(

1 1

0 1

)
,

(
a 0

0 a−1

)
,

(
1 0

1 1

)

are commutators (as such matrices generate SL2(Fq)). Clearly, by

using transposition, it suffices to show that only the first two matrices

are commutators. But it is easy to see that the matrix
(

1 1

0 1

)

is the commutator of the matrices

A =

(
1 1/2

0 1

)
, B =

(
1 0

0 −1

)
,
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while the matrix (
a 0

0 a−1

)

is the commutator of the matrices

A =

(
a 0

0 1

)
, B =

(
0 1

1 0

)
.

This completes the proof. �

Therefore,

G/[G,G] ∼= F×
q via g 7→ det(g).

The 1-dimensional representations of G thus have the form

ρ(g) = ξ
(
det(g)

)
,

where ξ is a homomorphism

ξ : F×
q → C×;

so there are q − 1 such representations, denoted Cξ.

5.25.3. Principal series representations. Let

B ⊂ G, B = {
(
∗ ∗
0 ∗

)
}

(the set of upper triangular matrices); then

|B| = (q − 1)2q,

[B,B] = U = {
(

1 ∗
0 1

)
},

and

B/[B,B] ∼= F×
q × F×

q

(the isomorphism maps an element of B to its two diagonal entries).

Let

λ : B → C×

be a homomorphism defined by

λ

(
a b

0 c

)
= λ1(a)λ2(c)
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for some pair of homomorphisms λ1, λ2 : F×
q → C×. Define

Vλ1,λ2 = IndG
B Cλ,

where Cλ is the 1-dimensional representation of B in which B acts

by λ. We have

dim(Vλ1,λ2) =
|G|
|B| = q + 1.

Theorem 5.25.2. (1) λ1 6= λ2 ⇒ Vλ1,λ2 is irreducible.

(2) λ1 = λ2 = µ ⇒ Vλ1,λ2 = Cµ ⊕ Wµ, where Wµ is a q-

dimensional irreducible representation of G.

(3) Wµ
∼= Wν if and only if µ = ν; Vλ1,λ2

∼= Vλ′
1,λ′

2
if and only if

{λ1, λ2} = {λ′

1, λ
′

2} (in the second case, λ1 6= λ2, λ
′

1 6= λ
′

2).

Proof. From the Frobenius formula, we have

TrVλ1,λ2
(g) =

1

|B|
∑

a∈G, aga−1∈B

λ(aga−1).

If

g =

(
x 0

0 x

)
,

the expression on the right evaluates to

λ(g)
|G|
|B| = λ1(x)λ2(x)

(
q + 1

)
.

If

g =

(
x 1

0 x

)
,

the expression evaluates to

λ(g) · 1,

since here aga−1 ∈ B ⇒ a ∈ B.

If

g =

(
x 0

0 y

)
,

the expression evaluates to
(
λ1(x)λ2(y) + λ1(y)λ2(x)

)
· 1,
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since here aga−1 ∈ B implies that a ∈ B or a is an element of B

multiplied by the transposition matrix.

If

g =

(
x εy

y x

)
, x 6= y,

the expression on the right evaluates to 0 because matrices of this

type do not have eigenvalues over Fq (and thus cannot be conjugated

into B). From the definition, λi(x) for i = 1, 2 is a root of unity, so

|G|〈χVλ1,λ2
, χVλ1,λ2

〉 = (q + 1)2(q − 1) + (q2 − 1)(q − 1)

+ 2(q2 + q)
(q − 1)(q − 2)

2
+ (q2 + q)

∑

x6=y

λ1(x)λ2(y)λ1(y)λ2(x).

The last two summands come from the expansion

|a+ b|2 = |a|2 + |b|2 + ab+ ab.

If

λ1 = λ2 = µ,

the last term is equal to

(q2 + q)(q − 2)(q − 1),

and the total in this case is

(q+1)(q−1)[(q+1)+(q−1)+2q(q−2)] = (q+1)(q−1)2q(q−1) = 2|G|,
so

〈χVλ1,λ2
, χVλ1,λ2

〉 = 2.

Clearly,

Cµ ⊆ IndG
B Cµ,µ,

since

HomG(Cµ, IndG
B Cµ,µ) = HomB(Cµ,Cµ) = C (Theorem 5.10.1).

Therefore, IndG
B Cµ,µ = Cµ⊕Wµ; Wµ is irreducible; and the character

ofWµ is different for distinct values of µ, proving thatWµ are distinct.

If λ1 6= λ2, let z = xy−1. Then the last term of the summation is

(q2+q)
∑

x6=y

λ1(z)λ2(z) = (q2+q)
∑

x;z 6=1

λ1

λ2
(z) = (q2+q)(q−1)

∑

z 6=1

λ1

λ2
(z).
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Since ∑

z∈F
×
q

λ1

λ2
(z) = 0,

because the sum of all roots of unity of a given order m > 1 is zero,

the last term becomes

−(q2 + q)(q − 1)
λ1

λ2
(1) = −(q2 + q)(q − 1).

The difference between this case and the case of λ1 = λ2 is equal to

−(q2 + q)[(q − 2)(q − 1) + (q − 1)] = |G|,

so this is an irreducible representation by Lemma 5.7.2.

To prove the third assertion of the theorem, we look at the char-

acters on hyperbolic elements and note that the function

λ1(x)λ2(y) + λ1(y)λ2(x)

determines λ1, λ2 up to permutation. �

5.25.4. Complementary series representations. Let Fq2 ⊃ Fq

be a quadratic extension Fq(
√
ε), ε ∈ Fq \ F2

q . We regard this as a

2-dimensional vector space over Fq ; then G is the group of linear

transformations of Fq2 over Fq . Let K ⊂ G be the cyclic group of

multiplications by elements of F×
q2 ,

K = {
(
x εy

y x

)
}, |K| = q2 − 1.

For ν : K → C× a homomorphism, let

Yν = IndG
K Cν .

This representation, of course, is reducible. Let us compute its char-

acter, using the Frobenius formula. We get

χ

(
x 0

0 x

)
= q(q − 1)ν(x),

χ(A) = 0 for A parabolic or hyperbolic,

χ

(
x εy

y x

)
= ν

(
x εy

y x

)
+ ν

(
x εy

y x

)q

.
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The last assertion holds because if we regard the matrix as an element

of Fq2 , conjugation is an automorphism of Fq2 over Fq , but the only

nontrivial automorphism of Fq2 over Fq is the qth power map.

We thus have

IndG
K Cνq ∼= IndG

K Cν

because they have the same character. Therefore, for νq 6= ν we get
1
2q(q − 1) representations.

Next, we look at the tensor product

W1 ⊗ Vα,1,

where 1 is the trivial character and W1 is defined as in the previous

section. The character of this representation is

χ

(
x 0

0 x

)
= q(q + 1)α(x),

χ(A) = 0 for A parabolic or elliptic,

χ

(
x 0

0 y

)
= α(x) + α(y).

Thus the “virtual representation”

W1 ⊗ Vα,1 − Vα,1 − IndG
K Cν ,

where α is the restriction of ν to scalars, has the character

χ

(
x 0

0 x

)
= (q − 1)α(x),

χ

(
x 1

0 x

)
= −α(x),

χ

(
x 0

0 y

)
= 0,

χ

(
x εy

y x

)
= −ν

(
x εy

y x

)
− νq

(
x εy

y x

)
.

In all that follows, we will have νq 6= ν.

The following two lemmas will establish that the inner product

of this character with itself is equal to 1 and that its value at 1 is
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positive. As we know from Lemma 5.7.2, these two properties imply

that it is the character of an irreducible representation of G.

Lemma 5.25.3. Let χ be the character of the virtual representation

defined above. Then

〈χ, χ〉 = 1

and

χ(1) > 0.

Proof.

χ(1) = q(q + 1) − (q + 1) − q(q − 1) = q − 1 > 0.

We now compute the inner product 〈χ, χ〉. Since α is a root of unity,

this will be equal to

1

(q − 1)2q(q + 1)

[
(q − 1) · (q − 1)2 · 1 + (q − 1) · 1 · (q2 − 1)

+
q(q − 1)

2
·

∑

ζ elliptic

(ν(ζ) + νq(ζ))(ν(ζ) + νq(ζ))
]
.

Because ν is also a root of unity, the last term of the expression

evaluates to ∑

ζ elliptic

(2 + νq−1(ζ) + ν1−q(ζ)).

Let’s evaluate the last summand.

Since F×
q2 is cyclic and νq 6= ν,

∑

ζ∈F
×

q2

νq−1(ζ) =
∑

ζ∈F
×

q2

ν1−q(ζ) = 0.

Therefore,
∑

ζ elliptic

(νq−1(ζ) + ν1−q(ζ)) = −
∑

ζ∈F
×
q

(νq−1(ζ) + ν1−q(ζ)) = −2(q− 1)

since F×
q is cyclic of order q − 1. Therefore,

〈χ, χ〉 =
1

(q − 1)2q(q + 1)

(
(q − 1) · (q − 1)2 · 1 + (q − 1) · 1 · (q2 − 1)

+
q(q − 1)

2
· (2(q2 − q) − 2(q − 1))

)
= 1.

�
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We have now shown that for any ν with νq 6= ν the representation

Yν with the same character as

W1 ⊗ Vα,1 − Vα,1 − IndG
K Cν

exists and is irreducible. These characters are distinct for distinct

pairs (α, ν) (up to switching ν → νq), so there are q(q−1)
2 such

representations, each of dimension q − 1.

We have thus found q − 1 1-dimensional representations of G,
q(q−1)

2 principal series representations, and q(q−1)
2 complementary se-

ries representations, for a total of q2 − 1 representations, i.e., the

number of conjugacy classes in G. This implies that we have in fact

found all irreducible representations of GL2(Fq).

5.26. Artin’s theorem

Theorem 5.26.1. Let X be a conjugation-invariant system of sub-

groups of a finite group G. Then two conditions are equivalent:

(i) Any element of G belongs to a subgroup H ∈ X.

(ii) The character of any irreducible representation of G belongs

to the Q-span of characters of induced representations IndG
H V , where

H ∈ X and V is an irreducible representation of H.

Remark 5.26.2. Statement (ii) of Theorem 5.26.1 is equivalent to

the same statement with Q-span replaced by C-span. Indeed, consider

the matrix whose columns consist of the coefficients of the decompo-

sition of IndG
H V (for various H,V ) with respect to the irreducible

representations of G. Then both statements are equivalent to the

condition that the rows of this matrix are linearly independent.

Proof. Proof that (ii) implies (i). Assume that g ∈ G does not

belong to any of the subgroups H ∈ X . Then, since X is conjugation

invariant, it cannot be conjugated into such a subgroup. Hence by

the Frobenius formula, χIndG
H

(V )(g) = 0 for all H ∈ X and V . So

by (ii), for any irreducible representation W of G, χW (g) = 0. But

irreducible characters span the space of class functions, so any class

function vanishes on g, which is a contradiction.

Proof that (i) implies (ii). Let U be a virtual representation of G

over C (i.e., a linear combination of irreducible representations with
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nonzero integer coefficients) such that (χU , χIndG
H

V ) = 0 for all H,V .

So by Frobenius reciprocity, (χU |H , χV ) = 0. This means that χU

vanishes on H for any H ∈ X . Hence by (i), χU is identically zero.

This implies (ii) (because of Remark 5.26.2). �

Corollary 5.26.3. Any irreducible character of a finite group is a

rational linear combination of induced characters from its cyclic sub-

groups.

5.27. Representations of semidirect products

Let G,A be groups and let φ : G → Aut(A) be a homomorphism.

For a ∈ A, denote φ(g)a by g(a). The semidirect product G n A

is defined to be the product A×G with multiplication law

(a1, g1)(a2, g2) = (a1g1(a2), g1g2).

Clearly, G and A are subgroups of GnA in a natural way.

We would like to study irreducible complex representations of

GnA. For simplicity, let us do it when A is abelian.

In this case, irreducible representations of A are 1-dimensional

and form the character group A∨, which carries an action of G. Let

O be an orbit of this action, x ∈ O a chosen element, and Gx the

stabilizer of x in G. Let U be an irreducible representation of Gx.

Then we define a representation V(O,U) of GnA as follows.

As a representation of G, we set

V(O,x,U) = IndG
Gx
U = {f : G → U |f(hg) = hf(g), h ∈ Gx}.

Next, we introduce an additional action ofA on this space by (af)(g) =

x(g(a))f(g). Then it is easy to check that these two actions combine

into an action of G n A. Also, it is clear that this representation

does not really depend on the choice of x, in the following sense. Let

x, y ∈ O and g ∈ G be such that gx = y, and let g(U) be the rep-

resentation of Gy obtained from the representation U of Gx by the

action of g. Then V(O,x,U) is (naturally) isomorphic to V(O,y,g(U)).

Thus we will denote V(O,x,U) by V(O,U) (remembering, however, that

x has been fixed).

Theorem 5.27.1. (i) The representations V(O,U) are irreducible.
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(ii) They are pairwise nonisomorphic.

(iii) They form a complete set of irreducible representations of

GnA.

(iv) The character of V = V(O,U) is given by the Frobenius-type

formula

χV (a, g) =
1

|Gx|
∑

h∈G:hgh−1∈Gx

x(h(a))χU (hgh−1).

Proof. (i) Let us decompose V = V(O,U) as an A-module. Then we

get

V =
⊕

y∈O

Vy ,

where Vy = {v ∈ V(O,U)|av = (y, a)v, a ∈ A}. (Equivalently, Vy =

{v ∈ V(O,U)|v(g) = 0 unless gy = x}.) So if W ⊂ V is a subrepresen-

tation, then W =
⊕

y∈O Wy, where Wy ⊂ Vy. Now, Vy is a represen-

tation of Gy, which goes to U under any isomorphism Gy → Gx de-

termined by g ∈ G mapping x to y. Hence, Vy is irreducible over Gy,

so Wy = 0 or Wy = Vy for each y. Also, if hy = z, then hWy = Wz,

so either Wy = 0 for all y or Wy = Vy for all y, as desired.

(ii) The orbit O is determined by the A-module structure of V ,

and the representation U is determined by the structure of Vx as a

Gx-module.

(iii) We have
∑

U,O

dimV 2
(U,O) =

∑

U,O

|O|2(dimU)2 =

∑

O

|O|2|Gx| =
∑

O

|O||G/Gx||Gx| = |G|
∑

O

|O| = |G||A∨| = |GnA|.

(iv) The proof is essentially the same as that of the Frobenius

formula. �

Exercise 5.27.2. Redo Problems 4.12.1(a), 4.12.2, and 4.12.6 using

Theorem 5.27.1.

Exercise 5.27.3. Deduce parts (i)—(iii) of Theorem 5.27.1 from part

(iv).





Chapter 6

Quiver representations

6.1. Problems

Problem 6.1.1. Field embeddings. Recall that k(y1, . . . , ym) de-

notes the field of rational functions of y1, . . . , ym over a field k. Let

f : k[x1, . . . , xn] → k(y1, . . . , ym) be an injective k-algebra homomor-

phism. Show that m ≥ n. (Look at the growth of dimensions of the

spaces WN of polynomials of degree N in xi and their images under

f as N → ∞.) Deduce that if f : k(x1, . . . , xn) → k(y1, . . . , ym) is a

k-linear field embedding, then m ≥ n.

