1. RINGS, IDEALS, AND MODULES

1.1. **Rings.** Noncommutative algebra studies properties of rings (not necessarily commutative) and modules over them. By a ring we mean an associative ring with unit 1.

We will see many interesting examples of rings. The most basic example of a ring is the ring $\operatorname{End} M$ of endomorphisms of an abelian group M, or a subring of this ring.

Let us recall some basic definitions concerning rings.

Algebra over a field k: A ring A containing k, such that k is central in A, i.e. $\alpha x = x\alpha$, $\alpha \in k$, $x \in A$.

Invertible element: An element a of a ring A such that there exists $b \in A$ (the inverse of A) for which ab = ba = 1.

A (unital) subring: A subset B of a ring A closed under multiplication and containing 1.

Division algebra: A ring A where all nonzero elements are invertible.

Remark 1.1. Let A be a vector space over a field k equipped with a linear map $\mu: A \otimes A \to A$ (the tensor product is over k). Then μ equips A with a structure of a unital associative algebra if and only if $(\mu \otimes Id) \circ \mu = (Id \otimes \mu) \circ \mu$, and there is an element $1 \in A$ such that $\mu(a \otimes 1) = \mu(1 \otimes a) = a$.

Exercises. 1. Show that any division algebra is an algebra over the field of rational numbers \mathbb{Q} or the field \mathbb{F}_p of prime order.

- 2. Give an example of a ring A and elements $a, b \in A$ such that ab = 1 but $ba \neq 1$. Can this happen if A is a finite dimensional algebra over k?
- 3. Let k be an algebraically closed field, and D a finite dimensional division algebra over k. Show that D = k.
- 4. Let H be a four-dimensional algebra over the field \mathbb{R} of real numbers with basis 1, i, j, k and multiplication law $ij = -ji = k, jk = -kj = i, ki = -ik = j, i^2 = j^2 = k^2 = -1$. This algebra is called the algebra of quaternions. Show that H is a division algebra (it is the only noncommutative one over \mathbb{R}).
- 1.2. **Modules.** A **left module** over a ring A is an abelian group M together with a homomorphism of unital rings $\rho: A \to \operatorname{End} M$ (so we require that $\rho(ab) = \rho(a)\rho(b)$, and $\rho(1) = 1$). Alternatively, a left module can be defined as a biadditive map $A \times M \to M$, $(a, v) \mapsto av$, such that (ab)v = a(bv); namely, $av = \rho(a)v$. Modules are also called representations, since in the first version of the definition, we represent each element $a \in A$ by an endomorphism $\rho(a)$.

Remark. Note that if A is an algebra over k then M is a vector space over k, and $\rho(a): M \to M$ is a linear operator, while the multiplication defines a linear map $A \otimes M \to M$.

A right module can be defined as an abelian group M equipped with a biadditive map $M \times A \to M$, $(a, v) \mapsto va$, such that v(ab) = (va)b. It can

also be defined as an abelian group M equipped with an antihomomorphism $\rho: A \to \operatorname{End} M$, i.e. $\rho(ab) = \rho(b)\rho(a)$ and $\rho(1) = 1$.

Left (respectively, right) modules over a ring A form a category, where objects are modules and morphisms are module homomorphisms, i.e. group homomorphisms between modules which commute with the action of A. These categories are denoted by $A-\operatorname{Mod}$ and $\operatorname{Mod}-A$, respectively. These categories admit a nice notion of direct sum, as well as those of a submodule, quotient module, kernel and cokernel of a homomorphism; in other words, they are examples of so-called **abelian categories**, which we'll discuss later.

Any ring is automatically a left and right module over itself, via the multiplication map. The same is true for a direct sum of any (not necessarily finite) collection of copies of A. A module of this form is called **free**. It is clear that any module is a quotient of a free module.

A module M is called **irreducible** (or **simple**) if it is nonzero, and its only submodules are 0 and M. A module is called **indecomposable** if it is not isomorphic to a direct sum of two nonzero modules. Clearly, every irreducible module is indecomposable. A module is called **semisimple** if it is isomorphic to a direct sum of simple modules.

Exercises. 5. Give an example of an indecomposable module which is reducible.

6. Let D be a division algebra. Show that any (left or right) D-module M is free (you may assume, for simplicity, that M has finitely many generators). Such modules are called left, respectively right, vector spaces over D.

Remark. The basic theory of vector spaces over a not necessarily commutative division algebra is the same as that in the commutative case, i.e., over a field (if you remember to distinguish between left and right modules), since the commutativity of the field is not used in proofs.

If M is a left A-module, we denote by $\operatorname{End}_A(M)$ the set of module homomorphisms from M to M. This set is actually a ring. It is convenient to define multiplication in this ring by $ab = b \circ a$. This way, M becomes a right module over $\operatorname{End}_A(M)$, i.e., we can write the action of elements of $\operatorname{End}_A(M)$ on M as right multiplications: $m \to mx$, $x \in \operatorname{End}_A(M)$.

Exercise. 7. Show that $\operatorname{End}_A(A) = A$.

1.3. **Ideals.** A subgroup I in a ring A is a **left ideal** if AI = I, a **right ideal** if IA = A, and a **two-sided ideal** (or simply ideal) if it is both a left and a right ideal. We say that A is a **simple ring** if it does not contain any nontrivial two-sided ideals (i.e., different from 0 and A).

Exercises. 8. If I is a left (respectively, right) ideal in A then I, A/I are left (respectively, right) A-modules (namely, I is a submodule of A). If $I \neq A$ is a two-sided ideal then A/I is a ring, and I is the kernel of the natural homomorphism $A \to A/I$.

9. Let $I_{\alpha} \subset A$ be a collection of left, right, or two-sided ideals. Then $\sum_{\alpha} I_{\alpha}$, $\cap_{\alpha} I_{\alpha}$ are left, right, or two-sided ideals, respectively. Also, if I, J are subspaces in A, then the product IJ is a left ideal if so is I and a right

ideal if so is J. In particular, if I is a two-sided ideal, then so is its power I^n .

