
1. Rings, ideals, and modules

1.1. Rings. Noncommutative algebra studies properties of rings (not nec-
essarily commutative) and modules over them. By a ring we mean an asso-
ciative ring with unit 1.

We will see many interesting examples of rings. The most basic example
of a ring is the ring EndM of endomorphisms of an abelian group M , or a
subring of this ring.

Let us recall some basic definitions concerning rings.
Algebra over a field k: A ring A containing k, such that k is central

in A, i.e. αx = xα, α ∈ k, x ∈ A.
Invertible element: An element a of a ring A such that there exists

b ∈ A (the inverse of A) for which ab = ba = 1.
A (unital) subring: A subset B of a ring A closed under multiplication

and containing 1.
Division algebra: A ring A where all nonzero elements are invertible.

Remark 1.1. Let A be a vector space over a field k equipped with a linear
map µ : A⊗A → A (the tensor product is over k). Then µ equips A with a
structure of a unital associative algebra if and only if (µ⊗Id)◦µ = (Id⊗µ)◦µ,
and there is an element 1 ∈ A such that µ(a ⊗ 1) = µ(1 ⊗ a) = a.

Exercises. 1. Show that any division algebra is an algebra over the field
of rational numbers Q or the field Fp of prime order.

2. Give an example of a ring A and elements a, b ∈ A such that ab = 1
but ba 6= 1. Can this happen if A is a finite dimensional algebra over k?

3. Let k be an algebraically closed field, and D a finite dimensional
division algebra over k. Show that D = k.

4. Let H be a four-dimensional algebra over the field R of real numbers
with basis 1, i, j, k and multiplication law ij = −ji = k, jk = −kj = i, ki =
−ik = j, i2 = j2 = k2 = −1. This algebra is called the algebra of quater-
nions. Show that H is a division algebra (it is the only noncommutative one
over R).

1.2. Modules. A left module over a ring A is an abelian group M to-
gether with a homomorphism of unital rings ρ : A → EndM (so we require
that ρ(ab) = ρ(a)ρ(b), and ρ(1) = 1). Alternatively, a left module can be de-
fined as a biadditive map A×M → M , (a, v) 7→ av, such that (ab)v = a(bv);
namely, av = ρ(a)v. Modules are also called representations, since in the
first version of the definition, we represent each element a ∈ A by an endo-
morphism ρ(a).

Remark. Note that if A is an algebra over k then M is a vector space
over k, and ρ(a) : M → M is a linear operator, while the multiplication
defines a linear map A ⊗ M → M .

A right module can be defined as an abelian group M equipped with a
biadditive map M × A → M , (a, v) 7→ va, such that v(ab) = (va)b. It can
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also be defined as an abelian group M equipped with an antihomomorphism
ρ : A → EndM , i.e. ρ(ab) = ρ(b)ρ(a) and ρ(1) = 1.

Left (respectively, right) modules over a ring A form a category, where
objects are modules and morphisms are module homomorphisms, i.e. group
homomorphisms between modules which commute with the action of A.
These categories are denoted by A−Mod and Mod−A, respectively. These
categories admit a nice notion of direct sum, as well as those of a submodule,
quotient module, kernel and cokernel of a homomorphism; in other words,
they are examples of so-called abelian categories, which we’ll discuss later.

Any ring is automatically a left and right module over itself, via the
multiplication map. The same is true for a direct sum of any (not necessarily
finite) collection of copies of A. A module of this form is called free. It is
clear that any module is a quotient of a free module.

A module M is called irreducible (or simple) if it is nonzero, and its
only submodules are 0 and M . A module is called indecomposable if it
is not isomorphic to a direct sum of two nonzero modules. Clearly, every
irreducible module is indecomposable. A module is called semisimple if it
is isomorphic to a direct sum of simple modules.

Exercises. 5. Give an example of an indecomposable module which is
reducible.

6. Let D be a division algebra. Show that any (left or right) D-module M
is free (you may assume, for simplicity, that M has finitely many generators).
Such modules are called left, respectively right, vector spaces over D.

Remark. The basic theory of vector spaces over a not necessarily com-
mutative division algebra is the same as that in the commutative case, i.e.,
over a field (if you remember to distinguish between left and right modules),
since the commutativity of the field is not used in proofs.

If M is a left A-module, we denote by EndA(M) the set of module ho-
momorphisms from M to M . This set is actually a ring. It is convenient
to define multiplication in this ring by ab = b ◦ a. This way, M becomes
a right module over EndA(M), i.e., we can write the action of elements of
EndA(M) on M as right multiplications: m → mx, x ∈ EndA(M).

Exercise. 7. Show that EndA(A) = A.

1.3. Ideals. A subgroup I in a ring A is a left ideal if AI = I, a right
ideal if IA = A, and a two-sided ideal (or simply ideal) if it is both a left
and a right ideal. We say that A is a simple ring if it does not contain any
nontrivial two-sided ideals (i.e., different from 0 and A).

Exercises. 8. If I is a left (respectively, right) ideal in A then I,A/I
are left (respectively, right) A-modules (namely, I is a submodule of A). If
I 6= A is a two-sided ideal then A/I is a ring, and I is the kernel of the
natural homomorphism A → A/I.