Problem 6.1.2. Some algebraic geometry. Let k be an alge-

braically closed field, and let G = GLn(k). Let V be an algebraic

representation of G. Show that if G has finitely many orbits on V ,

then dim(V ) ≤ n2. Namely:

(a) Let x1, . . . , xN be linear coordinates on V . Let us say that

a subset X of V is Zariski dense if any polynomial f(x1, . . . , xN )

which vanishes on X is zero (coefficientwise). Show that if G has

finitely many orbits on V , then G has at least one Zariski dense orbit

on V .

(b) Use (a) to construct a field embedding k(x1, . . . , xN ) → k(gpq).

Then use Problem 6.1.1.

(c) Generalize the result of this problem to the case when G =

GLn1(k) × · · · ×GLnm
(k).

145
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Problem 6.1.3. Dynkin diagrams. Let Γ be a graph, i.e., a finite

set of points (vertices) connected with a certain number of edges (we

allow multiple edges). We assume that Γ is connected (any vertex can

be connected to any other by a path of edges) and has no self-loops

(edges from a vertex to itself). Suppose the vertices of Γ are labeled

by integers 1, . . . , N . Then one can assign to Γ an N × N matrix

RΓ = (rij), where rij is the number of edges connecting vertices i and

j. This matrix is obviously symmetric and is called the adjacency

matrix. Define the matrix AΓ = 2I − RΓ, where I is the identity

matrix.

Definition 6.1.4. Γ is said to be a Dynkin diagram if the quadratic

form on RN with matrix AΓ is positive definite.

Dynkin diagrams appear in many areas of mathematics (singu-

larity theory, Lie algebras, representation theory, algebraic geometry,

mathematical physics, etc.). In this problem you will get a complete

classification of Dynkin diagrams. Namely, you will prove

Theorem. Γ is a Dynkin diagram if and only if it is one of the

following graphs:

• AN :

• DN :

• E6
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• E7

• E8

(a) Compute the determinant of AΓ where Γ = AN , DN . (Use the

row decomposition rule, and write down a recursive equation for it.)

Deduce by Sylvester criterion that AN , DN are Dynkin diagrams.1

(b) Compute the determinants of AΓ for E6, E7, E8 (use row de-

composition and reduce to (a)). Show they are Dynkin diagrams.

(c) Show that if Γ is a Dynkin diagram, it cannot have cycles.

For this, show that det(AΓ) = 0 for a graph Γ below2:

1 1 1

1

1

(Show that the sum of rows is 0.) Thus Γ has to be a tree.

(d) Show that if Γ is a Dynkin diagram, it cannot have vertices

with four or more incoming edges and that Γ can have no more than

one vertex with three incoming edges. For this, show that det(AΓ) = 0

for a graph Γ below:

1

1

1

1

2 2

(e) Show that det(AΓ) = 0 for all graphs Γ below:

1The Sylvester criterion says that a symmetric bilinear form ( , ) on R
N is positive

definite if and only if for any k ≤ N , det1≤i,j≤k(ei, ej) > 0.
2Please ignore the numerical labels; they will be relevant for Problem 6.1.6 below.



148 6. Quiver representations

1 12 3 2

2

1

4 3 2 1

2

1 2 3

1 2 3 4 5 6 4 2

3

(f) Deduce from (a)—(e) the classification theorem for Dynkin

diagrams.

(g) A (simply laced) affine Dynkin diagram is a connected

graph without self-loops such that the quadratic form defined by AΓ

is positive semidefinite. Classify affine Dynkin diagrams. (Show that

they are exactly the forbidden diagrams from (c)—(e).)

Problem 6.1.5. Let Q be a quiver with a set of vertices D. We

say that Q is of finite type if it has finitely many indecomposable

representations. Let bij be the number of edges from i to j in Q

(i, j ∈ D).

We have the following remarkable theorem, proved by P. Gabriel

in early 1970s.

Theorem. A connected quiver Q is of finite type if and only

if the corresponding unoriented graph (i.e., with directions of arrows

forgotten) is a Dynkin diagram (see Theorem 6.5.2 below).

In this problem you will prove the “only if” direction of this

theorem (i.e., why other quivers are NOT of finite type).
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(a) Show that if Q is of finite type, then for any rational numbers

xi ≥ 0 which are not simultaneously zero, one has q(x1, . . . , xN ) > 0,

where

q(x1, . . . , xN ) :=
∑

i∈D

x2
i −

1

2

∑

i,j∈D

bijxixj .

Hint: It suffices to check the result for integers: xi = ni. First

assume that ni ≥ 0, and consider the space W of representations V of

Q such that dimVi = ni. Show that the group
∏

i GLni
(k) acts with

finitely many orbits on W ⊕ k, and use Problem 6.1.2 to derive the

inequality. Then deduce the result in the case when ni are arbitrary

integers.

(b) Deduce that q is a positive definite quadratic form.

Hint: Use the fact that Q is dense in R.

(c) Show that a quiver of finite type can have no self-loops. Then,

using Problem 6.1.3, deduce the theorem.

Problem 6.1.6. Let G 6= {1} be a finite subgroup of SU(2) and let V

be the 2-dimensional representation of G coming from its embedding

into SU(2). Let Vi, i ∈ I , be all the irreducible representations of G.

Let rij be the multiplicity of Vi in V ⊗ Vj .

(a) Show that rij = rji.

(b) The McKay graph of G, M(G), is the graph whose vertices

are labeled by i ∈ I , and i is connected to j by rij edges. Show that

M(G) is connected. (Use Problem 4.12.10.)

(c) Show that M(G) is an affine Dynkin diagram (one of the

“forbidden” graphs in Problem 6.1.3). For this, show that the matrix

aij = 2δij − rij is positive semidefinite but not definite, and use

Problem 6.1.3.

Hint: Let f =
∑
xiχVi

, where χVi
are the characters of Vi. Show

directly that ((2 − χV )f, f) ≥ 0. When is it equal to 0? Next, show

that M(G) has no self-loops by using the fact that if G is not cyclic,

then G contains the central element − Id ∈ SU(2).

(d) Which groups from Problem 4.12.8 correspond to which dia-

grams?
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(e) Using the McKay graph, find the dimensions of irreducible

representations of all finite G ⊂ SU(2) (namely, show that they are

the numbers labeling the vertices of the affine Dynkin diagrams on

our pictures). Compare with the results on subgroups of SO(3) we

obtained in Problem 4.12.8.

6.2. Indecomposable representations of the

quivers A1, A2, A3

We have seen that a central question about representations of quivers

is whether a certain connected quiver has only finitely many indecom-

posable representations. In the previous subsection it is shown that

only those quivers whose underlying undirected graph is a Dynkin

diagram may have this property. To see if they actually do have this

property, we first explicitly decompose representations of certain easy

quivers.

Remark 6.2.1. By an object of the type 1 //0 we mean a map

from a 1-dimensional vector space to the zero space. Similarly, an

object of the type 0 //1 is a map from the zero space into a 1-

dimensional space. The object 1 //1 means an isomorphism from

a 1-dimensional to another 1-dimensional space. The numbers in such

diagrams always mean the dimension of the attached spaces and the

maps are the canonical maps (unless specified otherwise).

Example 6.2.2 (A1). The quiver A1 consists of a single vertex and

has no edges. Since a representation of this quiver is just a single

vector space, the only indecomposable representation is the ground

field (= a 1-dimensional space).

Example 6.2.3 (A2). The quiver A2 consists of two vertices con-

nected by a single edge:

• // •
A representation of this quiver consists of two vector spaces V,W and

an operator A : V →W :

•
V

A // •
W
.
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To decompose this representation, we first let V ′ be a complement to

the kernel of A in V and let W ′ be a complement to the image of A

in W . Then we can decompose the representation as follows:

•
V

A // •
W

= •
kerA

0 // •
0

⊕ •
V ′

//
A
∼ •

ImA
⊕ •

0

0 // •
W ′.

The first summand is a multiple of the object 1 //0 , the second

a multiple of 1 //1 , and the third of 0 //1 . We see that the

quiver A2 has three indecomposable representations, namely

1 //0 , 1 //1 , and 0 //1 .

Note that this statement is just the Gauss elimination theorem

for matrices.

Example 6.2.4 (A3). The quiver A3 consists of three vertices and

two connections between them. So we have to choose between two

possible orientations:

• //• //• or • //• •oo .

(1) We first look at the orientation

• //• //• .

Then a representation of this quiver looks like

•
V

A //•
W

B //•
Y
.

As in Example 6.2.3 we first split away

•
kerA

0 //•
0

0 //•
0
.

This object is a multiple of 1 //0 //0 . Next, let Y ′ be a com-

plement of ImB in Y . Then we can also split away

•
0

0 //•
0

0 //•
Y ′

which is a multiple of the object 0 //0 //1 . This results in a

situation where the map A is injective and the map B is surjective
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(we rename the spaces to simplify notation):

•
V

� � A //•
W

B // //•
Y
.

Next, let X = ker(B ◦A) and let X ′ be a complement of X in V . Let

W ′ be a complement of A(X) in W such that A(X ′) ⊂W ′. Then we

get

•
V

� � A //•
W

B // //•
Y

= •
X

A //•
A(X)

B //•
0

⊕ •
X ′

� � A //•
W ′

B // //•
Y
.

The first of these summands is a multiple of 1 //∼ 1 //0 . Look-

ing at the second summand, we now have a situation where A is in-

jective, B is surjective, and furthermore ker(B ◦A) = 0. To simplify

notation, we redefine

V = X ′, W = W ′.

Next we let X = Im(B ◦ A) and let X ′ be a complement of X in Y .

Furthermore, let W ′ = B−1(X ′). Then W ′ is a complement of A(V )

in W . This yields the decomposition

•
V

� � A //•
W

B // //•
Y

= •
V

∼A //•
A(V )

∼B //•
X

⊕ •
0

//•
W ′

B // //•
X ′.

Here, the first summand is a multiple of 1 //∼ 1 //∼ 1 . By

splitting away the kernel of B, the second summand can be decom-

posed into multiples of 0 //1 //∼ 1 and 0 //1 //0 . So,

on the whole, this quiver has six indecomposable representations:

1 //0 //0 , 0 //0 //1 , 1 //∼ 1 //0 ,

1 //∼ 1 //∼ 1 , 0 //1 //∼ 1 , 0 //1 //0 .

(2) Now we look at the orientation

• //• •oo .
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Very similarly to the other orientation, we can split away objects of

the type

1 //0 0oo , 0 //0 1oo ,

which results in a situation where both A and B are injective:

•
V

� � A //•
W

oo B
? _•
Y
.

By identifying V and Y as subspaces ofW , this leads to the problem of

classifying pairs of subspaces of a given space W up to isomorphism

(the pair of subspaces problem). To do so, we first choose a

complement W ′ of V ∩ Y in W and set V ′ = W ′ ∩ V , Y ′ = W ′ ∩ Y .

Then we can decompose the representation as follows:

•
V

� � //•
W

oo ? _•
Y

= •
V ′

� � //•
W ′

oo ? _•
Y ′ ⊕ •

V ∩ Y
//∼ •

V ∩ Y
•oo ∼

V ∩ Y
.

The second summand is a multiple of the object 1 //∼ 1 1oo ∼ . We

go on decomposing the first summand. Again, to simplify notation,

we let

V = V ′, W = W ′, Y = Y ′.

We can now assume that V ∩ Y = 0. Next, let W ′ be a complement

of V ⊕ Y in W . Then we get

•
V

� � //•
W

oo ? _•
Y

= •
V

� � //•
V ⊕ Y

oo ? _•
Y

⊕ •
0

//•
W ′ •

0
oo .

The second of these summands is a multiple of the indecomposable

object 0 //1 0oo . The first summand can be further decom-

posed as follows:

•
V

� � //•
V ⊕ Y

oo ? _•
Y

= •
V

//∼ •
V

•
0

oo ⊕ •
0

//•
Y

•
Y

oo ∼ .

These summands are multiples of

1 //1 0oo , 0 //1 1oo
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So — as in the other orientation — we get six indecomposable repre-

sentations of A3:

1 //0 0oo , 0 //0 1oo , 1
∼ //1 1

∼oo ,

0 //1 0oo , 1 //1 0oo , 0 //1 1oo .

6.3. Indecomposable representations of the

quiver D4

As the last — slightly more complicated — example we consider the

quiver D4.

Example 6.3.1 (D4). We restrict ourselves to the orientation

• // • •oo

•

OO .

So a representation of this quiver looks like

•
V1

A1 // •V •
V3

A3oo

•
V2

A2

OO .

The first thing we can do is — as usual — split away the kernels of the

maps A1, A2, A3. More precisely, we split away the representations

•
kerA1

0 // •0 •
0

oo

•
0

OO ,

•
0

// •
0

•
0

oo

•
kerA2

0

OO ,
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•
0

// •
0

•
kerA3

0oo

•
0

OO .

These representations are multiples of the indecomposable objects

•
1

0 // •0 •
0

oo

•
0

OO ,

•
0

// •
0

•
0

oo

•
1

0

OO ,

•
0

// •
0

•
1

0oo

•
0

OO .

So we get to a situation where all of the maps A1, A2, A3 are injective:

•
V1

� � A1 // •V •
V3

? _
A3oo

•
V2

� ?

A2

OO .

As in Example 6.2.4, we can then identify the spaces V1, V2, V3 with

subspaces of V . So we get to the triple of subspaces problem of

classifying triples of subspaces of a given space V .
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The next step is to split away a multiple of

•
0

// •
1

•
0

oo

•
0

OO

to reach a situation where

V1 + V2 + V3 = V.

By letting Y = V1 ∩ V2 ∩ V3, choosing a complement V ′ of Y in V , and

setting V ′
i = V ′∩Vi, i = 1, 2, 3, we can decompose this representation

into

•
V ′

1

� � // •V
′

•
V ′

3

? _oo

•
V ′

2

� ?

OO

⊕

•
Y

∼ // •Y • ,
Y

∼oo

•
Y

OO

o

The last summand is a multiple of the indecomposable representation

•
1

∼ // •
1

• .
1

∼oo

•
1

OO

o

So — considering the first summand and renaming the spaces to sim-

plify notation — we are in a situation where

V = V1 + V2 + V3, V1 ∩ V2 ∩ V3 = 0.

As a next step, we let Y = V1 ∩ V2 and we choose a complement V ′

of Y in V such that V3 ⊂ V ′ and set V ′
1 = V ′∩V1, V

′
2 = V ′∩V2. This
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yields the decomposition

•
V1

� � // •V •
V3

? _oo

•
V2

� ?

OO

=

•
V ′

1

� � // •V
′

•
V3

? _oo

•
V ′

2

� ?

OO

⊕

•
Y

∼ // •Y • .
0

oo

•
Y

OO

o

The second summand is a multiple of the indecomposable object

•
1

∼ // •
1

• .
0

oo

•
1

OO

o

In the resulting situation we have V1 ∩ V2 = 0. Similarly we can split

away multiples of

•
1

∼ // •1 •
1

∼oo

•
0

OO

and

•
0

// •1 •
1

∼oo

•
1

OO

o

to reach a situation where the spaces V1, V2, V3 do not intersect pair-

wise:

V1 ∩ V2 = V1 ∩ V3 = V2 ∩ V3 = 0.

If V1 * V2⊕V3, we let Y = V1∩(V2 ⊕ V3). We let V ′
1 be a complement

of Y in V1. Since then V ′
1 ∩ (V2 ⊕V3) = 0, we can select a complement
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V ′ of V ′
1 in V which contains V2⊕V3. This gives us the decomposition

•
V1

� � // •V •
V3

? _oo

•
V2

� ?

