The Siegel Modular Variety

Eran Assaf

Dartmouth College

Shimura Varieties Reading Seminar, April 2020

Structure of the talk

- Symplectic Spaces
- Siegel Modular Variety

- Symplectic Spaces
- Siegel Modular Variety
- Omplex Abelian Varieties

- Symplectic Spaces
- Siegel Modular Variety
- Omplex Abelian Varieties
- Modular Description

Symplectic Spaces

Definition

Symplectic space is a pair (V, ψ) with V a k-vector space and $\psi: V \times V \rightarrow k$ a symplectic form.

- bilinear.
- alternating $\psi(\mathbf{v}, \mathbf{v}) = \mathbf{0}$.
- nondegenerate $\psi(u, V) = 0 \Rightarrow u = 0$.

Definition

 $\dim(V) = 2n \qquad W \subseteq V \text{ is totally isotropic } if \psi(W, W) = 0.$

Definition

Remark

Symplectic basis is a basis B such that

$$[\psi]_B = \left(\begin{array}{cc} 0 & -\mathbf{1}_n \\ \mathbf{1}_n & 0 \end{array}\right)$$

Lemma (Milne, 6.1)

 $W \subseteq V$ totally isotropic, B_W a basis of W. Then there is a symplectic basis B_V of V extending B_W .

Proof.

By induction on *n*. Identify W^{\vee} with the complement of W^{\perp} via $v \mapsto \psi(v, -)$. The dual basis to B_W gives a symplectic basis of $W \oplus W^{\vee}$. By the induction hypothesis, $(W \oplus W^{\vee})^{\perp}$ also has a symplectic basis.

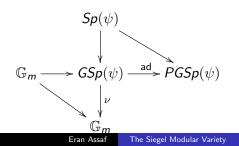
Corollary

- Any two symplectic spaces of the same dimension are isomorphic.
- V has a symplectic basis.

Symplectic Groups

Definition

- The symplectic group $Sp(\psi)$ $Sp(\psi)(k) = \{g \in GL(V) | \psi(gu, gv) = \psi(u, v)\}$
- The group of symplectic similitudes GSp(ψ)
 GSp(ψ)(k) = {g ∈ GL(V)|ψ(gu, gv) = ν(g)·ψ(u, v), ν(g) ∈ k[×]}
- The group of projective symplectic similitudes $PGSp(\psi)$ $PGSp(\psi)(k) = GSp(\psi)(k)/k^{\times}$



Reductive group

Let $G(\psi) = GSp(\psi)$. Note that $G(\psi)^{ad} = PGSp(\psi)$ and $G(\psi)^{der} = Sp(\psi)$.

$G(\mathbb{R})$ -conjugacy class of homomorphisms $h: \mathbb{S} \to G_{\mathbb{R}}$

For *J* a complex structure on $V(\mathbb{R})$ s.t. $\psi_{\mathbb{R}}(Ju, Jv) = \psi_{\mathbb{R}}(u, v)$, i.e. $J \in Sp(\psi)(\mathbb{R})$ such that $J^2 = -1$, let $\psi_J(u, v) := \psi_{\mathbb{R}}(u, Jv)$. Write $X(\psi)^+ = \{J \in Sp(\psi)(\mathbb{R}) \mid \psi_J > 0\},$ $X(\psi)^- = \{J \in Sp(\psi)(\mathbb{R}) \mid \psi_J < 0\}$ and $X(\psi) = X(\psi)^+ \bigsqcup X(\psi)^-$.

Lemma

The map $J \mapsto h_J : X(\psi) \to Hom(\mathbb{C}^{\times}, G(\mathbb{R}))$ defined by $h_J(a + bi) = a + bJ$ identifies X with a $G(\mathbb{R})$ -conjugacy class in $Hom(\mathbb{C}^{\times}, G(\mathbb{R}))$.

Proof.

For
$$z = a + bi$$
, we have

$$\psi(h_J(z)u, h_J(z)v) = \psi(au + bJu, av + bJv) =$$

$$= a^2\psi(u, v) + b^2\psi(Ju, Jv) + ab(\psi(u, Jv) + \psi(Ju, v))$$
But $\psi(Ju, Jv) = \psi(u, v)$ and
 $\psi(Ju, v) = \psi(J^2u, Jv) = \psi(-u, Jv) = -\psi(u, Jv)$

hence

$$\psi(h_J(z)u, h_J(z)v) = (a^2 + b^2)\psi(u, v) = z\bar{z} \cdot \psi(u, v)$$

In particular, $h_J(z) \in G(\mathbb{R})$. For $g \in G(\mathbb{R})$

$$\psi_{gJg^{-1}}(u,v) = \psi(u,gJg^{-1}v) = \nu(g)\psi(g^{-1}u,J(g^{-1}v)) = \nu(g)\psi_J(g^{-1}u,g^{-1}v)$$

so that for $J \in X(\psi)$, $gJg^{-1} \in X(\psi)$. (Cont...)