9. Let Iα ⊂ A be a collection of left, right, or two-sided ideals. Then
∑

α Iα, ∩αIα are left, right, or two-sided ideals, respectively. Also, if I, J
are subspaces in A, then the product IJ is a left ideal if so is I and a right
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ideal if so is J . In particular, if I is a two-sided ideal, then so is its power
In.

10. A is a division algebra if and only if any left ideal in A is trivial if
and only if any right ideal in A is trivial.

11. Let I be a left (respectively, two-sided) ideal in a ring A. Then the
module (respectively, ring) A/I is simple if and only if I 6= A is a maximal
ideal in A, i.e. any ideal strictly bigger than I must equal A.

Proposition 1.2. Let D be a division algebra, and n an integer. The algebra
A := Matn(D) is simple.

Proof. We must show that for any nonzero element x ∈ A, we have AxA =
A. Let x = (xij), and pick p, q so that xpq 6= 0. Then x−1

pq EppxEqq = Epq,
where Eij are elementary matrices. So Epq ∈ AxA. Then Eij = EipEpqEqj ∈
AxA, so AxA = A. �

Exercise. 12. Check that if D is a division algebra, then Dn is a simple
module over Matn(D).

1.4. Schur’s lemma and density theorem. In this subsection we study
simple modules over rings. We start by proving the following essentially
trivial statement, which is known as Schur’s lemma.

Lemma 1.3. (i) Let M,N be a simple A-modules, and f : M → N is a
nonzero homomorphism. Then f is an isomorphism.

(ii) The algebra EndA(M) of A-endomorphisms of a simple module M is
a division algebra.

Proof. (i) The image of f is a nonzero submodule in N , hence must equal
N . The kernel of f is a proper submodule of M , hence must equal zero. So
f is an isomorphism.

(ii) Follows from (i). �

Schur’s lemma allows us to classify submodules in semisimple modules.
Namely, let M be a semisimple A-module, M = ⊕k

i=1niMi, where Mi are
simple and pairwise nonisomorphic A-modules, ni are positive integers, and
niMi denotes a direct sum of ni copies of Mi. Let Di = EndA(Mi).

Proposition 1.4. Let N be a submodule of M . Then N is isomorphic
to ⊕k

i=1riMi, ri ≤ ni, and the inclusion φ : N → M is a direct sum of
inclusions φi : riMi → niMi, which are given by multiplication of a row
vector of elements of Mi (of length ri) by a certain ri-by-ni matrix Xi over
Di with left-linearly independent rows: φi(m1, ...,mri

) = (m1, ...,mri
)Xi.

The submodule N coincides with M iff ri = ni for all i.

Proof. The proof is by induction in n =
∑k

i=1 ni. The base of induction
(n = 1) is clear. To perform the induction step, let us assume that N is
nonzero, and fix a simple submodule P ⊂ N . Such P exists. Indeed, if N
itself is not simple, let us pick a direct summand Ms of M such that the
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projection p : N → Ms is nonzero, and let K be the kernel of this projection.
Then K is a nonzero submodule of n1M1 ⊕ ... ⊕ (ns − 1)Ms ⊕ ... ⊕ nkMk

(as N is not simple), so K contains a simple submodule by the induction
assumption.

Now, by Schur’s lemma, the inclusion φ|P : P → M lands in niMi for a
unique i (such that P is isomorphic to Mi), and upon identification of P
with Mi is given by the formula m 7→ (mq1, ...,mqni

), where ql ∈ Di are not
all zero.

Now note that the group Gi := GLni
(Di) of invertible ni-by-ni matri-

ces over Di acts on niMi by right multiplication, and therefore acts on
submodules of M , preserving the property we need to establish: namely,
under the action of g ∈ Gi, the matrix Xi goes to Xig, while Xj , j 6= i
do not change. Take g ∈ Gi such that (q1, ..., qni

)g = (1, 0, ..., 0). Then
Ng contains the first summand Mi of niMi, hence Ng = Mi ⊕ N ′, where
N ′ ⊂ n1M1⊕ ...⊕(ni−1)Mi⊕ ...⊕nkMk, and the required statement follows
from the induction assumption. The proposition is proved. �

Corollary 1.5. Let M be a simple A-module, and v1, ..., vn ∈ M be any
vectors linearly independent over D = EndA(M). Then for any w1, ..., wn ∈
M there exists an element a ∈ A such that avi = wi.

Proof. Assume the contrary. Then the image of the map A → nM given
by a → (av1, ..., avn) is a proper submodule, so by Proposition 1.4 it cor-
responds to an r-by-n matrix X, r < n. Let (q1, ..., qn) be a vector in Dn

such that X(q1, ..., qn)T = 0 (it exists due to Gaussian elimination, because
r < n). Then a(

∑

viqi) = 0 for all a ∈ A, in particular for a = 1, so
∑

viqi = 0 - contradiction. �

Corollary 1.6. (the Density Theorem). (i) Let A be a ring and M a simple
A-module, which is identified with Dn as a right module over D = EndAM .
Then the image of A in EndM is Matn(D).

(ii) Let M = M1 ⊕ ...⊕Mk, where Mi are simple pairwise nonisomorphic
A-modules, identified with Dni

i as right Di-modules, where Di = EndA(Mi).

Then the image of A in EndM is ⊕k
i=1Matni

(Di).