OO

=

•
V ′

1

∼ // •
V ′

1 •
0

oo

•
0

OO

⊕

•
Y

� � // •V
′

• .
V3

? _oo

•
V2

� ?

OO

The first of these summands is a multiple of

•
1

∼ // •
1

• .
0

oo

•
0

OO

By splitting these away, we get to a situation where V1 ⊆ V2 ⊕ V3.

Similarly, we can split away objects of the type

•
0

// •
1

•
0

oo

•
1

OO

o and

•
0

// •
1

•
1

∼oo

•
0

OO

to reach a situation in which the following conditions hold:

(1) V1 + V2 + V3 = V.

(2) V1 ∩ V2 = 0, V1 ∩ V3 = 0, V2 ∩ V3 = 0.

(3) V1 ⊆ V2 ⊕ V3, V2 ⊆ V1 ⊕ V3, V3 ⊆ V1 ⊕ V2.

But this implies that

V1 ⊕ V2 = V1 ⊕ V3 = V2 ⊕ V3 = V.

So we get

dimV1 = dimV2 = dim V3 = n
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and

dimV = 2n.

Since V3 ⊆ V1 ⊕ V2, we can write every element of V3 in the form

x ∈ V3, x = (x1, x2), x1 ∈ V1, x2 ∈ V2.

We then can define the projections

B1 : V3 → V1, (x1, x2) 7→ x1,

B2 : V3 → V2, (x1, x2) 7→ x2.

Since V3 ∩ V1 = 0 and V3 ∩ V2 = 0, these maps have to be injective

and therefore are isomorphisms. We then define the isomorphism

A = B2 ◦B−1
1 : V1 → V2.

Let e1, . . . , en be a basis for V1. Then we get

V1 = C e1 ⊕ C e2 ⊕ · · · ⊕ C en,

V2 = CAe1 ⊕ CAe2 ⊕ · · · ⊕ CAen,

V3 = C (e1 +Ae1) ⊕ C (e2 +Ae2) ⊕ · · · ⊕ C (en +Aen).

So we can think of V3 as the graph of an isomorphism A : V1 → V2.

From this we obtain the decomposition

•
V1

� � // •V •
V3

? _oo

•
V2

� ?

OO

=

n⊕

j=1

•
C(1, 0)

� � // •C
2

• .
C(1, 1)

? _oo

•
C(0, 1)

� ?

OO

These correspond to the indecomposable object

•
1

// •
2

•
1

oo

•
1

OO .

Thus the quiver D4 with the selected orientation has 12 indecompos-

able objects. If one were to explicitly decompose representations for

the other possible orientations, one would also find 12 indecomposable

objects.
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It appears as if the number of indecomposable representations

does not depend on the orientation of the edges — and indeed Gabriel’s

theorem will generalize this observation.

6.4. Roots

From now on, let Γ be a fixed graph of type An, Dn, E6, E7, E8. We

denote the adjacency matrix of Γ by RΓ.

Definition 6.4.1 (Cartan matrix). We define the Cartan matrix

of Γ as

AΓ = 2 Id−RΓ.

On the lattice Zn (or the space Rn) we then define an inner

product

B(x, y) = xTAΓy

corresponding to the graph Γ.

Lemma 6.4.2. (1) B is positive definite.

(2) B(x, x) takes only even values for x ∈ Zn.

Proof. (1) This follows by definition, since Γ is a Dynkin diagram.

(2) By the definition of the Cartan matrix we get

B(x, x) = xTAΓx =
∑

i,j

xi aij xj = 2
∑

i

x2
i +

∑

i,j, i6=j

xi aij xj

= 2
∑

i

x2
i + 2 ·

∑

i<j

aij xixj ,

which is even. �

Definition 6.4.3. A root with respect to a certain positive inner

product is a shortest (with respect to this inner product) nonzero

vector in Zn.

So for the inner product B, a root is a nonzero vector x ∈ Zn

such that

B(x, x) = 2.

Remark 6.4.4. There can be only finitely many roots, since all of

them have to lie in some ball.
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Definition 6.4.5. We call vectors of the form

αi = (0, . . . ,

ith︷︸︸︷
1 , . . . , 0)

simple roots.

The αi naturally form a basis of the lattice Zn.

Lemma 6.4.6. Let α be a root, α =
∑n

i=1 kiαi. Then either ki ≥ 0

for all i or ki ≤ 0 for all i.

Proof. Assume the contrary, i.e., ki > 0, kj < 0. Without loss of

generality, we can also assume that ks = 0 for all s between i and j.

We can identify the indices i, j with vertices of the graph Γ:

• •
i

ε •i
′

• •
j

• •

•

.

Next, let ε be the edge connecting i with the next vertex towards j

and let i′ be the vertex on the other end of ε. We then let Γ1,Γ2 be

the graphs obtained from Γ by removing ε. Since Γ is supposed to

be a Dynkin diagram — and therefore has no cycles or loops — both

Γ1 and Γ2 will be connected graphs which are not connected to each

other:

• •
i

Γ1

• • •
j

• •

•
Γ2

.

Then we have i ∈ Γ1, j ∈ Γ2. We define

β =
∑

m∈Γ1

kmαm, γ =
∑

m∈Γ2

kmαm.

With this choice we get

α = β + γ.

Since ki > 0, kj < 0, we know that β 6= 0, γ 6= 0 and therefore

B(β, β) ≥ 2, B(γ, γ) ≥ 2.
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Furthermore,

B(β, γ) = −kiki′

since Γ1,Γ2 are only connected at ε. But this has to be a nonnegative

number, since ki > 0 and ki′ ≤ 0. This yields

B(α, α) = B(β + γ, β + γ) = B(β, β)︸ ︷︷ ︸
≥2

+2B(β, γ)︸ ︷︷ ︸
≥0

+B(γ, γ)︸ ︷︷ ︸
≥2

≥ 4.

But this is a contradiction, since α was assumed to be a root. �

Definition 6.4.7. We call a root α =
∑

i kiαi a positive root if all

ki ≥ 0. A root for which ki ≤ 0 for all i is called a negative root.

Remark 6.4.8. Lemma 6.4.6 states that every root is either positive

or negative.

Example 6.4.9. (1) Let Γ be of the type AN−1. Then the lattice

L = ZN−1 can be realized as a subgroup of the lattice ZN by letting

L ⊆ ZN be the subgroup of all vectors (x1, . . . , xN ) such that
∑

i

xi = 0.

The vectors

α1 = (1,−1, 0, . . . , 0),

α2 = (0, 1,−1, 0, . . . , 0),

...

αN−1 = (0, . . . , 0, 1,−1)

naturally form a basis of L. Furthermore, the standard inner product

(x, y) =
∑

xiyi

on ZN restricts to the inner product B given by Γ on L, since it takes

the same values on the basis vectors:

(αi, αi) = 2,

(αi, αj) =

{
−1, i, j are adjacent,

0, otherwise.

This means that vectors of the form

(0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0) = αi + αi+1 + · · · + αj−1
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and

(0, . . . , 0,−1, 0, . . . , 0, 1, 0, . . . , 0) = −(αi + αi+1 + · · · + αj−1)

are the roots of L. Therefore the number of positive roots in L equals

N(N − 1)

2
.

(2) As a fact, we also state the number of positive roots in the

other Dynkin diagrams:

DN : N(N − 1) roots,

E6: 36 roots,

E7: 63 roots,

E8: 120 roots.

Definition 6.4.10. Let α ∈ Zn be a positive root. The reflection sα

is defined by the formula

sα(v) = v −B(v, α)α.

We denote sαi
by si and call these simple reflections.

Remark 6.4.11. As a linear operator of Rn, sα fixes any vector

orthogonal to α and

sα(α) = −α.
Therefore sα is the reflection at the hyperplane orthogonal to α and

in particular fixes B. The si generate a subgroup W ⊆ O(Rn), which

is called the Weyl group of Γ. Since for every w ∈ W , w(αi) is a

root, and since there are only finitely many roots, W has to be finite.

6.5. Gabriel’s theorem

Definition 6.5.1. Let Q be a quiver with any labeling 1, . . . , n of

the vertices. Let V = (V1, . . . , Vn) be a representation of Q. We then

call

d(V ) = (dim V1, . . . , dimVn)

the dimension vector of this representation.

We are now able to formulate Gabriel’s theorem using roots.
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Theorem 6.5.2 (Gabriel’s theorem). Let Q be a quiver of type An,

Dn, E6, E7, E8. Then Q has finitely many indecomposable represen-

tations. Namely, the dimension vector of any indecomposable repre-

sentation is a positive root (with respect to BΓ) and for any positive

root α there is exactly one indecomposable representation with dimen-

sion vector α.

6.6. Reflection functors

Definition 6.6.1. Let Q be any quiver. We call a vertex i ∈ Q a

sink if all edges connected to i point towards i:

// •
i

oo
OO .

We call a vertex i ∈ Q a source if all edges connected to i point away

from i:

•
i

oo //

��

.

Definition 6.6.2. Let Q be any quiver and let i ∈ Q be a sink

(respectively, a source). Then we let Qi be the quiver obtained from

Q by reversing all arrows pointing into (respectively, pointing out of)

i.

We are now able to define the reflection functors (also called

Coxeter functors).

Definition 6.6.3. Let Q be a quiver, and let i ∈ Q be a sink. Let V

be a representation of Q. Then we define the reflection functor

F+
i : RepQ→ RepQi

by the rule

F+
i (V )k = Vk if k 6= i,

F+
i (V )i = ker


ϕ :

⊕

j→i

Vj → Vi


 .
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Also, all maps stay the same except those now pointing out of i; these

are replaced by compositions of the inclusion of kerϕ into
⊕

j→i Vj

with the projections
⊕

j Vj→i → Vi.

Definition 6.6.4. Let Q be a quiver, and let i ∈ Q be a source. Let

V be a representation of Q. Let ψ be the canonical map

ψ : Vi →
⊕

i→j

Vj .

Then we define the reflection functor

F−
i : RepQ→ RepQi

by the rule

F−
i (V )k = Vk if k 6= i,

F−
i (V )i = Coker (ψ) =


⊕

i→j

Vj


 / Imψ.

Again, all maps stay the same except those now pointing into i; these

are replaced by the compositions of the inclusions Vk → ⊕
i→j Vj

with the natural map
⊕

i→j Vj → ⊕
i→j Vj/ Imψ.

Proposition 6.6.5. Let Q be a quiver and V be an indecomposable

representation of Q.

(1) Let i ∈ Q be a sink. Then either dim Vi = 1, dimVj = 0 for

j 6= i or

ϕ :
⊕

j→i

Vj → Vi

is surjective.

(2) Let i ∈ Q be a source. Then either dimVi = 1, dim Vj = 0

for j 6= i or

ψ : Vi →
⊕

i→j

Vj

is injective.

Proof. (1) Choose a complement W of Imϕ. Then we get

V =

•
0

// •W •
0

oo

•
0

OO
⊕ V ′.
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Since V is indecomposable, one of these summands has to be zero. If

the first summand is zero, then ϕ has to be surjective. If the second

summand is zero, then the first one has to be of the desired form,

because else we could write it as a direct sum of several objects of the

type

•
0

// •
1

•
0

oo

•
0

OO

which is impossible since V was supposed to be indecomposable.

(2) This follows similarly by splitting away the kernel of ψ. �

Proposition 6.6.6. Let Q be a quiver, and let V be a representation

of Q.

(1) If

ϕ :
⊕

j→i

Vj → Vi

is surjective, then

F−
i F

+
i V = V.

(2) If

ψ : Vi →
⊕

i→j

Vj

is injective, then

F+
i F

−
i V = V.

Proof. In the following proof, by i → j we will always mean that

i points into j in the original quiver Q. We only establish the first

statement and we also restrict ourselves to showing that the spaces of

V and F−
i F

+
i V are the same. It is enough to do so for the ith space.

Let

ϕ :
⊕

j→i

Vj → Vi

be surjective and let

K = kerϕ.
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When applying F+
i , the space Vi gets replaced by K. Furthermore,

let

ψ : K →
⊕

j→i

Vj .

After applying F−
i , K gets replaced by

K ′ =


⊕

j→i

Vj


 /(Imψ).

But

Imψ = K

and therefore

K ′ =


⊕

j→i

Vj


 /


ker(ϕ :

⊕

j→i

Vj → Vi)


 = Im(ϕ :

⊕

j→i

Vj → Vi)

by the homomorphism theorem. Since ϕ was assumed to be surjective,

we get

K ′ = Vi.

�

Proposition 6.6.7. Let Q be a quiver, and let V be an indecompos-

able representation of Q. Then F+
i V and F−

i V (whenever defined)

are either indecomposable or 0.

Proof. We prove the proposition for F+
i V ; the case F−

i V follows

similarly. By Proposition 6.6.5 it follows that either

ϕ :
⊕

j→i

Vj → Vi

is surjective or dimVi = 1, dimVj = 0, j 6= i. In the last case

F+
i V = 0.

So we can assume that ϕ is surjective. In this case, assume that F+
i V

is decomposable as

F+
i V = X ⊕ Y
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withX,Y 6= 0. But F+
i V is injective at i, since the maps are canonical

projections, whose direct sum is the tautological embedding. There-

fore X and Y also have to be injective at i and hence (by Proposition

6.6.6)

F+
i F

−
i X = X, F+

i F
−
i Y = Y.

In particular

F−
i X 6= 0, F−

i Y 6= 0.

Therefore

V = F−
i F

+
i V = F−

i X ⊕ F−
i Y,

which is a contradiction, since V was assumed to be indecomposable.

So we can infer that

F+
i V

is indecomposable. �

Proposition 6.6.8. Let Q be a quiver and let V be a representation

of Q.

(1) Let i ∈ Q be a sink and let V be surjective at i. Then

d(F+
i V ) = si(d(V )).

(2) Let i ∈ Q be a source and let V be injective at i. Then

d(F−
i V ) = si(d(V )).

Proof. We only prove the first statement; the second one follows

similarly. Let i ∈ Q be a sink and let

ϕ :
⊕

j→i

Vj → Vi

be surjective. Let K = kerϕ. Then

dimK =
∑

j→i

dimVj − dimVi.

Therefore we get
(
d(F+

i V ) − d(V )
)
i
=

∑

j→i

dimVj − 2 dimVi = −B (d(V ), αi)

and (
d(F+

i V ) − d(V )
)
j

= 0, j 6= i.
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This implies

d(F+
i V ) − d(V ) = −B (d(V ), αi)αi

⇐⇒ d(F+
i V ) = d(V ) − B (d(V ), αi)αi = si (d(V )) .

�

6.7. Coxeter elements

Definition 6.7.1. Let Q be a quiver and let Γ be the underlying

graph. Fix any labeling 1, . . . , n of the vertices of Γ. Then the Cox-

eter element c of Q corresponding to this labeling is defined as

c = s1s2 . . . sn.

Lemma 6.7.2. Let

β =
∑

i

kiαi

with ki ≥ 0 for all i but not all ki = 0. Then there is N ∈ N, such

that

cNβ

has at least one strictly negative coefficient.

Proof. The Coxeter element c belongs to a finite group W . So there

is M ∈ N, such that

cM = 1.