- 10. A is a division algebra if and only if any left ideal in A is trivial if and only if any right ideal in A is trivial.
- 11. Let I be a left (respectively, two-sided) ideal in a ring A. Then the module (respectively, ring) A/I is simple if and only if $I \neq A$ is a maximal ideal in A, i.e. any ideal strictly bigger than I must equal A.

Proposition 1.2. Let D be a division algebra, and n an integer. The algebra $A := \operatorname{Mat}_n(D)$ is simple.

Proof. We must show that for any nonzero element $x \in A$, we have AxA = A. Let $x = (x_{ij})$, and pick p, q so that $x_{pq} \neq 0$. Then $x_{pq}^{-1}E_{pp}xE_{qq} = E_{pq}$, where E_{ij} are elementary matrices. So $E_{pq} \in AxA$. Then $E_{ij} = E_{ip}E_{pq}E_{qj} \in AxA$, so AxA = A.

Exercise. 12. Check that if D is a division algebra, then D^n is a simple module over $\operatorname{Mat}_n(D)$.

- 1.4. Schur's lemma and density theorem. In this subsection we study simple modules over rings. We start by proving the following essentially trivial statement, which is known as Schur's lemma.
- **Lemma 1.3.** (i) Let M, N be a simple A-modules, and $f: M \to N$ is a nonzero homomorphism. Then f is an isomorphism.
- (ii) The algebra $\operatorname{End}_A(M)$ of A-endomorphisms of a simple module M is a division algebra.
- *Proof.* (i) The image of f is a nonzero submodule in N, hence must equal N. The kernel of f is a proper submodule of M, hence must equal zero. So f is an isomorphism.

(ii)	Follows from	(i).	
(11)	Tonows from	(1).	-

Schur's lemma allows us to classify submodules in semisimple modules. Namely, let M be a semisimple A-module, $M = \bigoplus_{i=1}^k n_i M_i$, where M_i are simple and pairwise nonisomorphic A-modules, n_i are positive integers, and $n_i M_i$ denotes a direct sum of n_i copies of M_i . Let $D_i = \operatorname{End}_A(M_i)$.

Proposition 1.4. Let N be a submodule of M. Then N is isomorphic to $\bigoplus_{i=1}^k r_i M_i$, $r_i \leq n_i$, and the inclusion $\phi: N \to M$ is a direct sum of inclusions $\phi_i: r_i M_i \to n_i M_i$, which are given by multiplication of a row vector of elements of M_i (of length r_i) by a certain r_i -by- n_i matrix X_i over D_i with left-linearly independent rows: $\phi_i(m_1,...,m_{r_i}) = (m_1,...,m_{r_i})X_i$. The submodule N coincides with M iff $r_i = n_i$ for all i.

Proof. The proof is by induction in $n = \sum_{i=1}^{k} n_i$. The base of induction (n = 1) is clear. To perform the induction step, let us assume that N is nonzero, and fix a simple submodule $P \subset N$. Such P exists. Indeed, if N itself is not simple, let us pick a direct summand M_s of M such that the

projection $p: N \to M_s$ is nonzero, and let K be the kernel of this projection. Then K is a nonzero submodule of $n_1M_1 \oplus ... \oplus (n_s - 1)M_s \oplus ... \oplus n_kM_k$ (as N is not simple), so K contains a simple submodule by the induction assumption.

Now, by Schur's lemma, the inclusion $\phi|_P: P \to M$ lands in n_iM_i for a unique i (such that P is isomorphic to M_i), and upon identification of P with M_i is given by the formula $m \mapsto (mq_1, ..., mq_{n_i})$, where $q_l \in D_i$ are not all zero.

Now note that the group $G_i := GL_{n_i}(D_i)$ of invertible n_i -by- n_i matrices over D_i acts on n_iM_i by right multiplication, and therefore acts on submodules of M, preserving the property we need to establish: namely, under the action of $g \in G_i$, the matrix X_i goes to X_ig , while X_j , $j \neq i$ do not change. Take $g \in G_i$ such that $(q_1, ..., q_{n_i})g = (1, 0, ..., 0)$. Then Ng contains the first summand M_i of n_iM_i , hence $Ng = M_i \oplus N'$, where $N' \subset n_1M_1 \oplus ... \oplus (n_i-1)M_i \oplus ... \oplus n_kM_k$, and the required statement follows from the induction assumption. The proposition is proved.

Corollary 1.5. Let M be a simple A-module, and $v_1, ..., v_n \in M$ be any vectors linearly independent over $D = \operatorname{End}_A(M)$. Then for any $w_1, ..., w_n \in M$ there exists an element $a \in A$ such that $av_i = w_i$.

Proof. Assume the contrary. Then the image of the map $A \to nM$ given by $a \to (av_1, ..., av_n)$ is a proper submodule, so by Proposition 1.4 it corresponds to an r-by-n matrix X, r < n. Let $(q_1, ..., q_n)$ be a vector in D^n such that $X(q_1, ..., q_n)^T = 0$ (it exists due to Gaussian elimination, because r < n). Then $a(\sum v_i q_i) = 0$ for all $a \in A$, in particular for a = 1, so $\sum v_i q_i = 0$ - contradiction.

Corollary 1.6. (the Density Theorem). (i) Let A be a ring and M a simple A-module, which is identified with D^n as a right module over $D = \operatorname{End}_A M$. Then the image of A in $\operatorname{End} M$ is $\operatorname{Mat}_n(D)$.