Proof. (i) Let B be the image of A in EndM . Then B ⊂ Matn(D). We
want to show that B = Matn(D). Let c ∈ Matn(D), and let v1, ..., vn be a
basis of M over D. Let wj =

∑

vicij. By Corollary 1.5, there exists a ∈ A
such that avi = wi. Then a maps to c ∈ Matn(D), so c ∈ B, and we are
done.

(ii) Let Bi be the image of A in EndMi. Then by Proposition 1.4, B =
⊕iBi. Thus (ii) follows from (i). �

1.5. Wedderburn theorem for simple rings. Are there other simple
rings than matrices over a division algebra? Definitely yes.

Exercise. 13. Let A be the algebra of differential operators in one
variable, whose coefficients are polynomials over a field k of characteristic
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zero. That is, a typical element of A is of the form

L = am(x)
d

dx

m

+ .... + a0(x),

ai ∈ k[x]. Show that A is simple. (Hint: If I is a nontrivial ideal in A
and L ∈ I a nonzero element, consider [x,L], [x[x,L]],...,to get an nonzero
element P ∈ I which is a polynomial. Then repeatedly commute it with
d/dx to show that 1 ∈ I, and thus I = A). Is the statement true if k has
characteristic p > 0?

However, the answer becomes “no” if we impose the “descending chain
condition”. Namely, one says that a ring A satisfies the “descending chain
condition” (DCC) for left (or right) ideals if any descending sequence of left
(respectively, right) ideals I1 ⊃ I2 ⊃ ... in A stabilizes, i.e. there is N such
that for all n ≥ N one has In = In+1.

It is clear that if a ring A contains a division algebra D and A is finite
dimensional as a left vector space over D, then A satisfies DCC, because
any left ideal in A is left vector space over D, and hence the length of any
strictly descending chain of left ideals is at most dimD(A). In particular,
the matrix algebra Matn(D) satisfies DCC. Also, it is easy to show that the
direct sum of finitely many algebras satisfying DCC satisfies DCC.

Thus, Matn(D) is a simple ring satisfying DCC for left and right ideals.
We will now prove the converse statement, which is known as Wedderburn’s
theorem.

Theorem 1.7. Any simple ring satisfying DCC for left or right ideals is
isomorphic to a matrix algebra over some division algebra D.

The proof of the theorem is given in the next subsection.

1.6. Proof of Wedderburn’s theorem.

Lemma 1.8. If A is a ring satisfying the DCC for left ideals, and M is a
simple A-module, then M is finite dimensional over D = EndA(M).

Proof. If M is not finite dimensional, then there is a sequence v1, v2, ... of
vectors in M which are linearly independent over D. Let In be the left ideal
in A such that Inv1 = ... = Invn = 0, then In+1 ⊂ In, and In+1 6= In, as In

contains an element a such that avn+1 6= 0 (by Corollary 1.5). Thus DCC
is violated. �

Now we can prove Theorem 1.7.
Because A satisfies DCC for left ideals, there exists a minimal left ideal

M in A, i.e. such that any left ideal strictly contained in M must be zero.
Then M is a simple A-module. Therefore, by Schur’s lemma, EndAM is a
division algebra; let us denote it by D. Clearly, M is a right module over
D. By Lemma 1.8, M = Dn for some n, so, since A is simple, we get that
A ⊂ Matn(D). Since M is simple, by the density theorem A = Matn(D), as
desired.
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1.7. The radical and the Wedderburn theorem for semisimple rings.
Let A be a ring satisfying the DCC. The radical RadA of A is the set of all
elements a ∈ A which act by zero in any simple A-module. We have seen
above that a simple A-module always exists, thus RadA is a proper two-
sided ideal in A. We say that A is semisimple if RadA = 0. So A/RadA
is a semisimple ring.

Theorem 1.9. (Wedderburn theorem for semisimple rings) A ring A sat-
isfying DCC is semisimple if and only if it is a direct sum of simple rings,
i.e. a direct sum of matrix algebras over division algebras. Moreover, the
sizes of matrices and the division algebras are determined uniquely.

Proof. Just the “only if” direction requires proof. By the density theorem,
it is sufficient to show that A has finitely many pairwise non-isomorphic
simple modules. Assume the contrary, i.,e. that M1,M2, ... is an infinite
sequence of pairwise non-isomorphic simple modules. Then we can define
Im to be the set of a ∈ A acting by zero in M1, ...,Mm, and by the density
theorem the sequence I1, I2, ... is a strictly decreasing sequence of ideals,
which violates DCC. The theorem is proved. �

In particular, if A is a finite dimensional algebra over an algebraically
closed field k, Wedderburn’s theorem tells us that A is semisimple if and
only if it is the direct sum of matrix algebras Matni

(k). This follows from
the fact, mentioned above, that any finite dimensional division algebra over
k must coincide with k itself.

Exercise. 14. Show that the radical of a finite dimensional algebra A
over an algebraically closed field k is a nilpotent ideal, i.e. some power of it
vanishes, and that any nilpotent ideal in A is contained in the radical of A.
In particular, the radical of A may be defined as the sum of all its nilpotent
ideals.