We claim that

1 + c+ c2 + · · · + cM−1 = 0

as operators on Rn. This implies what we need, since β has at least

one strictly positive coefficient, so one of the elements

cβ, c2β, . . . , cM−1β

must have at least one strictly negative coefficient. Furthermore, it is

enough to show that 1 is not an eigenvalue for c, since

(1 + c+ c2 + . . .+ cM−1)v = w 6= 0

=⇒ cw = c
(
1 + c+ c2 + · · · + cM−1

)
v

= (c+ c2 + c3 + · · · + cM−1 + 1)v = w.
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Assume the contrary, i.e., 1 is an eigenvalue of c and let v be a corre-

sponding eigenvector:

cv = v =⇒ s1 . . . snv = v

⇐⇒ s2 . . . snv = s1v.

But since si only changes the ith coordinate of v, we get

s1v = v and s2 . . . snv = v.

Repeating the same procedure, we get

siv = v

for all i. But this means

B(v, αi) = 0

for all i, and since B is nondegenerate, we get v = 0. But this is a

contradiction, since v is an eigenvector. �

6.8. Proof of Gabriel’s theorem

Let V be an indecomposable representation of Q. We introduce a

fixed labeling 1, . . . , n on Q, such that i < j if one can reach j from

i. This is possible, since we can assign the highest label to any sink,

remove this sink from the quiver, assign the next highest label to a

sink of the remaining quiver, and so on. This way we create a labeling

of the desired kind.

We now consider the sequence

V (0) = V, V (1) = F+
n V, V

(2) = F+
n−1F

+
n V, . . . .

This sequence is well defined because of the selected labeling: n has to

be a sink of Q, n−1 has to be a sink of Qn (where Qn is obtained from

Q by reversing all the arrows at the vertex r) and so on. Furthermore,

we note that V (n) is a representation of Q again, since every arrow

has been reversed twice (since we applied a reflection functor to every

vertex). This implies that we can define

V (n+1) = F+
n V

(n), . . .

and continue the sequence to infinity.
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Theorem 6.8.1. There exists m ∈ N, such that

d
(
V (m)

)
= αp

for some p.

Proof. If V (i) is surjective at the appropriate vertex k, then

d
(
V (i+1)

)
= d

(
F+

k V
(i)

)
= skd

(
V (i)

)
.

This implies that if V (0), . . . , V (i−1) are surjective at the appropriate

vertices, then

d
(
V (i)

)
= . . . sn−1snd(V ).

By Lemma 6.7.2 this cannot continue indefinitely, since d
(
V (i)

)
may

not have any negative entries. Let i be the smallest number such that

V (i) is not surjective at the appropriate vertex. By Proposition 6.6.7

it is indecomposable. So, by Proposition 6.6.5, we get

d(V (i)) = αp

for some p. �

We are now able to prove Gabriel’s theorem. Namely, we get the

following corollaries.

Corollary 6.8.2. Let Q be a quiver, and let V be any indecomposable

representation. Then d(V ) is a positive root.

Proof. By Theorem 6.8.1

si1 . . . sim
(d(V )) = αp.

Since the si preserve B, we get

B(d(V ), d(V )) = B(αp, αp) = 2.

�

Corollary 6.8.3. Let V, V ′ be indecomposable representations of Q

such that d(V ) = d(V ′). Then V and V ′ are isomorphic.
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Proof. Let i be such that

d
(
V (i)

)
= αp.

Then we also get d
(
V ′(i)) = αp. So

V ′(i) = V (i) =: V i.

Furthermore we have

V (i) = F+
k . . . F+

n−1F
+
n V

(0),

V ′(i) = F+
k . . . F+

n−1F
+
n V

′(0).

But both V (i−1), . . . , V (0) and V ′(i−1), . . . , V ′(0) have to be surjective

at the appropriate vertices. This implies

F−
n F

−
n−1 . . . F

−
k V

i

=

{
F−

n F
−
n−1 . . . F

−
k F

+
k . . . F+

n−1F
+
n V

(0) = V (0) = V,

F−
n F

−
n−1 . . . F

−
k F

+
k . . . F+

n−1F
+
n V

′(0) = V ′(0) = V ′.

�

These two corollaries show that there are only finitely many inde-

composable representations (since there are only finitely many roots)

and that the dimension vector of each of them is a positive root. The

last statement of Gabriel’s theorem follows from

Corollary 6.8.4. For every positive root α, there is an indecompos-

able representation V with

d(V ) = α.

Proof. Consider the sequence

snα, sn−1snα, . . . .

Consider the first element of this sequence which is a negative root

(this has to happen by Lemma 6.7.2) and look at one step before that,

calling this element β. So β is a positive root and siβ is a negative

root for some i. But since the si only change one coordinate, we get

β = αi

and

(sq . . . sn−1sn)α = αi.
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We let C(i) be the representation having dimension vector αi. Then

we define

V = F−
n F

−
n−1 . . . F

−
q C(i).

This is an indecomposable representation and

d(V ) = α.

�

Example 6.8.5. Let us demonstrate by example how reflection func-

tors work. Consider the quiver D4 with the orientation of all arrows

towards the node (which is labeled by 4). Start with the 1-dimensional

representation Vα4 sitting at the fourth vertex. Apply to Vα4 the func-

tor F−
3 F

−
2 F

−
1 . This yields

F−
1 F

−
2 F

−
3 Vα4 = Vα1+α2+α3+α4 .

Now applying F−
4 , we get

F−
4 F

−
1 F

−
2 F

−
3 Vα4 = Vα1+α2+α3+2α4 .

Note that this is exactly the inclusion of three lines into the plane,

which is the most complicated indecomposable representation of the

D4 quiver.

6.9. Problems

Problem 6.9.1. Let Qn be the cyclic quiver of length n, i.e., n

vertices connected by n oriented edges forming a cycle. Obviously,

the classification of indecomposable representations of Q1 is given by

the Jordan normal form theorem. Obtain a similar classification of

indecomposable representations of Q2. In other words, classify pairs

of linear operators A : V → W and B : W → V up to isomorphism.

Namely:

(a) Consider the following pairs (for n ≥ 1):

(1) En,λ: V = W = Cn, A is the Jordan block of size n with

eigenvalue λ, B = 1 (λ ∈ C).

(2) En,∞: is obtained from En,0 by exchanging V with W and A

with B.

(3) Hn: V = Cn with basis vi, W = Cn−1 with basis wi, Avi =

wi, Bwi = vi+1 for i < n, and Avn = 0.
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(4) Kn is obtained from Hn by exchanging V with W and A with

B.

Show that these are indecomposable and pairwise nonisomorphic.

(b) Show that if E is a representation of Q2 such that AB is not

nilpotent, then E = E′ ⊕E′′, where E′′ = En,λ for some λ 6= 0.

(c) Consider the case when AB is nilpotent, and consider the

operator X on V ⊕W given by X(v, w) = (Bw,Av). Show that X

is nilpotent and admits a basis consisting of chains (i.e., sequences

u,Xu,X2u, . . .X l−1u where X lu = 0) which are compatible with the

direct sum decomposition (i.e., for every chain u ∈ V or u ∈ W ).

Deduce that (1)—(4) are the only indecomposable representations of

Q2.

(d) (Harder!) Generalize this classification to the Kronecker quiver,

which has two vertices 1 and 2 and two edges both going from 1 to 2.

(e) (Still harder!) Can you generalize this classification to Qn,

n > 2 with any orientation? (Easier version: consider only the cyclic

orientation).

Problem 6.9.2. Let L ⊂ 1
2Z8 be the lattice of vectors where the

coordinates are either all integers or all half-integers (but not integers)

and the sum of all coordinates is an even integer.

(a) Let αi = ei−ei+1, i = 1, . . . , 6, α7 = e6+e7, α8 = −1/2
∑8

i=1 ei.

Show that αi are a basis of L (over Z).

(b) Show that roots in L (under the usual inner product) form a

root system of type E8 (compute the inner products of αi).

(c) Show that the E7 and E6 lattices can be obtained as the sets

of vectors in the E8 lattice L where the first two, respectively three,

coordinates (in the basis ei) are equal.

(d) Show that E6, E7, E8 have 72, 126, and 240 roots, respectively

(enumerate types of roots in terms of the presentations in the basis

ei, and count the roots of each type).

Problem 6.9.3. Let Vα be the indecomposable representation of a

Dynkin quiverQ which corresponds to a positive root α. For instance,

if αi is a simple root, then Vαi
has a 1-dimensional space at i and is

0 everywhere else.
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(a) Show that if i is a source, then Ext1(V, Vαi
) = 0 for any

representation V of Q, and if i is a sink, then Ext1(Vαi
, V ) = 0.

(b) Given an orientation of the quiver, find a Jordan-Hölder series

of Vα for that orientation.





Chapter 7

Introduction to
categories

7.1. The definition of a category

We have now seen many examples of representation theories and of

operations with representations (direct sum, tensor product, induc-

tion, restriction, reflection functors, etc.). A context in which one can

systematically talk about this is provided by category theory.

Category theory was founded by Saunders Mac Lane and Samuel

Eilenberg in 1942—1945. It is a fairly abstract theory which seem-

ingly has no content, for which reason it was christened “abstract

nonsense” (see Section 7.10). Nevertheless, it is a very flexible and

powerful language, which has become totally indispensable in many

areas of mathematics, such as algebraic geometry, topology, represen-

tation theory, and many others.

We will now give a very short introduction to category theory,

highlighting its relevance to the topics in representation theory we

have discussed. For a serious acquaintance with category theory, the

reader may use, for instance, the classical book [McL].

Definition 7.1.1. A category C is the following data:

(i) A class of objects Ob(C).

177
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(ii) For every objects X,Y ∈ Ob(C), the class HomC(X,Y ) =

Hom(X,Y ) of morphisms (or arrows) from X,Y (for f ∈ Hom(X,Y ),

one may write f : X → Y ).

(iii) For any objects X,Y, Z ∈ Ob(C), a composition map

Hom(Y, Z) × Hom(X,Y ) → Hom(X,Z), (f, g) 7→ f ◦ g.

This data is required to satisfy the following axioms:

1. The composition is associative, i.e., (f ◦ g) ◦ h = f ◦ (g ◦ h).
2. For each X ∈ Ob(C), there is a morphism 1X ∈ Hom(X,X),

called the unit morphism, such that 1X ◦ f = f and g ◦ 1X = g for

any f, g for which compositions make sense.

Remark 7.1.2. We will write X ∈ C instead of X ∈ Ob(C).

Example 7.1.3. 1. The category Sets of sets (morphisms are arbi-

trary maps).

2. The categories Groups, Rings (morphisms are homomor-

phisms).

3. The category Vectk of vector spaces over a field k (morphisms

are linear maps).

4. The category Rep(A) of representations of an algebra A (mor-

phisms are homomorphisms of representations).

5. The category of topological spaces (morphisms are continuous

maps).

6. The homotopy category of topological spaces (morphisms are

homotopy classes of continuous maps).

Important remark. Unfortunately, one cannot simplify this

definition by replacing the word “class” by the much more famil-

iar word “set”. Indeed, this would rule out the important Example

7.1.3(1), as it is well known that there is no set of all sets and that

working with such a set leads to contradictions. The precise defini-

tion of a class and the precise distinction between a class and a set is

the subject of set theory and cannot be discussed here. Luckily, for

most practical purposes (in particular, in these notes) this distinction

is not essential.
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We also mention that in many examples, including Examples

7.1.3(1)-(6), the word “class” in part (ii) of Definition 7.1.1 can be

replaced by “set”. Categories with this property (that Hom(X,Y ) is

a set for any X,Y ) are called locally small; many categories that

we encounter are of this kind.

Definition 7.1.4. A full subcategory of a category C is a category

C′ whose objects are a subclass of objects of C, and HomC′(X,Y ) =

HomC(X,Y ).

Example 7.1.5. The category AbelianGroups is a full subcategory

of the category Groups.

Sometimes the collection Hom(X,Y ) of morphisms from X to

Y in a given locally small category C is not just a set but has some

additional structure (say, the structure of an abelian group, or a vector

space over some field). In this case one says that C is enriched over

another categoryD (which is a monoidal category, i.e., has a product

operation and a unit object under this product, e.g., the category of

abelian groups or vector spaces with the tensor product operation).

This means that for each X,Y ∈ C, Hom(X,Y ) is an object of D,

and the composition Hom(Y, Z) × Hom(X,Y ) → Hom(X,Z) is a

morphism in D. E.g., if D is the category of vector spaces, this

means that the composition is bilinear, i.e., gives rise to a linear

map Hom(Y, Z) ⊗ Hom(X,Y ) → Hom(X,Z). For a more detailed

discussion of this, we refer the reader to [McL].

Example 7.1.6. The category Rep(A) of representations of a k-

algebra A is enriched over the category of k-vector spaces.

7.2. Functors

We would like to define arrows between categories. Such arrows are

called functors.

Definition 7.2.1. A functor F : C → D between categories C and

D is

(i) a map F : Ob(C) → Ob(D);
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(ii) for each X,Y ∈ C, a map F = FX,Y : Hom(X,Y ) →
Hom(F (X), F (Y )) which preserves compositions and identity mor-

phisms.

Note that functors can be composed in an obvious way. Also, any

category has the identity functor.

Example 7.2.2. 1. A (locally small) category C with one object X

is the same thing as a monoid. A functor between such categories is

a homomorphism of monoids.

2. Forgetful functors

Groups → Sets, Rings → AbelianGroups.

3. The opposite category of a given category is the same category

with the order of arrows and compositions reversed. Then V 7→ V ∗

is a functor Vectk → Vectop
k .

4. The Hom functors: if C is a locally small category, then we

have the functor C → Sets given by Y 7→ Hom(X,Y ) and Cop → Sets

given by Y 7→ Hom(Y,X).

5. The assignment X 7→ Fun(X,Z) is a functor Sets → Ringsop.

6. Let Q be a quiver. Consider the category C(Q) whose objects

are the vertices and morphisms are oriented paths between them.

Then functors from C(Q) to Vectk are representations of Q over k.

7. Let K ⊂ G be groups. Then we have the induction func-

tor IndG
K : Rep(K) → Rep(G) and the restriction functor ResG

K :

Rep(G) → Rep(K).

8. We have an obvious notion of the Cartesian product of cat-

egories (obtained by taking the Cartesian products of the classes of

objects and morphisms of the factors). The functors of direct sum

and tensor product are then functors Vectk ×Vectk → Vectk. Also

the operations V 7→ V
N

n, V 7→ SnV , V 7→ ∧nV are functors on

Vectk. More generally, if π is a representation of Sn, we have functors

V 7→ HomSn
(π, V

N
n). Such functors are called the Schur functors.

Thus, the irreducible Schur functors are labeled by Young diagrams.

9. The reflection functors F±
i : Rep(Q) → Rep(Qi) are functors

between representation categories of quivers.
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7.3. Morphisms of functors

One of the important features of functors between categories which

distinguishes them from usual maps or functions is that the functors

between two given categories themselves form a category; i.e., one can

define a nontrivial notion of a morphism between two functors.

Definition 7.3.1. Let C,D be categories and let F,G : C → D be

functors between them. A morphism a : F → G (also called a natu-

ral transformation or a functorial morphism) is a collection of

morphisms aX : F (X) → G(X) labeled by the objects X of C, which

is functorial in X ; i.e., for any morphism f : X → Y (for X,Y ∈ C)

one has aY ◦ F (f) = G(f) ◦ aX .

A morphism a : F → G is an isomorphism if there is another

morphism a−1 : G → F such that a◦a−1 and a−1◦a are the identities.