- (ii) Let $M = M_1 \oplus ... \oplus M_k$, where M_i are simple pairwise nonisomorphic A-modules, identified with $D_i^{n_i}$ as right D_i -modules, where $D_i = \operatorname{End}_A(M_i)$. Then the image of A in $\operatorname{End} M$ is $\bigoplus_{i=1}^k \operatorname{Mat}_{n_i}(D_i)$.
- *Proof.* (i) Let B be the image of A in EndM. Then $B \subset \operatorname{Mat}_n(D)$. We want to show that $B = \operatorname{Mat}_n(D)$. Let $c \in \operatorname{Mat}_n(D)$, and let $v_1, ..., v_n$ be a basis of M over D. Let $w_j = \sum v_i c_{ij}$. By Corollary 1.5, there exists $a \in A$ such that $av_i = w_i$. Then a maps to $c \in \operatorname{Mat}_n(D)$, so $c \in B$, and we are done.
- (ii) Let B_i be the image of A in $\operatorname{End} M_i$. Then by Proposition 1.4, $B = \bigoplus_i B_i$. Thus (ii) follows from (i).
- 1.5. Wedderburn theorem for simple rings. Are there other simple rings than matrices over a division algebra? Definitely yes.

Exercise. 13. Let A be the algebra of differential operators in one variable, whose coefficients are polynomials over a field k of characteristic

zero. That is, a typical element of A is of the form

$$L = a_m(x)\frac{d^m}{dx} + \dots + a_0(x),$$

 $a_i \in k[x]$. Show that A is simple. (Hint: If I is a nontrivial ideal in A and $L \in I$ a nonzero element, consider [x, L], [x[x, L]], ...,to get an nonzero element $P \in I$ which is a polynomial. Then repeatedly commute it with d/dx to show that $1 \in I$, and thus I = A). Is the statement true if k has characteristic p > 0?

However, the answer becomes "no" if we impose the "descending chain condition". Namely, one says that a ring A satisfies the "descending chain condition" (DCC) for left (or right) ideals if any descending sequence of left (respectively, right) ideals $I_1 \supset I_2 \supset ...$ in A stabilizes, i.e. there is N such that for all $n \ge N$ one has $I_n = I_{n+1}$.

It is clear that if a ring A contains a division algebra D and A is finite dimensional as a left vector space over D, then A satisfies DCC, because any left ideal in A is left vector space over D, and hence the length of any strictly descending chain of left ideals is at most $\dim_D(A)$. In particular, the matrix algebra $\operatorname{Mat}_n(D)$ satisfies DCC. Also, it is easy to show that the direct sum of finitely many algebras satisfying DCC satisfies DCC.

Thus, $\operatorname{Mat}_n(D)$ is a simple ring satisfying DCC for left and right ideals. We will now prove the converse statement, which is known as Wedderburn's theorem.

Theorem 1.7. Any simple ring satisfying DCC for left or right ideals is isomorphic to a matrix algebra over some division algebra D.

The proof of the theorem is given in the next subsection.

1.6. Proof of Wedderburn's theorem.

Lemma 1.8. If A is a ring satisfying the DCC for left ideals, and M is a simple A-module, then M is finite dimensional over $D = \text{End}_A(M)$.

Proof. If M is not finite dimensional, then there is a sequence $v_1, v_2, ...$ of vectors in M which are linearly independent over D. Let I_n be the left ideal in A such that $I_nv_1 = ... = I_nv_n = 0$, then $I_{n+1} \subset I_n$, and $I_{n+1} \neq I_n$, as I_n contains an element a such that $av_{n+1} \neq 0$ (by Corollary 1.5). Thus DCC is violated.

Now we can prove Theorem 1.7.

Because A satisfies DCC for left ideals, there exists a minimal left ideal M in A, i.e. such that any left ideal strictly contained in M must be zero. Then M is a simple A-module. Therefore, by Schur's lemma, $\operatorname{End}_A M$ is a division algebra; let us denote it by D. Clearly, M is a right module over D. By Lemma 1.8, $M = D^n$ for some n, so, since A is simple, we get that $A \subset \operatorname{Mat}_n(D)$. Since M is simple, by the density theorem $A = \operatorname{Mat}_n(D)$, as desired.

1.7. The radical and the Wedderburn theorem for semisimple rings. Let A be a ring satisfying the DCC. The radical RadA of A is the set of all elements $a \in A$ which act by zero in any simple A-module. We have seen above that a simple A-module always exists, thus RadA is a proper two-sided ideal in A. We say that A is semisimple if RadA = 0. So A/RadA is a semisimple ring.

Theorem 1.9. (Wedderburn theorem for semisimple rings) A ring A satisfying DCC is semisimple if and only if it is a direct sum of simple rings, i.e. a direct sum of matrix algebras over division algebras. Moreover, the sizes of matrices and the division algebras are determined uniquely.

Proof. Just the "only if" direction requires proof. By the density theorem, it is sufficient to show that A has finitely many pairwise non-isomorphic simple modules. Assume the contrary, i.,e. that $M_1, M_2, ...$ is an infinite sequence of pairwise non-isomorphic simple modules. Then we can define I_m to be the set of $a \in A$ acting by zero in $M_1, ..., M_m$, and by the density theorem the sequence $I_1, I_2, ...$ is a strictly decreasing sequence of ideals, which violates DCC. The theorem is proved.

In particular, if A is a finite dimensional algebra over an algebraically closed field k, Wedderburn's theorem tells us that A is semisimple if and only if it is the direct sum of matrix algebras $\operatorname{Mat}_{n_i}(k)$. This follows from the fact, mentioned above, that any finite dimensional division algebra over k must coincide with k itself.

Exercise. 14. Show that the radical of a finite dimensional algebra A over an algebraically closed field k is a nilpotent ideal, i.e. some power of it vanishes, and that any nilpotent ideal in A is contained in the radical of A. In particular, the radical of A may be defined as the sum of all its nilpotent ideals.