1.8. Idempotents and Peirce decomposition. An element e of an al-
gebra A is called an idempotent if e2 = e. If e is an idempotent, so is
1 − e, and we have a decomposition of A in a direct sum of two modules:
A = Ae ⊕ A(1 − e). Thus we have

A = EndA(A) = EndA(Ae)⊕EndA(A(1−e))⊕HomA(Ae,A(1−e))⊕HomA(A(1−e), Ae).

It is easy to see that this decomposition can be alternatively written as

A = eAe ⊕⊕(1 − e)A(1 − e) ⊕ eA(1 − e) ⊕ (1 − e)Ae.

This decomposition is called the Peirce decomposition.
More generally, we say that a collection of idempotents e1, ..., en in A is

complete orthogonal if eiej = δijei and
∑

i ei = 1. For instance, for any
idempotent e the idempotents e, 1 − e are a complete orthogonal collection.
Given such a collection, we have the Pierce decomposition

A = ⊕n
i,j=1eiAej ,

6



and

eiAej = HomA(Aei, Aej).

1.9. Characters of representations. We will now discuss some basic no-
tions and results of the theory of finite dimensional representations of an
associative algebra A over a field k. For simplicity we will assume that k is
algebraically closed.

Let V a finite dimensional representation of A, and ρ : A → EndV be
the corresponding map. Then we can define the linear function χV : A → k
given by χV (a) = Trρ(a). This function is called the character of V .

Let [A,A] denote the span of commutators [x, y] := xy − yx over all
x, y ∈ A. Then [A,A] ⊆ ker χV . Thus, we may view the character as a
mapping χV : A/[A,A] → k.

Theorem 1.10. (i) Characters of irreducible finite dimensional represen-
tations of A are linearly independent.

(ii) If A is a finite-dimensional semisimple algebra, then the characters
form a basis of (A/[A,A])∗.

Proof. (i) If V1, . . . , Vr are nonisomorphic irreducible finite dimensional rep-
resentations of A, then

ρV1
⊕ · · · ⊕ ρVr

: A → End V1 ⊕ · · · ⊕ End Vr

is surjective by the density theorem, so χV1
, . . . , χVr

are linearly independent.
(Indeed, if

∑

λiχVi
(a) = 0 for all a ∈ A, then

∑

λiTr(Mi) = 0 for all Mi ∈
EndkVi. But the traces Tr(Mi) can take arbitrary values independently, so
it must be that λ1 = · · · = λr = 0.)

(ii) First we prove that [Matd(k),Matd(k)] = sld(k), the set of all matrices
with trace 0. It is clear that [Matd(k),Matd(k)] ⊆ sld(k). If we denote by Eij

the matrix with 1 in the ith row of the jth column and 0’s everywhere else, we
have [Eij , Ejm] = Eim for i 6= m, and [Ei,i+1, Ei+1,i] = Eii − Ei+1,i+1. Now,
{Eim}∪{Eii−Ei+1,i+1} form a basis in sld(k), and thus [Matd(k),Matd(k)] =
sld(k), as claimed.

By Wedderburn’s theorem, we can write A = Matd1
(k) ⊕ · · · ⊕Matdr

(k).
Then [A,A] = sld1

(k) ⊕ · · · ⊕ sldr
(k), and A/[A,A] ∼= kr. By the density

theorem, there are exactly r irreducible representations of A (isomorphic to
kd1 , . . . , kdr , respectively), and therefore r linearly independent characters
in the r-dimensional vector space A/[A,A]. Thus, the characters form a
basis. �

1.10. The Jordan-Hölder theorem. Let A be an associative algebra over
an algebraically closed field k. We are going to prove two important theorems
about finite dimensional A-modules - the Jordan-Hölder theorem and the
Krull-Schmidt theorem.

Let V be a representation of A. A (finite) filtration of V is a sequence of
subrepresentations 0 = V0 ⊂ V1 ⊂ ... ⊂ Vn = V .
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Theorem 1.11. (Jordan-Hölder theorem). Let V be a finite dimensional
representation of A, and 0 = V0 ⊂ V1 ⊂ ... ⊂ Vn = V , 0 = V ′

0 ⊂ ... ⊂
V ′

m = V be filtrations of V , such that the representations Wi := Vi/Vi−1 and
W ′

i := V ′
i /V

′
i−1 are irreducible for all i. Then n = m, and there exists a

permutation σ of 1, ..., n such that Wσ(i) is isomorphic to W ′

i .

Proof. First proof (for k of characteristic zero). Let I ⊂ A be the annihi-
lating ideal of V (i.e. the set of elements that act by zero in V ). Replacing A
with A/I, we may assume that A is finite dimensional. The character of V
obviously equals the sum of characters of Wi, and also the sum of characters
of W ′

i . But by Theorem 1.10, the characters of irreducible representations
are linearly independent, so the multiplicity of every irreducible represen-
tation W of A among Wi and among W ′

i are the same. This implies the
theorem.