The set of morphisms from F to G is denoted by Hom(F,G).

Example 7.3.2. 1. Let FVectk be the category of finite dimensional

vector spaces over k. Then the functors id and ∗∗ on this category

are isomorphic. The isomorphism is defined by the standard maps

aV : V → V ∗∗ given by aV (u)(f) = f(u), u ∈ V , f ∈ V ∗. But

these two functors are not isomorphic on the category of all vector

spaces Vectk, since for an infinite dimensional vector space V , V is

not isomorphic to V ∗∗.

2. Let FVect′k be the category of finite dimensional k-vector

spaces, where the morphisms are the isomorphisms. We have a func-

tor F from this category to itself sending any space V to V ∗ and any

morphism a to (a∗)−1. This functor satisfies the property that V is

isomorphic to F (V ) for any V , but it is not isomorphic to the identity

functor. This is because the isomorphism V 7→ F (V ) = V ∗ cannot

be chosen to be compatible with the action of GL(V ), as V is not

isomorphic to V ∗ as a representation of GL(V ).

3. Let A be an algebra over a field k, and let F : A − mod →
Vectk be the forgetful functor. Then as follows from Problem 2.3.17,

EndF = Hom(F, F ) = A.

4. The set of endomorphisms of the identity functor on the cate-

gory A−mod is the center of A (check it!).
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7.4. Equivalence of categories

When two algebraic or geometric objects are isomorphic, it is usually

not a good idea to say that they are equal (i.e., literally the same).

The reason is that such objects are usually equal in many different

ways, i.e., there are many ways to pick an isomorphism, but by saying

that the objects are equal, we are misleading the reader or listener into

thinking that we are providing a certain choice of the identification,

which we actually do not do. A vivid example of this is a finite

dimensional vector space V and its dual space V ∗.

For this reason, in category theory, most of the time one tries to

avoid saying that two objects or two functors are equal. In particular,

this applies to the definition of isomorphism of categories.

Namely, the naive notion of isomorphism of categories is defined

in the obvious way: a functor F : C → D is an isomorphism if there

exists F−1 : D → C such that F ◦ F−1 and F−1 ◦ F are equal to

the identity functors. But this definition is not very useful. We

might suspect so since we have used the word “equal” for objects of

a category (namely, functors) which we are not supposed to do. In

fact, here is an example of two categories which are “the same for

all practical purposes” but are not isomorphic; it demonstrates the

deficiency of our definition.

Namely, let C1 be the simplest possible category: Ob(C1) consists

of one object X , with Hom(X,X) = {1X}. Also, let C2 have two

objectsX,Y and four morphisms: 1X , 1Y , a : X → Y , and b : Y → X .

So we must have a ◦ b = 1Y , b ◦ a = 1X .

It is easy to check that for any category D, there is a natural

bijection between the collections of isomorphism classes of functors

C1 → D and C2 → D (both are identified with the collection of iso-

morphism classes of objects of D). This is what we mean by saying

that C1 and C2 are “the same for all practical purposes”. Neverthe-

less they are not isomorphic, since C1 has one object and C2 has two

objects (even though these two objects are isomorphic to each other).

This shows that we should adopt a more flexible and less restric-

tive notion of isomorphism of categories. This is accomplished by the

definition of an equivalence of categories.
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Definition 7.4.1. A functor F : C → D is an equivalence of cat-

egories if there exists F ′ : D → C such that F ◦ F ′ and F ′ ◦ F are

isomorphic to the identity functors.

In this situation, F ′ is said to be a quasi-inverse to F .

In particular, the above categories C1 and C2 are equivalent (check

it!).

Also, the category FSet of finite sets is equivalent to the category

whose objects are nonnegative integers, and morphisms are given by

Hom(m,n) = Maps({1, . . . ,m}, {1, . . . , n}).
Are these categories isomorphic? The answer to this question depends

on whether you believe that there is only one finite set with a given

number of elements, or that there are many of those. It seems better

to think that there are many (without asking “how many”), so that

isomorphic sets need not be literally equal, but this is really a matter

of choice. In any case, this is not really a reasonable question; the

answer to this question is irrelevant for any practical purpose, and

thinking about it will give you nothing but a headache.

7.5. Representable functors

A fundamental notion in category theory is that of a representable

functor. Namely, let C be a (locally small) category, and let F :

C → Sets be a functor. We say that F is representable if there

exists an object X ∈ C such that F is isomorphic to the functor

Hom(X, ?). More precisely, if we are given such an object X , together

with an isomorphism ξ : F ∼= Hom(X, ?), we say that the functor F

is represented by X (using ξ).

In a similar way, one can talk about representable functors from

Cop to Sets. Namely, one calls such a functor representable if it is of

the form Hom(?, X) for some object X ∈ C, up to an isomorphism.

Not every functor is representable, but if a representing object X

exists, then it is unique. Namely, we have the following lemma.

Lemma 7.5.1 (The Yoneda Lemma). If a functor F is represented

by an object X, then X is unique up to a unique isomorphism. I.e.,

if X,Y are two objects in C, then for any isomorphism of functors
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φ : Hom(X, ?) → Hom(Y, ?) there is a unique isomorphism aφ : X →
Y inducing φ.

Proof (Sketch). One sets aφ = φ−1
Y (1Y ) and shows that it is invert-

ible by constructing the inverse, which is a−1
φ = φX (1X). It remains

to show that the composition both ways is the identity, which we

will omit here. This establishes the existence of aφ. Its uniqueness is

verified in a straightforward manner. �

Remark 7.5.2. In a similar way, if a category C is enriched over

another category D (say, the category of abelian groups or vector

spaces), one can define the notion of a representable functor from C
to D.

Example 7.5.3. Let A be an algebra. Then the forgetful functor

from the category of left A-modules to the category of vector spaces

is representable, and the representing object is the free rank 1 module

(= the regular representation) M = A. But if A is infinite dimen-

sional and we restrict attention to the category of finite dimensional

modules, then the forgetful functor, in general, is not representable

(this is so, for example, if A is the algebra of complex functions on Z
which are zero at all but finitely many points).

7.6. Adjoint functors

Another fundamental notion in category theory is the notion of ad-

joint functors.

Definition 7.6.1. Functors F : C → D and G : D → C are said to

be a pair of adjoint functors if for any X ∈ C, Y ∈ D we are given

an isomorphism ξXY : HomC(F (X), Y ) → HomD(X,G(Y )) which is

functorial in X and Y , i.e., if we are given an isomorphism of functors

Hom(F (?), ?) → Hom(?, G(?)) (C ×D → Sets). In this situation, we

say that F is left adjoint to G and G is right adjoint to F .

Not every functor has a left or right adjoint, but if it does, it

is unique and can be constructed canonically (i.e., if we somehow

found two such functors, then there is a canonical isomorphism be-

tween them). This follows easily from the Yoneda lemma, since if
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Table 1. Dictionary between category theory and linear algebra.

Category C Vector space V with a nondegen-

erate inner product

The set of morphisms Hom(X,Y ) Inner product (x, y) on V (maybe

nonsymmetric)

Opposite category Cop Same space V with reversed inner

product

The category Sets The ground field k

Full subcategory in C Nondegenerate subspace in V

Functor F : C → D Linear operator f : V →W

Functor F : C → Sets Linear functional f ∈ V ∗ =

Hom(V, k)

Representable functor Linear functional f ∈ V ∗ given by

f(v) = (u, v), u ∈ V

Yoneda lemma Nondegeneracy of the inner prod-

uct (on both sides)

Not all functors are representable If dimV = ∞, not ∀f ∈ V ∗,
f(v) = (u, v)

Left and right adjoint functors Left and right adjoint operators

Adjoint functors don’t always exist Adjoint operators may not exist if

dimV = ∞
If they do, they are unique If they do, they are unique

Left and right adjoints may not co-

incide

The inner product may be non-

symmetric

F,G are a pair of adjoint functors, then F (X) represents the func-

tor Y 7→ Hom(X,G(Y )) and G(Y ) represents the functor X 7→
Hom(F (X), Y ).

Remark 7.6.2. The terminology “left and right adjoint functors”

is motivated by the analogy between categories and inner product

spaces. More specifically, in Table 1 we have a useful dictionary

between category theory and linear algebra, which helps to better

understand many notions of category theory.



186 7. Introduction to categories

Example 7.6.3. 1. Let V be a finite dimensional representation of

a group G or a Lie algebra g. Then the left and right adjoint to the

functor V⊗ on the category of representations of G is the functor

V ∗⊗.

2. The functor ResG
K is left adjoint to IndG

K . This is nothing but

the statement of the Frobenius reciprocity.

3. Let Assock be the category of associative unital algebras, and

let Liek be the category of Lie algebras over some field k. We have a

functor L : Assock → Liek which attaches to an associative algebra

the same space regarded as a Lie algebra, with bracket [a, b] = ab−ba.
Then the functor L has a left adjoint, which is the functor U of taking

the universal enveloping algebra of a Lie algebra.

4. We have the functor GL1 : Assock → Groups, given by

A 7→ GL1(A) = A×. This functor has a left adjoint, which is the

functor G 7→ k[G], the group algebra of G.

5. The left adjoint to the forgetful functor Assock → Vectk

is the functor of tensor algebra: V 7→ TV . Also, if we denote by

Commk the category of commutative algebras, then the left adjoint

to the forgetful functor Commk → Vectk is the functor of the sym-

metric algebra: V 7→ SV .

One can give many more examples, spanning many fields. These

examples show that adjoint functors are ubiquitous in mathematics.

7.7. Abelian categories

The type of categories that most often appears in representation the-

ory is abelian categories. The standard definition of an abelian cate-

gory is rather long, so we will not give it here, referring the reader to

the textbook [Fr]; rather, we will use as the definition what is really

the statement of the Freyd-Mitchell theorem:

Definition 7.7.1. An abelian category is a category (enriched over

the category of abelian groups) which is equivalent to a full subcat-

egory C of the category A-mod of left modules over a ring A, closed

under taking finite direct sums, as well as kernels, cokernels, and

images of morphisms.
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Example 7.7.2. The category of modules over an algebra A and the

category of finite dimensional modules over A are abelian categories.

Problem 7.7.3. Let A be a finitely generated commutative ring.

Show that the category of finitely generated A-modules is an abelian

category.

Hint: Use the Hilbert basis theorem.

We see from this definition that in an abelian category, Hom(X,Y )

is an abelian group for each X,Y , compositions are group homo-

morphisms with respect to each argument, there is the zero object,

the notions of an injective morphism (monomorphism) and surjec-

tive morphism (epimorphism), and every morphism has a kernel, a

cokernel, and an image.

Remark 7.7.4. The good thing about Definition 7.7.1 is that it

allows us to visualize objects, morphisms, kernels, and cokernels in

terms of classical algebra. But the definition also has a big drawback,

which is that even if C is the whole category A-mod, the ring A is not

determined by C. In particular, two different rings can have equivalent

categories of modules (such rings are called Morita equivalent).

Actually, it is worse than that: for many important abelian categories

there is no natural (or even manageable) ring A at all. This is why

people prefer to use the standard definition, which is free from this

drawback, even though it is more abstract.

Let k be a field. We say that an abelian category C is k-linear

if the groups HomC(X,Y ) are equipped with a structure of a vector

space over k and composition maps are k-linear in each argument. In

particular, the categories in Example 7.7.2 are k-linear.

7.8. Complexes and cohomology

Definition 7.8.1. A sequence of objects Ci, i ∈ Z, of an abelian

category C and morphisms di : Ci → Ci+1 is said to be a complex if

the composition of any two consecutive arrows is zero. The morphisms

di are called the differentials.1 The cohomology of this complex is

1A famous example of a complex is the de Rham complex, in which Cm is the
space of differential m-forms on a Euclidean space or, more generally, a manifold, and
dm is the exterior differential of differential forms. This explains the term “differential”.
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H i = Ker(di)/Im(di−1). The complex is said to be exact in the ith

term if H i = 0 and is said to be an exact sequence if it is exact in

all terms.

There is an obvious notion of a morphism of complexes. Name-

ly, a morphism f : C → D is a collection of morphisms fi : Ci → Di

such that di ◦ fi = fi+1 ◦ di. Clearly, such morphisms can be com-

posed, which makes the class of all complexes over C into a category,

denoted Compl(C).

In particular, one can consider complexes of abelian groups, vec-

tor spaces, modules over a ring, etc. In this case, elements of Ker(di)

are called i-cocycles, the elements of Im(di−1) are called i-cobound-

aries, and the elements ofH i(C) are called ith cohomology classes.

This terminology is adopted from topology. For this reason, exact

sequences are also called acyclic complexes (as they are complexes

which have no nontrivial cocycles, i.e., cocycles that are not cobound-

aries).

Often one considers complexes that are bounded in one or both

directions; i.e., the objects Ci are zero for i � 0, i � 0, or both.

In this case one writes one zero on each side where the complex is

bounded. For example, a complex bounded on both sides with n+ 1

terms will look like

0 → C0 → C1 → · · · → Cn → 0.

Definition 7.8.2. A short exact sequence is an exact sequence of

the form

0 → X → Y → Z → 0.

Clearly, 0 → X → Y → Z → 0 is a short exact sequence if and

only if X → Y is injective, Y → Z is surjective, and the induced map

Y/X → Z is an isomorphism. In other words, short exact sequences

correspond to extensions of Z by X .

Example 7.8.3. The sequence 0 → X → X ⊕ Z → Z → 0 with

the obvious morphisms is a short exact sequence. Such a sequence is

called split. It corresponds to the trivial extension of Z by X .
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Exercise 7.8.4. Show that any exact sequence of vector spaces is

isomorphic to a direct sum of complexes of the form

0 → V → V → 0,

where V stands at the places i and i+ 1 and the map V → V is the

identity (in particular, any short exact sequence of vector spaces is

split). Is this true in the category of abelian groups?

Problem 7.8.5. Let D• be a complex of abelian groups with differ-

entials di, i ∈ Z, let C• be a subcomplex of D• (i.e. a collection of

subgroups Ci ⊂ Di such that di(Ci) ⊂ Ci+1), and let E• = D•/C•
be the quotient complex (i.e., Ei = Di/Ci with differentials induced

by di).

Define a homomorphism ci : H i(E) → H i+1(C) as follows. Given

x ∈ H i(E), pick a representative x′ of x in Ei. Let x′′ be a lift of x′

to Di. Let y′ = dx′′ ∈ Di+1 (we abbreviate the notation, denoting di

just by d). Since dx′ = 0, y′ = dx′′ ∈ Ci+1. Also, dy′ = d2x′′ = 0. So

y′ represents an element y ∈ H i+1(C). We will set ci(x) = y.

(i) Show that ci is well defined, i.e., ci(x) does not depend on the

choice of x′ and x′′.

(ii) Show that the sequence

(7.8.1) . . . H i−1(E) → H i(C) → H i(D) → H i(E) → H i+1(C) . . . ,

where the first map is ci−1, the middle two maps are induced by the

maps Ci → Di → Ei, and the last map is ci, is exact.

Definition 7.8.6. The map ci is called the connecting homomor-

phism, and the sequence (7.8.1) is called the long exact sequence

of cohomology.

Problem 7.8.7. Let C• and D• be complexes of modules over a

commutative ring A. Define the tensor product complex (C⊗D)• by

the formula

(C ⊗D)i =
⊕

j+m=i

Cj ⊗A Dm,

with differentials

dC⊗D
i |Cj⊗Dm

= dC
j ⊗ 1 + (−1)j · 1 ⊗ dD

m.
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(i) Show that this is a complex.