1.8. **Idempotents and Peirce decomposition.** An element e of an algebra A is called an **idempotent** if $e^2 = e$. If e is an idempotent, so is 1 - e, and we have a decomposition of A in a direct sum of two modules: $A = Ae \oplus A(1 - e)$. Thus we have

$$A = \operatorname{End}_A(A) = \operatorname{End}_A(Ae) \oplus \operatorname{End}_A(A(1-e)) \oplus \operatorname{Hom}_A(Ae, A(1-e)) \oplus \operatorname{Hom}_A(A(1-e), Ae).$$

It is easy to see that this decomposition can be alternatively written as

$$A = eAe \oplus \oplus (1-e)A(1-e) \oplus eA(1-e) \oplus (1-e)Ae.$$

This decomposition is called the Peirce decomposition.

More generally, we say that a collection of idempotents $e_1, ..., e_n$ in A is **complete orthogonal** if $e_i e_j = \delta_{ij} e_i$ and $\sum_i e_i = 1$. For instance, for any idempotent e the idempotents e, 1 - e are a complete orthogonal collection. Given such a collection, we have the Pierce decomposition

$$A = \bigoplus_{i,j=1}^{n} e_i A e_j,$$

and

$$e_i A e_j = \operatorname{Hom}_A(A e_i, A e_j).$$

1.9. Characters of representations. We will now discuss some basic notions and results of the theory of finite dimensional representations of an associative algebra A over a field k. For simplicity we will assume that k is algebraically closed.

Let V a finite dimensional representation of A, and $\rho: A \to \operatorname{End} V$ be the corresponding map. Then we can define the linear function $\chi_V: A \to k$ given by $\chi_V(a) = \operatorname{Tr} \rho(a)$. This function is called the character of V.

Let [A, A] denote the span of commutators [x, y] := xy - yx over all $x, y \in A$. Then $[A, A] \subseteq \ker \chi_V$. Thus, we may view the character as a mapping $\chi_V : A/[A, A] \to k$.

Theorem 1.10. (i) Characters of irreducible finite dimensional representations of A are linearly independent.

(ii) If A is a finite-dimensional semisimple algebra, then the characters form a basis of $(A/[A,A])^*$.

Proof. (i) If V_1, \ldots, V_r are nonisomorphic irreducible finite dimensional representations of A, then

$$\rho_{V_1} \oplus \cdots \oplus \rho_{V_r} : A \to \text{End } V_1 \oplus \cdots \oplus \text{End } V_r$$

is surjective by the density theorem, so $\chi_{V_1}, \ldots, \chi_{V_r}$ are linearly independent. (Indeed, if $\sum \lambda_i \chi_{V_i}(a) = 0$ for all $a \in A$, then $\sum \lambda_i \text{Tr}(M_i) = 0$ for all $M_i \in \text{End}_k V_i$. But the traces $\text{Tr}(M_i)$ can take arbitrary values independently, so it must be that $\lambda_1 = \cdots = \lambda_r = 0$.)

(ii) First we prove that $[\operatorname{Mat}_d(k), \operatorname{Mat}_d(k)] = sl_d(k)$, the set of all matrices with trace 0. It is clear that $[\operatorname{Mat}_d(k), \operatorname{Mat}_d(k)] \subseteq sl_d(k)$. If we denote by E_{ij} the matrix with 1 in the *i*th row of the *j*th column and 0's everywhere else, we have $[E_{ij}, E_{jm}] = E_{im}$ for $i \neq m$, and $[E_{i,i+1}, E_{i+1,i}] = E_{ii} - E_{i+1,i+1}$. Now, $\{E_{im}\} \cup \{E_{ii} - E_{i+1,i+1}\}$ form a basis in $sl_d(k)$, and thus $[\operatorname{Mat}_d(k), \operatorname{Mat}_d(k)] = sl_d(k)$, as claimed.

By Wedderburn's theorem, we can write $A = \operatorname{Mat}_{d_1}(k) \oplus \cdots \oplus \operatorname{Mat}_{d_r}(k)$. Then $[A, A] = sl_{d_1}(k) \oplus \cdots \oplus sl_{d_r}(k)$, and $A/[A, A] \cong k^r$. By the density theorem, there are exactly r irreducible representations of A (isomorphic to k^{d_1}, \ldots, k^{d_r} , respectively), and therefore r linearly independent characters in the r-dimensional vector space A/[A, A]. Thus, the characters form a basis.

1.10. **The Jordan-Hölder theorem.** Let A be an associative algebra over an algebraically closed field k. We are going to prove two important theorems about finite dimensional A-modules - the Jordan-Hölder theorem and the Krull-Schmidt theorem.

Let V be a representation of A. A (finite) filtration of V is a sequence of subrepresentations $0 = V_0 \subset V_1 \subset ... \subset V_n = V$.

Theorem 1.11. (Jordan-Hölder theorem). Let V be a finite dimensional representation of A, and $0 = V_0 \subset V_1 \subset ... \subset V_n = V$, $0 = V'_0 \subset ... \subset V'_m = V$ be filtrations of V, such that the representations $W_i := V_i/V_{i-1}$ and $W'_i := V'_i/V'_{i-1}$ are irreducible for all i. Then n = m, and there exists a permutation σ of 1, ..., n such that $W_{\sigma(i)}$ is isomorphic to W'_i .

Proof. First proof (for k of characteristic zero). Let $I \subset A$ be the annihilating ideal of V (i.e. the set of elements that act by zero in V). Replacing A with A/I, we may assume that A is finite dimensional. The character of V obviously equals the sum of characters of W_i , and also the sum of characters of W_i' . But by Theorem 1.10, the characters of irreducible representations are linearly independent, so the multiplicity of every irreducible representation W of A among W_i and among W_i' are the same. This implies the theorem.