Second proof (general). The proof is by induction on dimV . The base
of induction is clear, so let us prove the induction step. If W1 = W ′

1 (as
subspaces), we are done, since by the induction assumption the theorem
holds for V/W1. So assume W1 6= W ′

1. In this case W1 ∩ W ′
1 = 0 (as

W1,W
′
1 are irreducible), so we have an embedding f : W1 ⊕ W ′

1 → V . Let
U = V/(W1 ⊕ W ′

1), and 0 = U0 ⊂ U1 ⊂ ... ⊂ Up = U be a filtration of U
with simple quotients Zi = Ui/Ui−1. Then we see that:

1) V/W1 has a filtration with successive quotients W ′
1, Z1, ..., Zp, and an-

other filtration with successive quotients W2, ....,Wn.
2) V/W ′

1 has a filtration with successive quotients W1, Z1, ..., Zp, and an-
other filtration with successive quotients W ′

2, ....,W
′
m.

By the induction assumption, this means that the collection of irreducible
modules with multiplicities W1,W

′
1, Z1, ..., Zp coincides on one hand with

W1, ...,Wn, and on the other hand, with W ′
1, ...,W

′
m. We are done. �

Theorem 1.12. (Krull-Schmidt theorem) Any finite dimensional represen-
tation of A can be uniquely (up to order of summands) decomposed into a
direct sum of indecomposable representations.

Proof. It is clear that a decomposition of V into a direct sum of indecom-
posable representations exists, so we just need to prove uniqueness. We will
prove it by induction on dimV . Let V = V1 ⊕ ... ⊕ Vm = V ′

1 ⊕ ... ⊕ V ′
n. Let

is : Vs → V , i′s : V ′
s → V , ps : V → Vs, p′s : V → V ′

s be the natural maps
associated to these decompositions. Let θs = p1i

′
sp

′
si1 : V1 → V1. We have

∑n
s=1 θs = 1. Now we need the following lemma.

Lemma 1.13. Let W be a finite dimensional indecomposable representation
of A. Then

(i) Any homomorphism θ : W → W is either an isomorphism or nilpotent;
(ii) If θs : W → W , s = 1, ..., n are nilpotent homomorphisms, then so is

θ := θ1 + ... + θn.
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Proof. (i) Generalized eigenspaces of θ are subrepresentations of V , and V
is their direct sum. Thus, θ can have only one eigenvalue λ. If λ is zero, θ
is nilpotent, otherwise it is an isomorphism.

(ii) The proof is by induction in n. The base is clear. To make the
induction step (n − 1 to n), assume that θ is not nilpotent. Then by (i)
θ is an isomorphism, so

∑n
i=1 θ−1θi = 1. The morphisms θ−1θi are not

isomorphisms, so they are nilpotent. Thus 1−θ−1θn = θ−1θ1+...+θ−1θn−1 is
an isomorphism, which is a contradiction with the induction assumption. �

By the lemma, we find that for some s, θs must be an isomorphism; we
may assume that s = 1. In this case, V ′

1 = Imp′1i1 ⊕ Ker(p1i
′
1), so since V ′

1
is indecomposable, we get that f := p′1i1 : V1 → V ′

1 and g := p1i
′
1 : V ′

1 → V1

are isomorphisms.
Let B = ⊕j>1Vj, B′ = ⊕j>1V

′
j ; then we have V = V1 ⊕ B = V ′

1 ⊕ B′.

Consider the map h : B → B ′ defined as a composition of the natural maps
B → V → B′ attached to these decompositions. We claim that h is an
isomorphism. To show this, it suffices to show that Kerh = 0 (as h is a map
between spaces of the same dimension). Assume that v ∈ Kerh ⊂ B. Then
v ∈ V ′

1 . On the other hand, the projection of v to V1 is zero, so gv = 0.
Since g is an isomorphism, we get v = 0, as desired.

Now by the induction assumption, m = n, and Vj = V ′

σ(j) for some

permutation σ of 2, ..., n. The theorem is proved. �

Exercises. 15. Let A be the algebra of upper triangulaer complex ma-
trices of size n by n.

(i) Decompose A, as a left A-module, into a direct sum of indecomposable
modules Pi.

(ii) Find all the simple modules Mj over A, and construct a filtration of
the indecomposable modules Pi whose quotients are simple modules.

(iii) Classify finitely generated projective modules over A.
16. Let Q be a quiver, i.e. a finite oriented graph. Let A(Q) be the path

algebra of Q over a field k, i.e. the algebra whose basis is formed by paths
in Q (compatible with orientations, and including paths of length 0 from a
vertex to itself), and multiplication is concatenation of paths (if the paths
cannot be concatenated, the product is zero).

(i) Represent the algebra of upper triangular matrices as A(Q).
(ii) Show that A(Q) is finite dimensional iff Q is acyclic, i.e. has no

oriented cycles.
(iii) For any acyclic Q, decompose A(Q) (as a left module) in a direct

sum of indecomposable modules, and classify the simple A(Q)-modules.
(iv) Find a condition on Q under which A(Q) is isomorphic to A(Q)op,

the algebra A(Q) with opposite multiplication. Use this to give an example
of an algebra A that is not isomorphic to Aop.

17. Let A be the algebra of smooth real functions on the real line, such
that a(x + 1) = a(x). Let M be the A-module of smooth functions on the
line such that b(x + 1) = −b(x).
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(i) Show that M is indecomposable and not isomorphic to A, and that
M ⊕ M = A ⊕ A as a left A-module. Thus the conclusion of the Krull-
Schmidt theorem does not hold in this case (the theorem fails because the
modules we consider are infinite dimensional).

(ii) Classify projective finitely generated A-modules (this is really the
classification of real vector bundles on the circle).