Now assume that A = k is a field.

(ii) Show that if C or D is an exact sequence, then so is C ⊗D.

Hint: Use the decomposition of Exercise 7.8.4.

(iii) Show that any complex C can be identified with a direct

sum of an exact sequence and the complex consisting of H i(C) with

the zero differentials, in such a way that the induced isomorphism

H i(C) → H i(C) is the identity.

(iv) Show that there is a natural isomorphism of vector spaces

H i(C ⊗D) ∼=
⊕

j+m=i

Hj(C) ⊗Hm(D).

This is the Künneth formula.

7.9. Exact functors

Definition 7.9.1. A functor F between two abelian categories is

additive if it induces homomorphisms on Hom groups. Also, for

k-linear categories one says that F is k-linear if it induces k-linear

maps between Hom spaces.

It is easy to show that if F is an additive functor, then F (X⊕Y )

is canonically isomorphic to F (X) ⊕ F (Y ).

Example 7.9.2. The functors IndG
K , ResG

K , HomG(V, ?) in the theory

of group representations over a field k are additive and k-linear.

Definition 7.9.3. An additive functor F : C → D between abelian

categories is left exact if for any exact sequence

0 → X → Y → Z,

the sequence

0 → F (X) → F (Y ) → F (Z)

is exact. F is right exact if for any exact sequence

X → Y → Z → 0,

the sequence

F (X) → F (Y ) → F (Z) → 0

is exact. F is exact if it is both left and right exact.
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Definition 7.9.4. An abelian category C is semisimple if any short

exact sequence in this category splits, i.e., is isomorphic to a sequence

0 → X → X ⊕ Y → Y → 0

(where the maps are obvious).

Example 7.9.5. The category of representations of a finite group G

over a field of characteristic not dividing |G| (or 0) is semisimple.

Note that in a semisimple category, any additive functor is auto-

matically exact on both sides.

Example 7.9.6. (i) The functors IndG
K , ResG

K are exact.

(ii) The functor Hom(X, ?) is left exact, but not necessarily right

exact. To see that it need not be right exact, it suffices to consider

the exact sequence

0 → Z → Z → Z/2Z → 0

and to apply the functor Hom(Z/2Z, ?).

(iii) The functor X⊗A for a right A-module X (on the category

of left A-modules) is right exact but not necessarily left exact. To see

this, it suffices to tensor multiply the above exact sequence by Z/2Z.

Exercise 7.9.7. Show that if (F,G) is a pair of adjoint additive

functors between abelian categories, then F is right exact and G is

left exact.

Exercise 7.9.8. (a) Let Q be a quiver and let i ∈ Q be a source.

Let V be a representation of Q and let W be a representation of Qi

(the quiver obtained from Q by reversing arrows at the vertex i).

Prove that there is a natural isomorphism between Hom
(
F−

i V,W
)

and Hom
(
V, F+

i W
)
. In other words, the functor F+

i is right adjoint

to F−
i .

(b) Deduce that the functor F+
i is left exact and F−

i is right

exact.
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7.10. Historical interlude: Eilenberg, Mac Lane,

and “general abstract nonsense”

Saunders Mac Lane’s (1909–2005) father and grandfather were both

Congregational ministers, so young Saunders seemed destined for an

ecclesiastical career. Early on, however, he started having “various

theological doubts and questions”. “[A] ministerial career would have

required my belief of things of which I was uncertain”, Mac Lane

later recalled. “Mathematics, however, provided a different sort of

certainty”. One thing he was certain about was that the minister’s

income was woefully inadequate to provide for comfortable retire-

ment. As a result, Mac Lane decided to pursue a career that would

be “scientific rather than ministerial” [33, pp. 349–350]. He earned

his bachelor’s degree at Yale and his master’s at Chicago.

Inspired by the “elegance of German abstract algebra”, in which

the notions of rings and fields axiomatized addition and multiplica-

tion, Mac Lane devoted his master’s thesis to a similar axiomatization

of exponentials, as well as plus and times. At Chicago, Mac Lane was

put off by inadequate teaching and by examples of what he saw as

a “display of pedantry”, and he concluded that the mathematics de-

partment there “had ceased to be really first class” [36, p. 152]. He

recalled that he had been taught that a vector was an n-tuple, “an

idea that I soon had to unlearn” [33, p. 39]. Mac Lane wanted to

write a doctoral dissertation on logic but could not find an advisor

and decided to leave for Göttingen, the preeminent center of mathe-

matical logic research.

At Göttingen, the home of the famous Hilbert school, Mac Lane

learned group representations from Hermann Weyl and linear asso-

ciative algebras from Emmy Noether. “To live in Göttingen was to

be immersed in mathematical culture”, Mac Lane wrote, recalling

Göttingen as “an amalgam of research, teaching, and inspiration”.

Despite this immersion, Mac Lane could hardly ignore the tense po-

litical climate, the vociferous clashes among 27 political parties, and

the students dressed in the Nazi brownshirt uniform. Mac Lane did

write a thesis on logic but managed to overlook Gödel’s famous incom-

pleteness theorem, which appeared at that time. His thesis elicited
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common schemes of proof in Russell and Whitehead’s Principia Math-

ematica with the aim of abbreviating and perhaps mechanizing new

proofs. The thesis was “näıve in supposing that all mathematics

would be actually written in Whitehead and Russell style”, Mac Lane

admitted. Mac Lane was in Göttingen in 1933, when Hitler came

to power, and he witnessed the ruthless destruction of the Hilbert

school, as many leading Jewish mathematicians, including Courant

and Noether, were dismissed from their jobs. The once famous math-

ematics department became “but a skeleton”. Mac Lane rushed up

to finish his thesis. Unimpressive by Göttingen standards, the thesis

was accepted with the grade Genügend, the lowest grade. Mac Lane

became the last American to earn a doctorate in the famous Hilbert

school. One more thing Mac Lane managed to do before departure

was to get married to Dorothy Jones. Being at Göttingen as he was,

Mac Lane went to hear a mathematical lecture right after his wedding

ceremony [33, pp. 48, 54, 51–52, 58, 52, 56].

In the 1930s mathematical logic was looked down upon by most

mathematicians, who considered it part of philosophy rather than of

mathematics proper. When he started teaching as an instructor at

Harvard, Mac Lane intended to offer a logic course, but departmen-

tal needs forced him to lecture on algebra. Eventually he realized

that it was easier to get a job as an algebraist than as a logician. In

1941, Mac Lane and Garrett Birkhoff co-authored Survey of Modern

Algebra, the first American undergraduate textbook that espoused

the abstract approach of Emmy Noether and B. L. van der Waer-

den. Initially judged as a text that “won’t fly beyond the Hudson”,

the book eventually became a standard textbook for undergraduate

algebra courses [33, pp. 62, 68, 82].

In the spring of 1941, Mac Lane received a semester leave from

Harvard and applied to visit the Institute for Advanced Study at

Princeton. His application was turned down, and Mac Lane ended

up going to the University of Michigan to give a series of six lectures.

One of the Michigan mathematicians in the audience was Samuel

(“Sammy”) Eilenberg (1913–1988). He sat through the first five lec-

tures but had to miss the last one, and he asked Mac Lane to give

him the gist of it privately. Mac Lane did, and Eilenberg noticed a
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similarity between Mac Lane’s results on group extensions and his col-

league Norman Steenrod’s homology theory of solenoid-type spaces.

“It was startling” to find that connection, Mac Lane later recalled.

They stayed up all night and by morning they found not only “a new

intrusion of algebra into topology” but also formed a lifelong collabo-

rative duet, which eventually churned out 15 joint papers. Mac Lane

later remarked that the rejection of his application to Princeton was

fortuitous, for “had it been accepted, I might have missed working

with Sammy” [33, pp. 101–104].

A Polish Jew, Eilenberg left Poland shortly before the start of

World War II, following the truly wise advice of his father, once the

best student in his town’s yeshiva. Among other European refugee

mathematicians, Eilenberg was welcomed by Oswald Veblen and Solo-

mon Lefschetz of Princeton University, who helped him find a posi-

tion at Michigan. For Eilenberg, mathematics was a social activity.

“Though his mathematical ideas may seem to have a kind of crys-

talline austerity, Sammy was a warm, robust, and very animated hu-

man being”, whose charm and humor were “hard to resist”, recalled

his former colleague [6, pp. 1351–1352]. Described as “energetic . . . ,

expressive, charismatic, quick witted, often confrontational, and a

brilliant thinker and good-humored conversationalist”, Eilenberg eas-

ily established contacts [7, p. 360]. His entire career was punctuated

by various productive collaborations. Together with Steenrod, he

“drained the Pontine Marshes of homology theory, turning an ugly

morass of variously motivated constructions into a simple and elegant

system of axioms applied, for the first time, to functors”. In collabo-

ration with Henri Cartan, Eilenberg systematized homology theories

in their Homological Algebra (1956). This field developed so rapidly

that within a few years Alexander Grothendieck reportedly branded

this foundational text “le diplodocus”, relegating it to the subject of

paleontology [6, p. 1348].

Eilenberg believed that “the highest value in mathematics was to

be found, not in specious depth nor in the overcoming of overwhelm-

ing difficulty, but rather in providing the definitive clarity that would

illuminate its underlying order”. He insisted on “lucidity, order, and

understanding as opposed to trophy hunting”. Eilenberg was called
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the “greatest mathematical stylist”, perhaps to the point of champi-

oning a “triumph of style over substance” [6, pp. 1349, 1348, 1344,

1350].

Eilenberg’s style called for a minimalist approach, which his col-

league described as “always to find the absolutely essential ingredients

in any problem and work only with those ingredients and nothing else

— in other words, get rid of all the superfluous information”. Once

asked if he could eat Chinese food with three chopsticks, he immedi-

ately answered in the affirmative and explained, “I’ll take the three

chopsticks, I’ll put one of them aside on the table, and I’ll use the

other two” [7, p. 361].

Eilenberg and Mac Lane pushed the homological envelope into

more complicated spaces in their joint 1942 paper “Natural Isomor-

phisms in Group Theory”, which introduced the notion of a functor.

André Weil, who reviewed their article in Mathematical Reviews, did

not merely summarize it but added a remarkable note of praise. He

wrote that the authors succeeded in finding “a precise definition” for

the “vague idea of covariance and contravariance”, “which is likely to

be helpful in classifying and systematizing known results and also in

looking for new relations between groups” (Weil in [4, p. 743]).

In the war years both Mac Lane and Eilenberg came to New York

to work for the Applied Mathematics Group at Columbia University

under the National Defense Research Council. They toiled on prob-

lems of airborne fire control during the day and on pure mathematics

at night. While dealing with the concrete problem of computing the

cohomology of the solenoid, they arrived at their universal coefficient

theorem and the very general and abstract notions of category and

functor. “These notions were so general”, Mac Lane recalled, “that

they hardly seemed to be real mathematics — would our mathemati-

cal colleagues accept them?” Mac Lane and Eilenberg hid their anx-

iety behind the jocular label “general abstract nonsense”, by which

they occasionally referred to their subject. “We didn’t really mean

the nonsense part, and we were proud of its generality”, admitted

Mac Lane [33, pp. 125–126].

In 1945 Eilenberg and Mac Lane summed up their findings in

the article “General Theory of Natural Equivalences”, which for the
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first time defined categories. The article was reportedly “rejected

by the editor of an inauspicious journal as ‘more devoid of content

than any I have read,’ to which Mac Lane is said to have replied,

‘That’s the point’ ” [7, p. 362]. Eventually they managed to publish

it in the Transactions of the American Mathematical Society. This in-

volved a fair amount of wheeling and dealing. “Eilenberg, who knew

the editor well, persuaded him to choose as referee a young mathe-

matician”, Mac Lane recalled, “one whom we could influence because

he was then a junior member of the Applied Mathematics Group at

Columbia University (war research), where Eilenberg and I were then

also members, and I was Director” [37, p. 5983]. The article openly

declared Eilenberg and Mac Lane’s ambitious goals. “In a metamath-

ematical sense our theory provides general concepts applicable to all

branches of mathematics”, they wrote, “and so contributes to the

current trend towards uniform treatment of different mathematical

disciplines” [12, p. 236].

The wide recognition of the power of Eilenberg and Mac Lane’s

ideas was a bit slow to come. Years passed before the words category

and functor “could be pronounced unapologetically in diverse math-

ematical company” (Freyd in [6, p. 1351]). Luckily, the Air Force

Office of Scientific Research became an important sponsor of research

and conferences on category theory — an unexpected benefit of Mac

Lane and Eilenberg’s wartime work. Only by the mid-1960s did the

Air Force eventually figure out that category theory was too abstract

to bring any tangible improvements to air combat and discontinued

its support [33, p. 239].

Category theory itself underwent quite a transformation after the

initial insight. As Mac Lane recalled, when the 1945 paper came out,

Eilenberg declared that “this would be the only paper necessary on

the subject. It turned out that he was wrong” [33, p. 209]. Eilenberg

and Mac Lane originally thought that the very concept of a category

was “essentially an auxiliary one; our basic concepts are essentially

those of a functor and of a natural transformation”. They even sug-

gested dropping the category concept altogether and adopting “an

even more intuitive standpoint”, according to which a functor “is not

defined over the category of ‘all’ groups, but for each particular pair
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of groups which may be given” [12, p. 247]. Moreover, although Mac

Lane and Eilenberg believed that category theory “offered a concep-

tual view of parts of mathematics”, they regarded it merely as “a

handy language”, “a language of orientation”, not as a “field for fur-

ther research effort” [35, pp. 334–335].

Although Eilenberg and Mac Lane invented category theory, for

them “it was always an applied subject, not an end in itself. Cat-

egories were defined in order to define functors, which in turn were

defined in order to define natural transformations, which were de-

fined finally in order to prove theorems that could not be proved

before”. They viewed categories as instruments of mainstream math-

ematics. The idea that categories could be used “to state theorems

that could not be stated before, that they were not tools but ob-

jects of nature worthy of study in their own right”, sounded alien to

them, for it seemed to place category theory on the fringe, outside

the mainstream (Freyd in [6, p. 1351]). In the hands of Alexander

Grothendieck, Daniel Kan, and Eilenberg’s students, however, cat-

egory theory became a dynamic field in its own right, profoundly

transformed algebraic geometry, topology, and representation theory,

and resonated across a wide range of disciplines, from mathematical

logic and theoretical computer science to linguistics and philosophy.

In the work of William Lawvere, category theory came to be regarded

as a foundation for all of mathematics (Heller in [6, p. 1349]; [7, p.

362]).

Category theory caused a controversy within the group of French

mathematicians who worked under the pseudonym Nicolas Bourbaki

with the aim of producing a multivolume rigorous treatment of all

contemporary mathematics from a unified conceptual point of view.

On Weil’s invitation, Eilenberg joined the group in 1950 and re-

mained an active member for 15 years. “He knew admirably how

to present his point of view, and he often made us agree to it”,

recalled Henri Cartan, another Bourbaki member (Cartan in [6, p.

1345]). Mac Lane was invited to attend a private Bourbaki meeting

in 1954, perhaps with the idea that he would persuade the group to

adopt the category-theoretical approach. Cartier, Chevalley, Eilen-

berg, and Grothendieck supported Mac Lane, but André Weil took
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a cautious approach, which outweighed them [39, p. 5]. While gen-

uinely interested in incorporating category theory, Bourbaki found it

very difficult to abandon its prewar foundational concept of struc-

ture. Switching to categories would mean revising the whole body

of previous work, while combining the two approaches seemed to un-

dermine the Bourbakist ideal of unity of mathematics [5, p. 236].