Second proof (general). The proof is by induction on dim V. The base of induction is clear, so let us prove the induction step. If $W_1 = W_1'$ (as subspaces), we are done, since by the induction assumption the theorem holds for V/W_1 . So assume $W_1 \neq W_1'$. In this case $W_1 \cap W_1' = 0$ (as W_1, W_1' are irreducible), so we have an embedding $f: W_1 \oplus W_1' \to V$. Let $U = V/(W_1 \oplus W_1')$, and $0 = U_0 \subset U_1 \subset ... \subset U_p = U$ be a filtration of U with simple quotients $Z_i = U_i/U_{i-1}$. Then we see that:

- 1) V/W_1 has a filtration with successive quotients $W'_1, Z_1, ..., Z_p$, and another filtration with successive quotients $W_2, ..., W_n$.
- 2) V/W'_1 has a filtration with successive quotients $W_1, Z_1, ..., Z_p$, and another filtration with successive quotients $W'_2, ..., W'_m$.

By the induction assumption, this means that the collection of irreducible modules with multiplicities $W_1, W'_1, Z_1, ..., Z_p$ coincides on one hand with $W_1, ..., W_n$, and on the other hand, with $W'_1, ..., W'_m$. We are done. \square

Theorem 1.12. (Krull-Schmidt theorem) Any finite dimensional representation of A can be uniquely (up to order of summands) decomposed into a direct sum of indecomposable representations.

Proof. It is clear that a decomposition of V into a direct sum of indecomposable representations exists, so we just need to prove uniqueness. We will prove it by induction on dim V. Let $V = V_1 \oplus ... \oplus V_m = V_1' \oplus ... \oplus V_n'$. Let $i_s: V_s \to V$, $i_s': V_s' \to V$, $p_s: V \to V_s$, $p_s': V \to V_s'$ be the natural maps associated to these decompositions. Let $\theta_s = p_1 i_s' p_s' i_1: V_1 \to V_1$. We have $\sum_{s=1}^n \theta_s = 1$. Now we need the following lemma.

Lemma 1.13. Let W be a finite dimensional indecomposable representation of A. Then

(i) Any homomorphism $\theta: W \to W$ is either an isomorphism or nilpotent; (ii) If $\theta_s: W \to W$, s = 1, ..., n are nilpotent homomorphisms, then so is $\theta := \theta_1 + ... + \theta_n$.

- *Proof.* (i) Generalized eigenspaces of θ are subrepresentations of V, and V is their direct sum. Thus, θ can have only one eigenvalue λ . If λ is zero, θ is nilpotent, otherwise it is an isomorphism.
- (ii) The proof is by induction in n. The base is clear. To make the induction step (n-1 to n), assume that θ is not nilpotent. Then by (i) θ is an isomorphism, so $\sum_{i=1}^n \theta^{-1}\theta_i = 1$. The morphisms $\theta^{-1}\theta_i$ are not isomorphisms, so they are nilpotent. Thus $1-\theta^{-1}\theta_n = \theta^{-1}\theta_1+...+\theta^{-1}\theta_{n-1}$ is an isomorphism, which is a contradiction with the induction assumption. \square

By the lemma, we find that for some s, θ_s must be an isomorphism; we may assume that s=1. In this case, $V_1'=\mathrm{Im}p_1'i_1\oplus\mathrm{Ker}(p_1i_1')$, so since V_1' is indecomposable, we get that $f:=p_1'i_1:V_1\to V_1'$ and $g:=p_1i_1':V_1'\to V_1$ are isomorphisms.

Let $B = \bigoplus_{j>1} V_j$, $B' = \bigoplus_{j>1} V'_j$; then we have $V = V_1 \oplus B = V'_1 \oplus B'$. Consider the map $h: B \to B'$ defined as a composition of the natural maps $B \to V \to B'$ attached to these decompositions. We claim that h is an isomorphism. To show this, it suffices to show that $\operatorname{Ker} h = 0$ (as h is a map between spaces of the same dimension). Assume that $v \in \operatorname{Ker} h \subset B$. Then $v \in V'_1$. On the other hand, the projection of v to v is zero, so v = 0. Since v is an isomorphism, we get v = 0, as desired.

Now by the induction assumption, m=n, and $V_j=V'_{\sigma(j)}$ for some permutation σ of 2,...,n. The theorem is proved.

Exercises. 15. Let A be the algebra of upper triangulaer complex matrices of size n by n.

- (i) Decompose A, as a left A-module, into a direct sum of indecomposable modules P_i .
- (ii) Find all the simple modules M_j over A, and construct a filtration of the indecomposable modules P_i whose quotients are simple modules.
 - (iii) Classify finitely generated projective modules over A.
- 16. Let Q be a quiver, i.e. a finite oriented graph. Let A(Q) be the path algebra of Q over a field k, i.e. the algebra whose basis is formed by paths in Q (compatible with orientations, and including paths of length 0 from a vertex to itself), and multiplication is concatenation of paths (if the paths cannot be concatenated, the product is zero).
 - (i) Represent the algebra of upper triangular matrices as A(Q).
- (ii) Show that A(Q) is finite dimensional iff Q is acyclic, i.e. has no oriented cycles.
- (iii) For any acyclic Q, decompose A(Q) (as a left module) in a direct sum of indecomposable modules, and classify the simple A(Q)-modules.
- (iv) Find a condition on Q under which A(Q) is isomorphic to $A(Q)^{op}$, the algebra A(Q) with opposite multiplication. Use this to give an example of an algebra A that is not isomorphic to A^{op} .
- 17. Let A be the algebra of smooth real functions on the real line, such that a(x+1) = a(x). Let M be the A-module of smooth functions on the line such that b(x+1) = -b(x).

- (i) Show that M is indecomposable and not isomorphic to A, and that $M \oplus M = A \oplus A$ as a left A-module. Thus the conclusion of the Krull-Schmidt theorem does not hold in this case (the theorem fails because the modules we consider are infinite dimensional).
- (ii) Classify projective finitely generated A-modules (this is really the classification of real vector bundles on the circle).
- 18. Let $0 \to X_1 \to X_2 \to X_3$ be a complex in some abelian category (i.e. the composition of any two maps is zero). Show that if for any object Y the corresponding complex $0 \to \operatorname{Hom}(Y,X_1) \to \operatorname{Hom}(Y,X_2) \to \operatorname{Hom}(Y,X_3)$ is exact, then $0 \to X_1 \to X_2 \to X_3$ is exact.
- 19. Extensions of representations. Let A be an algebra over an algebraically closed field k, and V, W be a pair of representations of A. We would like to classify representations U of A such that V is a subrepresentation of U, and U/V = W. Of course, there is an obvious example $U = V \oplus W$, but are there any others?