18. Let 0 → X1 → X2 → X3 be a complex in some abelian category (i.e.
the composition of any two maps is zero). Show that if for any object Y the
corresponding complex 0 → Hom(Y,X1) → Hom(Y,X2) → Hom(Y,X3) is
exact, then 0 → X1 → X2 → X3 is exact.

19. Extensions of representations. Let A be an algebra over an alge-
braically closed field k, and V,W be a pair of representations of A. We would
like to classify representations U of A such that V is a subrepresentation of
U , and U/V = W . Of course, there is an obvious example U = V ⊕W , but
are there any others?

Suppose we have a representation U as above. As a vector space, it
can be (non-uniquely) identified with V ⊕ W , so that for any a ∈ A the
corresponding operator ρU (a) has block triangular form

ρU (a) =

(

ρV (a) f(a)
0 ρW (a)

)

,

where f : A → Homk(W,V ).
(a) What is the necessary and sufficient condition on f(a) under which

ρU (a) is a representation? Maps f satisfying this condition are called (1-
)cocycles (of A with coefficients in Homk(W,V )). They form a vector space
denoted Z1(W,V ).

(b) Let X : W → V be a linear map. The coboundary of X, dX, is
defined to be the function A → Homk(W,V ) given by dX(a) = ρV (a)X −
XρW (a). Show that dX is a cocycle, which vanishes iff X is a homomor-
phism of representations. Thus coboundaries form a subspace B1(W,V ) ⊂
Z1(W,V ), which is isomorphic to Homk(W,V )/HomA(W,V ). The quotient
Z1(W,V )/B1(W,V ) is denoted Ext1(W,V ).

(c) Show that f, f ′ ∈ Z1(W,V ) and f − f ′ ∈ B1(W,V ) then the corre-
sponding extensions U,U ′ are isomorphic representations of A. Conversely,
if φ : U → U ′ is an isomorphism such that

φ(a) =

(

1V ∗
0 1W

)

then f − f ′ ∈ B1(V,W ). Thus, the space Ext1(W,V ) “classifies” extensions
of W by V .

(d) Assume that W,V are finite dimensional irreducible representations
of A. For any f ∈ Ext1(W,V ), let Uf be the corresponding extension. Show
that Uf is isomorphic to Uf ′ as representations if and only if f and f ′ are
proportional. Thus isomorphism classes (as representations) of nontrivial
extensions of W by V (i.e., those not isomorphic to W ⊕V ) are parametrized
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by the projective space PExt1(W,V ). In particular, every extension is trivial
iff Ext1(W,V ) = 0.

20. (a) Let A = C[x1, ..., xn], and Va, Vb be one-dimensional representa-
tions in which xi act by ai and bi, respectively (ai, bi ∈ C). Find Ext1(Va, Vb)
and classify 2-dimensional representations of A.

(b) Let B be the algebra over C generated by x1, ..., xn with the defining
relations xixj = 0 for all i, j. Show that for n > 1 the algebra B has only
one irreducible representation, but infinitely many non-isomorphic indecom-
posable representations.

21. Let Q be a quiver without oriented cycles, and PQ the path algebra of

Q. Find irreducible representations of PQ and compute Ext1 between them.
Classify 2-dimensional representations of PQ.

22. Let A be an algebra, and V a representation of A. Let ρ : A → EndV .
A formal deformation of V is a formal series

ρ̃ = ρ0 + tρ1 + ... + tnρn + ...,

where ρi : A → End(V ) are linear maps, ρ0 = ρ, and ρ̃(ab) = ρ̃(a)ρ̃(b).
If b(t) = 1 + b1t + b2t

2 + ..., where bi ∈ End(V ), and ρ̃ is a formal
deformation of ρ, then bρ̃b−1 is also a deformation of ρ, which is said to be
isomorphic to ρ̃.

(a) Show that if Ext1(V, V ) = 0, then any deformation of ρ is trivial, i.e.
isomorphic to ρ.

(b) Is the converse to (a) true? (consider the algebra of dual numbers
A = k[x]/x2).

23. Let A be the algebra over complex numbers generated by elements
g, x with defining relations gx = −xg, x2 = 0, g2 = 1. Find the simple
modules, the indecomposable projective modules, and the Cartan matrix of
A.

24. We say that a finite dimensional algebra A has homological dimension
d if every finite dimensional A-module M admits a projective resolution of
length d, i.e. there exists an exact sequence Pd → Pd−1 → ... → P0 → M →
0, where Pi are finite dimensional projective modules. Otherwise one says
that A has infinite homological dimension.

(a) Show that if A has finite homological dimension d, and C is the Cartan
matrix of A, then det(C) = ±1.

(b) What is the homological dimension of k[t]/tn, n > 1? Of the algebra
of problem 23?

25. Let Q be a finite oriented graph without oriented cycles.
(a) Find the Cartan matrix of its path algebra A(Q).
(b) Show that A(Q) has homological dimension 1.
26. Let C be the category of modules over a k-algebra A. Let F be the

forgetful functor from this category to the category of vector spaces, and Id
the identify functor of C.

(a) Show that the algebra of endomorphisms of F is naturally isomorphic
to A.

11



(b) Show that the algebra of endomorphisms of Id is naturally isomorphic
to the center Z(A) of A.