“My facility in the French language was not sufficient to categorize

Bourbaki”, remarked Mac Lane. As a result, important parts of re-

cent mathematical research fell out of Bourbaki’s purview, perhaps

contributing to the decline of their overall project. Mac Lane barely

hid his disappointment in the outcome, calling the Bourbaki oeuvre

a “magnificent multi-volume monster” and Bourbaki’s definition of

structure “a cumbersome piece of pedantry”, which even Bourbaki

never used (quoted in [39, p. 6]).

Ironically, the Bourbakist vision of unified mathematics found

a powerful vehicle in category theory. General category-theoretical

concepts have enjoyed wide use across many different mathematical

fields; in fact, the very rigid division of mathematics into fields has

been called into question. “Mathematics as it is today . . . can no

longer be presented by piecemeal courses”, argued Mac Lane in a

1954 talk, “for it is simply no longer true that advanced mathematics

can be split neatly into compartments labelled ‘algebra’, ‘analysis’,

‘geometry’, and ‘applied mathematics’ ”. He championed the “infu-

sion of a geometrical point of view” and reminded his audience that

“a vector is geometrical”. “A vector is not an n-tuple of numbers until

a coordinate system has been chosen. Any teacher and any text book

which starts with the idea that vectors are n-tuples is committing a

crime for which the proper punishment is ridicule” (quoted in [40, p.

245]).

Mac Lane’s favorite pastime was sailing, which he considered

“a much more serious sport” than skiing, which he had learned at

Göttingen. On some sailing expeditions he spent time with prominent

philosophers but showed little interest in their subject. “Thankfully,

we paid more attention to sailing than to philosophical doctrine”, he

recalled. He found that most studies in philosophy of mathematics

“paid little attention to the actual substance of mathematics beyond
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the most elementary concerns” and set out to repair the situation. In

his 1986 book Mathematics, Form and Function, Mac Lane quickly

dispatched with an array of mathematical philosophies, from set the-

ory (“often artificial”) to formalism (“can’t explain which of many

formulas matter”) to intuitionism (“can be dogmatic”) to empiricism

(“mathematics originates not just in facts”) to Platonism (“a useful

mythology and a speculative ontology”). He even dismissed the Ro-

mantic ideal of mathematics as “a search for austere forms of beauty”

and offered instead “formal functionalism” — his vision of mathemat-

ics as “an extensive network of formal rules, definitions and systems,

tightly tied here and there to activities and to science”. Since mathe-

matical entities do not necessarily correspond to any physical objects,

Mac Lane argued, it would be meaningless to ask if mathematics is

true. The “appropriate” questions about a particular piece of math-

ematics are different: is it correct (i.e., proved), responsive to some

problem, illuminating, promising, relevant? According to Mac Lane,

mathematics is correct but not true [33, pp. 143, 145, 455–456, 440,

441, 443].

Like Mac Lane, Eilenberg “had no patience for metaphysical ar-

gument” (Heller in [6, p. 1349]). He had his own passion outside

mathematics, however. “A sophisticated and wise man who took a

refined pleasure in life” (Bass in [6, p. 1352]), Eilenberg, in fact, had

a parallel life. Known as “Sammy” to mathematicians, Eilenberg was

equally famous as an art dealer and collector under the nickname

“Professor” in the art world. Over the years, he amassed one of the

most significant collections of Southeast Asian sculpture in the world

and became a leading expert in the field. His biographer surmised

that Eilenberg “found in ancient Hindu sculpture a formal elegance

and imagination that resonated well with the same aesthetic sensibil-

ity — ‘classical rather than romantic,’ in the words of Alex Heller —

that animated his mathematical work” [7, p. 362]. Eilenberg’s two

lives rarely intersected. His colleagues recalled only one occasion on

which he “moved from a conversation about sculpture to one about

mathematics. Sculptors, he said, learn early to create from the in-

side out: what finally is to be seen on the surface is the result of a

lot of work in conceptualizing the interior. But there are others for

whom the interior is the result of a lot of work on getting the surface



200 7. Introduction to categories

right. ‘And,’ Sammy asked, ‘isn’t that the case for my mathemat-

ics?’ ” (Freyd in [6, p. 1350]).

Mac Lane called his collaboration with Eilenberg “one small, but

typical, example of East meets West. The great influx of refugee

mathematicians from Europe presented a decisive stimulus for Amer-

ican mathematics in the 1940s” [33, p. 347]. The Eilenberg-Mac

Lane collaboration not only brought together algebra and topology;

it epitomized the cross-fertilization of different mathematical schools

and the breaking down of internal disciplinary barriers within math-

ematics in the second half of the twentieth century.



Chapter 8

Homological algebra

In this chapter we develop some basic homological algebra tools,

which are necessary to study the fine structure of representation cat-

egories.

8.1. Projective and injective modules

Let A be an algebra, and let P be a left A-module.

Theorem 8.1.1. The following properties of P are equivalent:

(i) If α : M → N is a surjective morphism and ν : P → N is

any morphism, then there exists a morphism µ : P → M such that

α ◦ µ = ν.

(ii) Any surjective morphism α : M → P splits; i.e., there exists

µ : P →M such that α ◦ µ = id.

(iii) There exists another A-module Q such that P ⊕Q is a free

A-module, i.e., a direct sum of copies of A.

(iv) The functor HomA(P, ?) on the category of A-modules is ex-

act.

Proof. To prove that (i) implies (ii), take N = P . To prove that

(ii) implies (iii), take M to be free (this can always be done since

any module is a quotient of a free module). To prove that (iii) im-

plies (iv), note that the functor HomA(P, ?) is exact if P is free (as

201
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HomA(A,N) = N), so the statement follows, since if the direct sum

of two complexes is exact, then each of them is exact. To prove that

(iv) implies (i), let K be the kernel of the map α, and apply the exact

functor HomA(P, ?) to the exact sequence

0 → K →M → N → 0.

�

Definition 8.1.2. A module satisfying any of the conditions (i)—(iv)

of Theorem 8.1.1 is said to be projective.

Problem 8.1.3. A right A-module M is said to be flat if the functor

M⊗A on the category of left A-modules is exact.

(i) Show that any projective module is flat.

(ii) Let A be a commutative ring and let S be any multiplicatively

closed subset of A. Then, the localization S−1A is a flat A-module.

(iii) Let A = C[x], M = C[x, x−1]. Show that M is flat but not

projective.

Exercise 8.1.4. Let A be a ring, let M1,M2 be left A-modules,

let P1, P2 be projective left A-modules, and let fi : Pi → Mi be

homomorphisms. Let M be a left A-module containing M1 such that

M/M1 = M2. Show that there exists a homomorphism f : P1⊕P2 →
M such that f |P1 = f1 and the induced homomorphism P2 → M2 is

f2.

There is also a notion of an injective module, which is dual to

the notion of a projective module. Namely, we have the following

theorem.

Let A be an algebra and let I be a left A-module.

Theorem 8.1.5. The following properties of I are equivalent:

(i) If α : N → M is an injective morphism and ν : N → I is

any morphism, then there exists a morphism µ : M → I such that

µ ◦ α = ν.

(ii) Any injective morphism α : I → M splits; i.e., there exists

µ : M → I such that µ ◦ α = id.
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(iii) The functor HomA(?, I) on the category of A-modules is ex-

act.

Proof. The proof of the implications “(i) implies (ii)” and “(iii) im-

plies (i)” is similar to the proof of Theorem 8.1.1. Let us prove that

(ii) implies (iii). Let

0 → N →M → K → 0

be an exact sequence. Denote the embedding N →M by j. Consider

the corresponding sequence

0 → Hom(K, I) → Hom(M, I) → Hom(N, I) → 0.

Let f ∈ Hom(N, I), and define the module E := (M⊕I)/N , where N

is embedded into M ⊕ I via x 7→ (j(x),−f(x)). Clearly, we have an

inclusion I → E, since the image of N ⊕ I in E is naturally identified

with I . So there is a splitting E → I of this inclusion, i.e., a map

M ⊕ I → I , (m, i) 7→ g(m) + i such that g(j(x)) − f(x) = 0. This

means that the map j∗ : Hom(M, I) → Hom(N, I) is surjective, i.e.,

the functor Hom(?, I) is exact, as desired. �

Definition 8.1.6. A module satisfying any of the conditions (i)—(iii)

of Theorem 8.1.5 is said to be injective.

Example 8.1.7. Let A be an algebra and P be a left A-module.

Then P is projective if and only if P ∗ is an injective right A-module.

Theorem 8.1.1(iv) and Theorem 8.1.5(iii) can be used to define a

projective and an injective object in any abelian category. Namely,

we make the following definition.

Definition 8.1.8. A projective object in an abelian category C is

an object P such that the functor HomC(P, ?) is exact.

An injective object in an abelian category C is an object I such

that the functor HomC(?, I) is exact.

8.2. Tor and Ext functors

Let A be a unital ring. As we have mentioned in Example 7.9.6, the

functors M⊗A? and HomA(M, ?) (where M is a right, respectively
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left, A-module) on the category of left A-modules are, in general,

not exact (they are only exact on one side). The job of the functors

TorA
i (M, ?) and Exti

A(M, ?) is to quantify the extent to which the

functors M⊗A? and HomA(M, ?) fail to be exact. Namely, these

functors are defined as follows.

Definition 8.2.1. A projective resolution of M is an exact se-

quence

· · · → P2 → P1 → P0 →M → 0

such that all modules Pi, i ≥ 0, are projective.

Exercise 8.2.2. Show that any module has a projective resolution

(for example, one consisting of free modules).

Definition 8.2.3. LetM be a rightA-module, P• a projective resolu-

tion of M , and N a left A-module. For i ≥ 0 we define TorA
i (M,N) =

Tori(M,N) to be the ith cohomology of the complex

· · · → P2 ⊗A N → P1 ⊗A N → P0 ⊗A N → 0

induced by the resolution P•.

Definition 8.2.4. Let M be a left A-module, P• a projective resolu-

tion of M , and N a left A-module. For i ≥ 0 we define Exti
A(M,N) =

Exti(M,N) to be the ith cohomology of the complex

0 → HomA(P0, N) → HomA(P1, N) → HomA(P2, N) → . . .

induced by the resolution P•.

Problem 8.2.5. In this problem we will show that the cohomology

groups Tori and Exti don’t really depend on the projective resolution

P•, in a fairly strong sense, which justifies the fact that we don’t

mention P• in the notation for them.

Let P•, Q• be two projective resolutions of M . Let dP
i : Pi →

Pi−1, d
Q
i : Qi → Qi−1 be the corresponding differentials; in particular,

dP
0 : P0 →M , dQ

0 : Q0 →M .

(i) Show that there exists a homomorphism f0 : P0 → Q0 such

that dQ
0 ◦ f0 = dP

0 .

(ii) Proceed to show by induction in j that there exists a homo-

morphism fj : Pj → Qj such that dQ
j ◦ fj = fj−1 ◦ dP

j .
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The collection of homomorphisms satisfying the conditions of (i)

and (ii) is called a morphism of resolutions, f : P• → Q•.

(iii) Clearly, such a morphism f defines a linear map ψi(P,Q, f) :

TorP
i (M,N) → TorQ

i (M,N), where the superscripts P and Q mean

that the Tor groups are defined using the resolutions P• andQ•. Show

that the maps ψi(P,Q, f) don’t really depend on f (so they can be

denoted by ψi(P,Q)).

(iv) Deduce that ψi(P,Q) are isomorphisms (use that ψi(P, P ) =

id and ψi(Q,R) ◦ ψi(P,Q) = ψi(P,R)).

(v) Define similar maps ξi(Q,P, f) : Exti
P (M,N) → Exti

Q(M,N)

and show that they are independent on f and are isomorphisms.

Problem 8.2.6. (i) Show that Tor0(M,N) = M ⊗A N and that

Ext0(M,N) = HomA(M,N).

(ii) Show that the group Ext1(M,N) as defined here is canonically

isomorphic to the one defined in Problem 3.9.1.

(iii) Let

0 → N1 → N2 → N3 → 0

be a short exact sequence of left A-modules.

Show that there are long exact sequences

0 → HomA(M,N1) → HomA(M,N2) → HomA(M,N3) →

Ext1(M,N1) → Ext1(M,N2) → Ext1(M,N3) → Ext2(M,N1) → . . .

and

. . .→ Tor2(M,N3) → Tor1(M,N1) → Tor1(M,N2) → Tor1(M,N3)

→M ⊗A N1 →M ⊗A N2 →M ⊗A N3 → 0.

This shows that, as we mentioned above, the Tor and Ext groups

“quantify” the extent to which the functors M⊗A and HomA(M, ?)

are not exact.

Hint: Use Problem 7.8.5.

(iv) Show that TorA
i (M,N) can be computed by taking a projec-

tive resolution ofN , tensoring it with M , and computing cohomology.
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Hint: Show first that TorA
i (M,N) can be computed by tensoring

two projective resolutions, for M and for N , and computing cohomol-

ogy.

(v) Let 0 → M1 → M2 → M3 → 0 be a short exact sequence

of left A-modules. Let P 1
• and P 3

• be projective resolutions of M1

and M3. Construct a projective resolution of M2 with terms P 2
i :=

P 1
i ⊕P 3

i (use Exercise 8.1.4). Use it to show that for any left A-module

N there are long exact sequences

0 → HomA(M3, N) → HomA(M2, N) → HomA(M1, N) →
Ext1(M3, N) → Ext1(M2, N) → Ext1(M1, N) → Ext2(M3, N) → . . .

and

· · · → Tor2(M3, N) → Tor1(M1, N) → Tor1(M2, N) → Tor1(M3, N)

→M1 ⊗A N →M2 ⊗A N →M3 ⊗A N → 0.

Problem 8.2.7. (i) Let A = Z and let M,N be finitely generated

abelian groups. Compute Tori(M,N), Exti(M,N) (Hint: Reduce to

the case of cyclic groups using the classification theorem for finite

abelian groups.)

(ii) Do the same for A = k[x] and M,N being any finitely gener-

ated A-modules.

Problem 8.2.8. Show that if A1, A2 are algebras over a field k and

Mi, Ni are left Ai-modules, then

TorA1⊗A2

i (M1 ⊗M2, N1 ⊗N2) =
⊕

j+m=i

TorA1

j (M1, N1) ⊗ TorA2
m (M2, N2).

Similarly,

Exti
A1⊗A2

(M1 ⊗M2, N1 ⊗N2) =⊕

j+m=i

Extj
A1

(M1, N1) ⊗ Extm
A2

(M2, N2),

if Ni are finite dimensional.

In a similar way one can define Tor and Ext groups in any abelian

category which has enough projectives; i.e., any object is a quotient

of a projective object (this condition insures that every object has a

projective resolution).
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Exercise 8.2.9. (i) Show that the category of finite abelian groups or

finite dimensional k[x]-modules does not contain nonzero projective

objects (so it does not have enough projectives).

(ii) Let A be a finitely generated commutative ring. Show that

the category of finitely generated A-modules has enough projectives.