Suppose we have a representation U as above. As a vector space, it can be (non-uniquely) identified with $V \oplus W$, so that for any $a \in A$ the corresponding operator $\rho_U(a)$ has block triangular form

$$\rho_U(a) = \begin{pmatrix} \rho_V(a) & f(a) \\ 0 & \rho_W(a) \end{pmatrix},$$

where $f: A \to \operatorname{Hom}_k(W, V)$.

- (a) What is the necessary and sufficient condition on f(a) under which $\rho_U(a)$ is a representation? Maps f satisfying this condition are called (1-)cocycles (of A with coefficients in $\operatorname{Hom}_k(W,V)$). They form a vector space denoted $Z^1(W,V)$.
- (b) Let $X:W\to V$ be a linear map. The coboundary of X, dX, is defined to be the function $A\to \operatorname{Hom}_k(W,V)$ given by $dX(a)=\rho_V(a)X-X\rho_W(a)$. Show that dX is a cocycle, which vanishes iff X is a homomorphism of representations. Thus coboundaries form a subspace $B^1(W,V)\subset Z^1(W,V)$, which is isomorphic to $\operatorname{Hom}_k(W,V)/\operatorname{Hom}_A(W,V)$. The quotient $Z^1(W,V)/B^1(W,V)$ is denoted $\operatorname{Ext}^1(W,V)$.
- (c) Show that $f, f' \in Z^1(W, V)$ and $f f' \in B^1(W, V)$ then the corresponding extensions U, U' are isomorphic representations of A. Conversely, if $\phi: U \to U'$ is an isomorphism such that

$$\phi(a) = \begin{pmatrix} 1_V & * \\ 0 & 1_W \end{pmatrix}$$

then $f - f' \in B^1(V, W)$. Thus, the space $\operatorname{Ext}^1(W, V)$ "classifies" extensions of W by V.

(d) Assume that W, V are finite dimensional irreducible representations of A. For any $f \in Ext^1(W, V)$, let U_f be the corresponding extension. Show that U_f is isomorphic to $U_{f'}$ as representations if and only if f and f' are proportional. Thus isomorphism classes (as representations) of nontrivial extensions of W by V (i.e., those not isomorphic to $W \oplus V$) are parametrized

by the projective space $\mathbb{P}\mathrm{Ext}^1(W,V)$. In particular, every extension is trivial iff $\mathrm{Ext}^1(W,V)=0$.

- 20. (a) Let $A = \mathbf{C}[x_1, ..., x_n]$, and V_a, V_b be one-dimensional representations in which x_i act by a_i and b_i , respectively $(a_i, b_i \in \mathbf{C})$. Find $\mathrm{Ext}^1(V_a, V_b)$ and classify 2-dimensional representations of A.
- (b) Let B be the algebra over \mathbb{C} generated by $x_1, ..., x_n$ with the defining relations $x_i x_j = 0$ for all i, j. Show that for n > 1 the algebra B has only one irreducible representation, but infinitely many non-isomorphic indecomposable representations.
- 21. Let Q be a quiver without oriented cycles, and P_Q the path algebra of Q. Find irreducible representations of P_Q and compute Ext^1 between them. Classify 2-dimensional representations of P_Q .
- 22. Let A be an algebra, and V a representation of A. Let $\rho: A \to \text{End}V$. A formal deformation of V is a formal series

$$\tilde{\rho} = \rho_0 + t\rho_1 + \dots + t^n \rho_n + \dots,$$

where $\rho_i: A \to \operatorname{End}(V)$ are linear maps, $\rho_0 = \rho$, and $\tilde{\rho}(ab) = \tilde{\rho}(a)\tilde{\rho}(b)$.

- If $b(t) = 1 + b_1t + b_2t^2 + ...$, where $b_i \in \text{End}(V)$, and $\tilde{\rho}$ is a formal deformation of ρ , then $b\tilde{\rho}b^{-1}$ is also a deformation of ρ , which is said to be isomorphic to $\tilde{\rho}$.
- (a) Show that if $\operatorname{Ext}^1(V,V)=0$, then any deformation of ρ is trivial, i.e. isomorphic to ρ .
- (b) Is the converse to (a) true? (consider the algebra of dual numbers $A=k[x]/x^2$).
- 23. Let A be the algebra over complex numbers generated by elements g, x with defining relations $gx = -xg, x^2 = 0, g^2 = 1$. Find the simple modules, the indecomposable projective modules, and the Cartan matrix of A.
- 24. We say that a finite dimensional algebra A has homological dimension d if every finite dimensional A-module M admits a projective resolution of length d, i.e. there exists an exact sequence $P_d \to P_{d-1} \to \dots \to P_0 \to M \to 0$, where P_i are finite dimensional projective modules. Otherwise one says that A has infinite homological dimension.
- (a) Show that if A has finite homological dimension d, and C is the Cartan matrix of A, then $\det(C) = \pm 1$.
- (b) What is the homological dimension of $k[t]/t^n$, n > 1? Of the algebra of problem 23?
 - 25. Let Q be a finite oriented graph without oriented cycles.
 - (a) Find the Cartan matrix of its path algebra A(Q).
 - (b) Show that A(Q) has homological dimension 1.
- 26. Let \mathcal{C} be the category of modules over a k-algebra A. Let F be the forgetful functor from this category to the category of vector spaces, and Id the identify functor of \mathcal{C} .
- (a) Show that the algebra of endomorphisms of F is naturally isomorphic to A.