27. Blocks. Let A be a finite dimensional algebra over an algebraically
closed field k, and C denote the category of finite dimensional A-modules.
Two simple finite dimensional A-modules X,Y are said to be linked if there
is a chain X = M0,M1, ...,Mn = Y such that for each i = 1, ..., n either
Ext1(Mi,Mi+1) 6= 0 or Ext1(Mi+1,Mi) 6= 0 (or both). This linking relation
is clearly an equivalence relation, so it defines a splitting of the set S of
simple A-modules into equivalence classes Sk, k ∈ B. The k-th block Ck of
C is, by definition, the category of all objects M of C such that all simple
modules occuring in the Jordan-Hölder series of M are in Sk.

(a) Show that there is a natural bijection between blocks of C and inde-
composable central idempotents ek of A (i.e. ones that cannot be nontrivially
split in a sum of two central idempotents), such that Ck is the category of
finite dimensional ekA-modules.

(b) Show that any indecomposable object of C lies in some Ck, and
Hom(M,N) = 0 if M ∈ Ck, N ∈ Cl, k 6= l. Thus, C = ⊕k∈BCk.

28. Let A be a finitely generated algebra over a field k. One says that A
has polynomial growth if there exists a finite dimensional subspace V ⊂ A
which generates A, and satisfies the “polynomial growth condition”: there
exist C > 0, k ≥ 0 such that one has dim(V n) ≤ Cnk for all n ≥ 1 (where
V n ⊂ A is the span of elements of the form a1...an, ai ∈ V ).

(a) Show that if A has polynomial growth then the polynomial growth
condition holds for any finite dimensional subspace of A.

(b) Show that if V is a finite dimensional subspace generating A, and
[V, V ] ⊂ V (where [V, V ] is spanned by ab − ba, a, b ∈ V ) then A has poly-
nomial growth. Deduce that the algebra Dn of differential operators with
polynomial coefficients in n variables and the universal enveloping algebra
U(g) of a finite dimensional Lie algebra g have polynomial growth.

(c) Show that the algebra generated by x, y with relation xy = qyx (the
q-plane) has polynomial growth (q ∈ k×).

(d) Recall that a nilpotent group is a group G for which the lower central
series L1(G) = G, Li+1(G) = [G,Li(G)] degenerates, i.e., Ln(G) = {1}
for some n (here [G,Li(G)] is the group generated by aba−1b−1, a ∈ G,
b ∈ Li(G)). Let G be a finitely generated nilpotent group. Show that
the group algebra k[G] has polynomial growth (the group algebra has basis
g ∈ G with multiplication law g ∗ h := gh).

29. Show that if A is a domain (no zero divisors) and has polynomial
growth, then the set S = A \ 0 of nonzero elements of A is a left and right
Ore set, and AS−1 is a division algebra (called the skew field of quotients
of A). Deduce that the algebras Dn, U(g), the q-plane have skew fields of
quotients. Under which condition on the nilpotent group G is it true for
k[G]?

30. (a) Show that any ring has a maximal left (and right) ideal (use Zorn’s
lemma).
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(b) We say that a module M over a ring A has splitting property if any
submodule N of M has a complement Q (i.e., M = N ⊕ Q). Show that M
has splitting property if and only if it is semisimple, i.e. a (not necessarily
finite) direct sum of simple modules.

Hint. For the “only if” direction, show first that a module with a splitting
property has a simple submodule (note that this is NOT true for an arbitrary
module, e.g. look at A = k[t] regarded as an A-module!). For this, consider a
submodule N of M generated by one element, and show that N is a quotient
of M , and that N has a simple quotient S (use (a)). Conclude that S is a
simple submodule of M . Then consider a maximal semisimple submodule
of M (use Zorn’s lemma to show it exists).

31. Hochschild homology and cohomology. Let A be an associative
algebra over a field k. Consider the complex C•(A) defined by C i(A) =
A⊗i+2, i ≥ −1, with the differential d : C i(A) → C i−1(A) given by the
formula

d(a0⊗a1...⊗ai+1) = a0a1⊗...⊗ai+1−a0⊗a1a2⊗...⊗ai+1...+(−1)i−1a0⊗...⊗aiai+1.

(a) Show that (C•(A), d) is a resolution of A by free A-bimodules (i.e.
right A◦ ⊗ A-modules), i.e. it is an exact sequence, and C i(A) are free for
i ≥ 0.

(b) Use this resolution to write down explicit complexes to compute the

spaces Exti
A◦⊗A(A,M) and TorA◦⊗A

i (A,M), for a given A-bimodule M .
These spaces are called the Hochschild cohomology and homology spaces
of A with coefficients in M , respectively, and denoted HH i(A,M) and
HHi(A,M).

(c) Show that HH0(A,A) is the center of A, HH0(A,A) = A/[A,A],
HH1(A,A) is the space of derivations of A modulo inner derivations (i.e.
commutators with an element of A).

(d) Let A0 be an algebra over a field k. An n-th order deformation of A0

is an associative algebra A over k[t]/tn+1, free as a module over k[t]/tn+1,
together with an isomorphism of k-algebras f : A/tA → A0. Two such
deformations (A, f) and (A′, f ′) are said to be equivalent if there exists an
algebra isomorphism g : A → A′ such that f ′g = f . Show that equivalence
classes of first order deformations are parametrized by HH 2(A0, A0).