Problem 8.2.10. Let V be a finite dimensional vector space over

a field k. Let Ci = SV ⊗ ∧iV . We can view Ci as the space of

polynomial functions on V ∗ with values in ∧iV . Define the differential

di : Ci → Ci−1 by the formula

di(f)(u) = ιuf(u), u ∈ V ∗,

where ιu : ∧iV → ∧i−1V is the contraction defined by the formula

ιu(v1 ∧ · · · ∧ vi) =

i∑

j=1

(−1)ju(vj)v1 ∧ . . . v̂j · · · ∧ vi.

(i) Show that C• is a projective (in fact, free) resolution of k

(with trivial action of V ) as an SV -module. (It is called the Koszul

resolution.)

(ii) Let V = U ⊕W . Then we can view SW as an SV -module

(U acts by zero). Construct a resolution of SW by free SV -modules

whose terms are Ci = SV ⊗ ∧iU .

Hint: Tensor the Koszul resolution of k as an SU -module by SW .

(iii) Regard SV as an S(V ⊕ V ) = SV ⊗ SV -module using left

and right multiplication. Construct a free resolution of SV as an

SV ⊗SV -module with terms Ci = SV ⊗∧iV ⊗SV (called the Koszul

bimodule resolution).

(iv) By tensoring the resolution of (iii) over SV with any SV -

module M , construct a projective (in fact, free) resolution P• of M

with Pi = 0 for i > dimV . Deduce that for any SV -module N and

any i > dimV , one has

TorSV
i (M,N) = Exti

SV (M,N) = 0

(the Hilbert syzygies theorem).

(v) Compute Exti
SV (k, k) and TorSV

i (k, k).





Chapter 9

Structure of finite
dimensional algebras

In this chapter we return to studying the structure of finite dimen-

sional algebras. Throughout the chapter, we work over an alge-

braically closed field k (of any characteristic).

9.1. Lifting of idempotents

Let A be a ring, and let I ⊂ A be a nilpotent ideal.

Proposition 9.1.1. Let e0 ∈ A/I be an idempotent, i.e., e20 = e0.

There exists an idempotent e ∈ A which is a lift of e0 (i.e., it projects

to e0 under the reduction modulo I). This idempotent is unique up to

conjugation by an element of 1 + I.

Proof. Let us first establish the statement in the case when I2 = 0.

Note that in this case I is a left and right module over A/I . Let e∗ be

any lift of e0 to A. Then e2∗ − e∗ = a ∈ I , and e0a = ae0. We look for

e in the form e = e∗ +b, b ∈ I . The equation for b is e0b+be0−b = a.

Set b = (2e0 − 1)a. Then

e0b+ be0 − b = 2e0a− (2e0 − 1)a = a,

so e is an idempotent. To classify other solutions, set e′ = e + c.

For e′ to be an idempotent, we must have ec + ce − c = 0. This

209
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is equivalent to saying that ece = 0 and (1 − e)c(1 − e) = 0, so

c = ec(1−e)+(1−e)ce = [e, [e, c]]. Hence e′ = (1+[c, e])e(1+[c, e])−1.

Now, in the general case, we prove by induction in k that there

exists a lift ek of e0 to A/Ik+1, and it is unique up to conjugation

by an element of 1 + Ik (this is sufficient as I is nilpotent). Assume

it is true for k = m − 1, and let us prove it for k = m. So we have

an idempotent em−1 ∈ A/Im, and we have to lift it to A/Im+1. But

(Im)2 = 0 in A/Im+1, so we are done. �

Definition 9.1.2. A complete system of orthogonal idempo-

tents in a unital algebra B is a collection of elements e1, . . . , en ∈ B

such that eiej = δijei and
∑n

i=1 ei = 1.

Corollary 9.1.3. Let e01, . . . , e0m be a complete system of orthogonal

idempotents in A/I. Then there exists a complete system of orthog-

onal idempotents e1, . . . , em (eiej = δijei,
∑
ei = 1) in A which lifts

e01, . . . , e0m.

Proof. The proof is by induction in m. For m = 2 this follows from

Proposition 9.1.1. For m > 2, we lift e01 to e1 using Proposition 9.1.1

and then apply the induction assumption to the algebra (1−e1)A(1−
e1). �

9.2. Projective covers

Obviously, every finitely generated projective module over a finite

dimensional algebra A is a direct sum of indecomposable projective

modules, so to understand finitely generated projective modules over

A, it suffices to classify indecomposable projective modules.

Let A be a finite dimensional algebra with simple modules

M1, . . . ,Mn.

Theorem 9.2.1. (i) For each i = 1, . . . , n there exists a unique in-

decomposable finitely generated projective module Pi such that

dim Hom(Pi,Mj) = δij .

(ii) A =
⊕n

i=1(dimMi)Pi.

(iii) Any indecomposable finitely generated projective module over

A is isomorphic to Pi for some i.
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Proof. Recall that A/Rad(A) =
⊕n

i=1 End(Mi) and that Rad(A)

is a nilpotent ideal. Pick a basis of Mi, and let e0ij = Ei
jj , the

rank 1 projectors projecting to the basis vectors of this basis (j =

1, . . . , dimMi). Then e0ij are orthogonal idempotents in A/Rad(A).

So by Corollary 9.1.3 we can lift them to orthogonal idempotents

eij in A. Now define Pij = Aeij . Then A =
⊕

i

⊕dimMi

j=1 Pij ,

so Pij are projective. Also, we have Hom(Pij ,Mk) = eijMk, so

dim Hom(Pij ,Mk) = δik . Finally, Pij is independent of j up to an

isomorphism, as eij for fixed i are conjugate under A× by Proposition

9.1.1; thus we will denote Pij by Pi.

We claim that Pi is indecomposable. Indeed, if Pi = Q1 ⊕ Q2,

then Hom(Ql,Mj) = 0 for all j either for l = 1 or for l = 2, so either

Q1 = 0 or Q2 = 0.

Also, there can be no other indecomposable finitely generated

projective modules, since any indecomposable projective module has

to occur in the decomposition of A. The theorem is proved. �

Definition 9.2.2. The projective module Pi is called the projective

cover of Mi.

Proposition 9.2.3. Let N be any finite dimensional A-module. Then

one has dim HomA(Pi, N) = [N : Mi], the multiplicity of occurrence

on Mi in the Jordan-Hölder series of N .

Proof. If N = Mj , the statement is clear. Also, if

0 → N1 → N2 → N3 → 0

is an exact sequence of A-modules, then the corresponding sequence

0 → HomA(Pi, N1) → HomA(Pi, N2) → HomA(Pi, N3) → 0

is exact, as Pi is projective. This implies the statement. �

9.3. The Cartan matrix of a finite dimensional

algebra

Let A be a finite dimensional algebra with simple modules Mi, i =

1, . . . , n, and projective covers Pi. Let cij := dim HomA(Pi, Pj) =

[Pj : Mi].
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Definition 9.3.1. The matrix C = (cij) is called the Cartan ma-

trix of A.

Obviously, the Cartan matrix of A is a matrix with nonnegative

entries, whose diagonal entries are positive.

Problem 9.3.2. Let A be the algebra over complex numbers gener-

ated by elements g, x with defining relations gx = −xg, x2 = 0, g2 = 1.

Find the simple modules, the indecomposable projective modules, and

the Cartan matrix of A.

9.4. Homological dimension

Let A be a ring, and let M be a left A-module.

Definition 9.4.1. The projective dimension pd(M) of M is the

length of the shortest finite projective resolution ofM (where we agree

that the length of 0 → Pd → · · · → P0 is d). If a finite projective

resolution of M does not exist, then the projective dimension of M

is infinite.

For instance, the projective modules are the modules of projective

dimension 0.

Problem 9.4.2. (i) Show that pd(M) ≤ d if and only if for any left

A-module N , one has Exti(M,N) = 0 for i > d.

Hint: To prove the “if” part, use induction in d and the long

exact sequence of Ext groups in Problem 8.2.6(v).

(ii) Let 0 → M → P → N → 0 be a nonsplit short exact

sequence, and assume that P is projective. Show that pd(N) =

pd(M) + 1.

(iii) Show that if pd(M) = d > 0 and P• is any projective res-

olution of M , then the kernel Kd of the map Pd−1 → Pd−2 in this

resolution is projective (where we agree that P−1 = M). Thus, by

replacing Pd with Kd and all terms to the left of Pd by zero, we get

a projective resolution of M of length d. Deduce that if A and M

are finite dimensional, then there is a finite resolution P• of M with

finite dimensional Pi.
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Definition 9.4.3. One says that a ring A has left (respectively, right)

homological dimension ≤ d if every left (respectively, right) A-

module M has projective dimension ≤ d. The homological dimension

of A is exactly d if it is ≤ d but not ≤ d − 1. If such a d does not

exist, one says that A has infinite homological dimension.

Example 9.4.4. By the Hilbert syzygies theorem (see Problem

8.2.10(iv)), the homological dimension of the polynomial algebra

k[x1, . . . , xn] is n.

Problem 9.4.5. (i) Show that if a finite dimensional algebra A has

finite homological dimension d and if C is the Cartan matrix of A,

then det(C) = ±1.

(ii) What is the homological dimension of k[t]/tn, n > 1? Of the

algebra of Problem 9.3.2?

Problem 9.4.6. (i) Show that the path algebra PQ of any quiver Q

with at least one edge has homological dimension 1. In particular,

the homological dimension of the free algebra k〈x1, . . . , xn 〉 is 1 (for

n ≥ 1).

(ii) Let Q be a finite oriented graph without oriented cycles. Find

the Cartan matrix of its path algebra PQ.

9.5. Blocks

Let A be a finite dimensional algebra over an algebraically closed field

k, and let C denote the category of finite dimensional A-modules.

Definition 9.5.1. Two simple finite dimensional A-modules X,Y

are said to be linked if there is a chain X = M0,M1, . . . ,Mn = Y

such that for each i = 0, . . . , n − 1 either Ext1(Mi,Mi+1) 6= 0 or

Ext1(Mi+1,Mi) 6= 0 (or both).

Here we agree that X is linked to itself (by a chain of length 0).

This linking relation is clearly an equivalence relation, so it defines

a splitting of the set S of isomorphism classes of simple A-modules

into equivalence classes Sk, k ∈ B. The kth block Ck of C is, by

definition, the category of all objects M of C such that all simple

modules occurring in the Jordan-Hölder series of M are in Sk.
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Example 9.5.2. If A is semisimple, each block is equivalent to the

category of vector spaces (and thus has only one simple object). If A

is a commutative local artinian algebra, then there is only one block.

Also there is just one block for the algebra of Problem 9.3.2.

Problem 9.5.3. (i) Show that there is a natural bijection between

blocks of C and indecomposable central idempotents ek of A (i.e., ones

that cannot be nontrivially split in a sum of two central idempotents),

such that Ck is the category of finite dimensional ekA-modules.

(ii) Show that any indecomposable object of C lies in some Ck and

that Hom(M,N) = 0 if M ∈ Ck, N ∈ Cl, k 6= l. Thus, C =
⊕

k∈B Ck.

(iii) Determine the blocks in the category of left A-modules for

A = k[S3], where k is of characteristic 2.

9.6. Finite abelian categories

Let C be a k-linear abelian category in which any object has finite

length (i.e., a finite filtration whose successive quotients are simple).

Assume that for every simple object X of C, one has End(X) = k.

Note that in such a category, Hom spaces are finite dimensional (check

it!).

Definition 9.6.1. Let us say that C is finite if it has enough pro-

jectives and finitely many simple objects (up to an isomorphism).

For example, as we have shown, the category of finite dimensional

modules over a finite dimensional algebra is finite. Below we will see

that the converse is also true.

Definition 9.6.2. An object P of an abelian category C is said to be

a projective generator (or progenerator) if it is projective and

every object is a quotient of a multiple of P .

For example, in the category of modules over a ring A, the free

module A is a projective generator.

Exercise 9.6.3. Show that in a finite abelian category, P is a pro-

jective generator if and only if for every simple object L, one has

Hom(P,L) 6= 0. Deduce that any finite abelian category has a pro-

jective generator.
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Now let C be a finite abelian category with a projective generator

P . Let B = End(P )op (a finite dimensional algebra acting on the

right on P ). Let B − fmod denote the category of finite dimensional

left B-modules. Consider the functor F : C → B− fmod given by the

formula F (M) = Hom(P,M).

Theorem 9.6.4. The functor F is an equivalence of categories. Thus,

any finite abelian category over a field k is equivalent to the category

of modules over a finite dimensional k-algebra.

The proof of Theorem 9.6.4 is contained in the following problem.

Problem 9.6.5. Let G : B − fmod → C be the functor defined by

G(X) := P ⊗B X , where P ⊗B X is the cokernel of the morphism

ψ : P ⊗ B ⊗ X → P ⊗ X given by ψ = aP ⊗ Id − Id ⊗ aX (where

aP : P ⊗ B → P, aX : B ⊗X → X are the morphisms representing

the actions of B on P and X).

(i) Show that F ◦G ∼= Id. That is, for every X ∈ B− fmod, show

that X is naturally isomorphic to Hom(P, P ⊗B X). (For this you

should only need that P is a nonzero projective object.)

(ii) For any X ∈ C, construct a natural morphism

ξ : P ⊗B Hom(P,X) → X,

and show that it is surjective.

(iii) Show that G ◦ F ∼= Id. To this end, consider the short exact

sequence

0 → K → P ⊗B Hom(P,X) → X → 0,

where the third map is ξ. Apply the functor F to this sequence

and use (i) to conclude that K = 0 and hence ξ is an isomorphism.

Conclude that the functors G and F are quasi-inverse to each other

and hence are equivalences of categories.

9.7. Morita equivalence

In this section we will discuss the theory of Morita equivalence of

finite dimensional algebras. We note that this theory extends with

appropiate changes to the infinite dimensional case.
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Theorem 9.6.4 shows that a finite abelian category C can be iden-

tified with the category of finite dimensional modules over a finite

dimensional algebra B, once we choose a projective generator P of

C. However, the projective generator is not unique. Namely, let

P1, . . . , Pm be the indecomposable projective objects of C (they make

sense by Theorem 9.6.4). Then all the projective generators of C are

the objects of the form Pn :=
⊕m

i=1 niPi, where ni ≥ 1 (check it!).

Defining Bn = Bn(C) := End(Pn)op, we see that the algebras Bn are

all the finite dimensional algebras whose category of finite dimensional

modules is equivalent to C.

Definition 9.7.1. Finite dimensional algebrasA and B are said to be

Morita equivalent if the abelian categories A− fmod and B− fmod

are equivalent.

Thus, we obtain that Morita equivalence classes of finite dimen-

sional algebras are the collections of the form {Bn(C),n ∈ Nm}.
Note that the dimension of Bn is

∑
cijninj , where (cij) is the

Cartan matrix of C. In particular, the algebra B = Bn with the

smallest possible dimension,
∑
cij , corresponds to the case when all

ni = 1, i.e., to the projective generator P =
⊕

i Pi. It is easy to see

that this algebra is the only one of the Bn for which Bn/Rad(Bn) =⊕
i Matni

(k) is commutative.

Definition 9.7.2. A finite dimensional algebra B with commutative

B/Rad(B) is called basic.

So we have the following corollary of Theorem 9.6.4.

Corollary 9.7.3. (i) Any finite abelian category C is equivalent to

the category of finite dimensional modules over a unique basic algebra

B = B(C).

(ii) Any finite dimensional algebra A is Morita equivalent to a

unique basic algebra B = BA, such that dimBA ≤ dimA.
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