- (b) Show that the algebra of endomorphisms of Id is naturally isomorphic to the center Z(A) of A.
- 27. **Blocks.** Let A be a finite dimensional algebra over an algebraically closed field k, and \mathcal{C} denote the category of finite dimensional A-modules. Two simple finite dimensional A-modules X, Y are said to be linked if there is a chain $X = M_0, M_1, ..., M_n = Y$ such that for each i = 1, ..., n either $\operatorname{Ext}^1(M_i, M_{i+1}) \neq 0$ or $\operatorname{Ext}^1(M_{i+1}, M_i) \neq 0$ (or both). This linking relation is clearly an equivalence relation, so it defines a splitting of the set S of simple A-modules into equivalence classes $S_k, k \in B$. The k-th block C_k of C is, by definition, the category of all objects M of C such that all simple modules occurring in the Jordan-Hölder series of M are in S_k .
- (a) Show that there is a natural bijection between blocks of \mathcal{C} and indecomposable central idempotents e_k of A (i.e. ones that cannot be nontrivially split in a sum of two central idempotents), such that \mathcal{C}_k is the category of finite dimensional e_kA -modules.
- (b) Show that any indecomposable object of C lies in some C_k , and Hom(M, N) = 0 if $M \in C_k$, $N \in C_l$, $k \neq l$. Thus, $C = \bigoplus_{k \in B} C_k$.
- 28. Let A be a finitely generated algebra over a field k. One says that A has polynomial growth if there exists a finite dimensional subspace $V \subset A$ which generates A, and satisfies the "polynomial growth condition": there exist C > 0, $k \ge 0$ such that one has $\dim(V^n) \le Cn^k$ for all $n \ge 1$ (where $V^n \subset A$ is the span of elements of the form $a_1...a_n$, $a_i \in V$).
- (a) Show that if A has polynomial growth then the polynomial growth condition holds for any finite dimensional subspace of A.
- (b) Show that if V is a finite dimensional subspace generating A, and $[V,V] \subset V$ (where [V,V] is spanned by ab-ba, $a,b \in V$) then A has polynomial growth. Deduce that the algebra D_n of differential operators with polynomial coefficients in n variables and the universal enveloping algebra $U(\mathfrak{g})$ of a finite dimensional Lie algebra \mathfrak{g} have polynomial growth.
- (c) Show that the algebra generated by x, y with relation xy = qyx (the q-plane) has polynomial growth $(q \in k^{\times})$.
- (d) Recall that a nilpotent group is a group G for which the lower central series $L_1(G) = G$, $L_{i+1}(G) = [G, L_i(G)]$ degenerates, i.e., $L_n(G) = \{1\}$ for some n (here $[G, L_i(G)]$ is the group generated by $aba^{-1}b^{-1}$, $a \in G$, $b \in L_i(G)$). Let G be a finitely generated nilpotent group. Show that the group algebra k[G] has polynomial growth (the group algebra has basis $g \in G$ with multiplication law g * h := gh).
- 29. Show that if A is a domain (no zero divisors) and has polynomial growth, then the set $S = A \setminus 0$ of nonzero elements of A is a left and right Ore set, and AS^{-1} is a division algebra (called the skew field of quotients of A). Deduce that the algebras $D_n, U(\mathfrak{g})$, the q-plane have skew fields of quotients. Under which condition on the nilpotent group G is it true for k[G]?
- 30. (a) Show that any ring has a maximal left (and right) ideal (use Zorn's lemma).

(b) We say that a module M over a ring A has splitting property if any submodule N of M has a complement Q (i.e., $M = N \oplus Q$). Show that M has splitting property if and only if it is semisimple, i.e. a (not necessarily finite) direct sum of simple modules.

Hint. For the "only if" direction, show first that a module with a splitting property has a simple submodule (note that this is NOT true for an arbitrary module, e.g. look at A = k[t] regarded as an A-module!). For this, consider a submodule N of M generated by one element, and show that N is a quotient of M, and that N has a simple quotient S (use (a)). Conclude that S is a simple submodule of M. Then consider a maximal semisimple submodule of M (use Zorn's lemma to show it exists).

31. Hochschild homology and cohomology. Let A be an associative algebra over a field k. Consider the complex $C^{\bullet}(A)$ defined by $C^{i}(A) = A^{\otimes i+2}$, $i \geq -1$, with the differential $d: C^{i}(A) \to C^{i-1}(A)$ given by the formula

$$d(a_0 \otimes a_1 ... \otimes a_{i+1}) = a_0 a_1 \otimes ... \otimes a_{i+1} - a_0 \otimes a_1 a_2 \otimes ... \otimes a_{i+1} ... + (-1)^{i-1} a_0 \otimes ... \otimes a_i a_{i+1}.$$

- (a) Show that $(C^{\bullet}(A), d)$ is a resolution of A by free A-bimodules (i.e. right $A^{\circ} \otimes A$ -modules), i.e. it is an exact sequence, and $C^{i}(A)$ are free for $i \geq 0$.
- (b) Use this resolution to write down explicit complexes to compute the spaces $\operatorname{Ext}_{A^{\circ}\otimes A}^{i}(A,M)$ and $\operatorname{Tor}_{i}^{A^{\circ}\otimes A}(A,M)$, for a given A-bimodule M. These spaces are called the Hochschild cohomology and homology spaces of A with coefficients in M, respectively, and denoted $HH^{i}(A,M)$ and $HH_{i}(A,M)$.
- (c) Show that $HH^0(A, A)$ is the center of A, $HH_0(A, A) = A/[A, A]$, $HH^1(A, A)$ is the space of derivations of A modulo inner derivations (i.e. commutators with an element of A).
- (d) Let A_0 be an algebra over a field k. An n-th order deformation of A_0 is an associative algebra A over $k[t]/t^{n+1}$, free as a module over $k[t]/t^{n+1}$, together with an isomorphism of k-algebras $f:A/tA\to A_0$. Two such deformations (A,f) and (A',f') are said to be equivalent if there exists an algebra isomorphism $g:A\to A'$ such that f'g=f. Show that equivalence classes of first order deformations are parametrized by $HH^2(A_0,A_0)$.
- (e) Show that if $HH^3(A_0, A_0) = 0$ then any *n*-th order deformation can be lifted to (i.e., is a quotient by t^{n+1} of) an n + 1-th order deformation.
- (f) Compute the Hochschild cohomology of the polynomial algebra k[x]. (Hint: construct a free resolution of length 2 of k[x] as a bimodule over itself).
 - 32. (a) Prove the Künneth formula:
 - If A, B have resolutions by finitely generated free bimodules, then

$$HH^{i}(A \otimes B, M \otimes N) = \bigoplus_{j+k=i} HH^{j}(A, M) \otimes HH^{k}(B, N).$$

- (b) Compute the Hochschild cohomology of $k[x_1,...,x_m]$.
- 33. Let k be a field of characteristic zero.