(e) Show that if HH3(A0, A0) = 0 then any n-th order deformation can
be lifted to (i.e., is a quotient by tn+1 of) an n + 1-th order deformation.

(f) Compute the Hochschild cohomology of the polynomial algebra k[x].
(Hint: construct a free resolution of length 2 of k[x] as a bimodule over
itself).

32. (a) Prove the Künneth formula:
If A, B have resolutions by finitely generated free bimodules, then

HHi(A ⊗ B,M ⊗ N) = ⊕j+k=iHHj(A,M) ⊗ HHk(B,N).

(b) Compute the Hochschild cohomology of k[x1, ..., xm].
33. Let k be a field of characteristic zero.
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(a) Show that if V is a finite dimensional vector space over k, and A0 =
k[V ], then HH i(A0, A0) is naturally isomorphic to the space of polyvector
fields on V of rank i, k[V ] ⊗ ∧iV , i.e. the isomorphism commutes with
GL(V ) (use 32(b)).

(b) According to (a), a first order deformation of A0 is determined by a
bivector field α ∈ k[V ] ⊗∧2V . This bivector field defines a skew-symmetric
bilinear binary operation on k[V ], given by {f, g} = (df ⊗dg)(α). Show that
the first order deformation defined by α lifts to a second order deformation
if and only if this operation is a Lie bracket (satisfies the Jacobi identity).
In this case α is said to be a Poisson bracket.

Remark. A deep theorem of Kontsevich says that if α is a Poisson
bracket then the deformation lifts not only to the second order, but actually
to all orders. Curiously, all known proofs of this theorem use analysis, and
a purely algebraic proof is unknown.

(c) Give an example of a first order deformation not liftable to second
order.

34. Let A be an n-th order deformation of an algebra A0, and M0 be an
A0-module. By an m-th order deformation of M0 (for m ≤ n) we mean a
module Mm over Am = A/tm+1A, free over k[t]/(tm+1), together with an
identification of Mm/tMm with M0 as A0-modules.

(a) Assume that n ≥ 1. Show that a first order deformation of M0 exists
iff the image of the deformation class γ ∈ HH2(A0, A0) of A under the
natural map HH2(A0, A0) → HH2(A0,EndM0) = Ext2(M0,M0) is zero.

(b) Show that once one such first order deformation ξ is fixed, all the first
order deformations of M0 are parametrized by elements β ∈ HH1(A0,EndM0) =
Ext1(M0,M0).

(c) Show that if Ext2(M0,M0) = 0 then any first order deformation of
M0 is liftable to n-th order.

35. Show that any finite dimensional division algebra over the field k =
C((t)) is commutative.

Hint. Start with showing that any finite extension of k is C((t1/n)), where
n is the degree of the extension. Conclude that it suffices to restrict the
analysis to the case of division algebras D which are central simple. Let D
have dimension n2 over k, and consider a maximal commutative subfield L
of D (of dimension n). Take an element u ∈ L such that un = t, and find
another element v such that uv = ζvu, ζn = 1, and vn = f(t), so that we
have a cyclic algebra. Derive that n = 1.

36. Show that if V is a generating subspace of an algebra A, and f(n) =
dimV n, then

gk(A) = limsupn→∞

log f(n)

log n
.

37. Let G be the group of transformations of the line generated by y =
x+1 and y = 2x. Show that the group algebra of G over Q has exponential
growth.
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38. Classify irreducible representations of U(sl(2)) over an algebraically
closed field of characteristic p.

39. Let k be an algebraically closed field of characteristic zero, and
q ∈ k×, q 6= ±1. The quantum enveloping algebra Uq(sl(2)) is the alge-
bra generated by e, f,K,K−1 with relations

KeK−1 = q2e,KfK−1 = q−2f, [e, f ] =
K − K−1

q − q−1

(if you formally set K = qh, you’ll see that this algebra, in an appropriate
sense, “degenerates” to U(sl(2)) as q → 1). Classify irreducible representa-
tions of Uq(sl(2)). Consider separately the cases of q being a root of unity
and q being not a root of unity.

40. Show that if R is a commutative unital ring, then a polynomial
p = a0 + a1t + ... + antn, ai ∈ R, is invertible in R[t] iff a0 is invertible and
ai are nilpotent for i > 0.

Hint. Reduce to the case a0 = 1. Then show that if p is nilpotent and
χ : R → K is a morphism from R to an algebraically closed field then
χ(ai) = 0 for all i. Deduce that ai are nilpotent.

41. (a) Show that U(sl2) is a PI algebra iff the ground field k has positive
characteristic. What is the PI degree of this algebra? (smallest r such that
the standard identity S2r = 0 holds).

(b) For which q is the quantum group Uq(sl2) a PI algebra, and what is
its PI degree?

42. Let K be an algebraically closed field of characteristic p (p = 0 or
p > 0 is a prime). For t, k ∈ K, define the algebra Ht,k over K generated
by x, y, s with defining relations

sx = −xs, sy = −ys, s2 = 1, [y, x] = t − ks

(the rational Cherednik algebra of rank 1). For which t, k, p is this a PI
algebra, and what is its PI degree?
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