- (a) Show that if V is a finite dimensional vector space over k, and $A_0 = k[V]$, then $HH^i(A_0, A_0)$ is naturally isomorphic to the space of polyvector fields on V of rank i, $k[V] \otimes \wedge^i V$, i.e. the isomorphism commutes with GL(V) (use 32(b)).
- (b) According to (a), a first order deformation of A_0 is determined by a bivector field $\alpha \in k[V] \otimes \wedge^2 V$. This bivector field defines a skew-symmetric bilinear binary operation on k[V], given by $\{f,g\} = (df \otimes dg)(\alpha)$. Show that the first order deformation defined by α lifts to a second order deformation if and only if this operation is a Lie bracket (satisfies the Jacobi identity). In this case α is said to be a Poisson bracket.

Remark. A deep theorem of Kontsevich says that if α is a Poisson bracket then the deformation lifts not only to the second order, but actually to all orders. Curiously, all known proofs of this theorem use analysis, and a purely algebraic proof is unknown.

- (c) Give an example of a first order deformation not liftable to second order.
- 34. Let A be an n-th order deformation of an algebra A_0 , and M_0 be an A_0 -module. By an m-th order deformation of M_0 (for $m \leq n$) we mean a module M_m over $A_m = A/t^{m+1}A$, free over $k[t]/(t^{m+1})$, together with an identification of M_m/tM_m with M_0 as A_0 -modules.
- (a) Assume that $n \geq 1$. Show that a first order deformation of M_0 exists iff the image of the deformation class $\gamma \in HH^2(A_0, A_0)$ of A under the natural map $HH^2(A_0, A_0) \to HH^2(A_0, \operatorname{End} M_0) = \operatorname{Ext}^2(M_0, M_0)$ is zero.
- (b) Show that once one such first order deformation ξ is fixed, all the first order deformations of M_0 are parametrized by elements $\beta \in HH^1(A_0, \operatorname{End} M_0) = \operatorname{Ext}^1(M_0, M_0)$.
- (c) Show that if $\operatorname{Ext}^2(M_0, M_0) = 0$ then any first order deformation of M_0 is liftable to n-th order.
- 35. Show that any finite dimensional division algebra over the field $k = \mathbb{C}((t))$ is commutative.

Hint. Start with showing that any finite extension of k is $\mathbb{C}((t^{1/n}))$, where n is the degree of the extension. Conclude that it suffices to restrict the analysis to the case of division algebras D which are central simple. Let D have dimension n^2 over k, and consider a maximal commutative subfield L of D (of dimension n). Take an element $u \in L$ such that $u^n = t$, and find another element v such that $uv = \zeta vu$, $\zeta^n = 1$, and $v^n = f(t)$, so that we have a cyclic algebra. Derive that n = 1.

36. Show that if V is a generating subspace of an algebra A, and $f(n) = \dim V^n$, then

$$gk(A) = \limsup_{n \to \infty} \frac{\log f(n)}{\log n}.$$

37. Let G be the group of transformations of the line generated by y = x + 1 and y = 2x. Show that the group algebra of G over \mathbb{Q} has exponential growth.

- 38. Classify irreducible representations of U(sl(2)) over an algebraically closed field of characteristic p.
- 39. Let k be an algebraically closed field of characteristic zero, and $q \in k^{\times}, q \neq \pm 1$. The quantum enveloping algebra $U_q(sl(2))$ is the algebra generated by e, f, K, K^{-1} with relations

$$KeK^{-1} = q^2e, KfK^{-1} = q^{-2}f, [e, f] = \frac{K - K^{-1}}{q - q^{-1}}$$

(if you formally set $K = q^h$, you'll see that this algebra, in an appropriate sense, "degenerates" to U(sl(2)) as $q \to 1$). Classify irreducible representations of $U_q(sl(2))$. Consider separately the cases of q being a root of unity and q being not a root of unity.

40. Show that if R is a commutative unital ring, then a polynomial $p = a_0 + a_1 t + ... + a_n t^n$, $a_i \in R$, is invertible in R[t] iff a_0 is invertible and a_i are nilpotent for i > 0.

Hint. Reduce to the case $a_0 = 1$. Then show that if p is nilpotent and $\chi : R \to K$ is a morphism from R to an algebraically closed field then $\chi(a_i) = 0$ for all i. Deduce that a_i are nilpotent.

- 41. (a) Show that $U(sl_2)$ is a PI algebra iff the ground field k has positive characteristic. What is the PI degree of this algebra? (smallest r such that the standard identity $S_{2r} = 0$ holds).
- (b) For which q is the quantum group $U_q(sl_2)$ a PI algebra, and what is its PI degree?
- 42. Let K be an algebraically closed field of characteristic p (p = 0 or p > 0 is a prime). For $t, k \in K$, define the algebra $H_{t,k}$ over K generated by x, y, s with defining relations

$$sx = -xs, sy = -ys, s^2 = 1, [y, x] = t - ks$$

(the rational Cherednik algebra of rank 1). For which t,k,p is this a PI algebra, and what is its PI degree?