Proof.

Also, for z = a + bi

$$h_{gJg^{-1}}(z) = a + bgJg^{-1} = g(a + bJ)g^{-1} = gh_J(z)g^{-1}$$

It remains to show transitivity.

For that, let $B(\psi)$ be the set of symplectic bases of (V, ψ) . We have $B(\psi) \to X(\psi)^+ : B \mapsto J_B$ defined for $B = (e_i)_{i=1}^{2n}$ by

$$J_B(e_i) = \begin{cases} e_{i+n} & 1 \leq i \leq n \\ -e_{i-n} & n+1 \leq i \leq 2n \end{cases}$$

Indeed, $J_B^2 = -1$, and B is orthonormal for ψ_J . This map is surjective (orthonormal basis for ψ_J) and equivariant:

$$J_{gB}(ge_i) = gJ_B(e_i) = gJ_Bg^{-1}(ge_i)$$

 $Sp(\psi)(\mathbb{R})$ acts transitively on $B(\psi)$, hence on $X(\psi)^+$. Finally, the map $g \in G(\mathbb{R})$ swapping e_i with e_{i+n} has $\nu(g) = -1$ and swaps $X(\psi)^+$ with $X(\psi)^-$.

Proposition

The pair $(G(\psi), X(\psi))$ is a Shimura datum. It satisfies SV1-SV6.

(SV1)

For all $h \in X$, the Hodge structure on Lie $(G_{\mathbb{R}})$ defined by Ad $\circ h$ is of type $\{(-1, 1), (0, 0), (1, -1)\}$.

Proof.

We have $Lie(G_{\mathbb{R}}(\psi)) \subseteq Lie(GL_{\mathbb{R}}(V)) = End(V)$ and the action defined by $Ad \circ h$ on End(V) is

$$(zf)(v) = (h(z) \circ f \circ h(z)^{-1})(v)$$

Let $V(\mathbb{C}) = V^+ \oplus V^-$ hence h(z)v = zv for $v \in V^+$ and $h(z)v = \overline{z}v$ for $v \in V^-$. We have $\operatorname{End}(V(\mathbb{C})) = \operatorname{End}(V^+) \oplus \operatorname{End}(V^-) \oplus \operatorname{Hom}(V^+, V^-) \oplus \operatorname{Hom}(V^-, V^+)$ with actions by $1, 1, \overline{z}/z, z/\overline{z}$ respectively.

(SV2)

For all $h \in X$, ad(h(i)) is a Cartan involution of $G_{\mathbb{R}}^{ad}$.

Proof.

 $\begin{array}{l} J=h(i). \mbox{ Let } \psi^{'}: V(\mathbb{C}) \times V(\mathbb{C}) \to \mathbb{C} \mbox{ be the sesquilinear form} \\ \mbox{defined by } \psi^{'}(u,v)=\psi_{\mathbb{C}}(u,\bar{v}). \mbox{ Then for } g\in G(\mathbb{C}) \\ \psi^{'}(gu,J(J^{-1}\bar{g}J)v)=\psi^{'}(gu,\bar{g}Jv)=\psi_{\mathbb{C}}(gu,g\overline{Jv})=\psi^{'}(u,Jv) \\ \mbox{so that } \psi^{'}_{J}(gu, {\rm ad}(J)(\bar{g})v)=\psi^{'}_{J}(u,v), \mbox{ and } \psi^{'}_{J} \mbox{ is invariant under} \\ G^{({\rm ad}\ J)}. \mbox{ Since } \psi_{J} \mbox{ is symmetric and positive(negative)-definite, } \psi^{'}_{J} \\ \mbox{ is Hermitian and positive(negative)-definite. Then } G^{({\rm ad}\ J)}=U(\psi^{'}_{J}) \\ \mbox{ is a definite unitary group, hence compact. } \end{array}$

(SV3)

 G^{ad} has no \mathbb{Q} -factor on which the projection of h is trivial.

Proof.

The root system of $Sp(\psi)$ is irreducible, hence G^{ad} is \mathbb{Q} -simple. Finally, $PGSp(\mathbb{R})$ is not compact

(SV4)

The weight homomorphism $w_X : \mathbb{G}_m \to G_{\mathbb{R}}$ is defined over \mathbb{Q} .

Proof.

$$r \in \mathbb{R}^{\times}$$
 acts as r on both V^+ and V^- , so $w_X(r) = r$.

(SV5)

The group $Z(\mathbb{Q})$ is discrete in $Z(\mathbb{A}_f)$.

Proof.

 $Z = \mathbb{G}_m$, and \mathbb{Q}^{\times} is discrete in \mathbb{A}_f^{\times} .

(SV6)

The torus Z° splits over a CM-field.

Proof.

 $Z = \mathbb{G}_m$ is already split over \mathbb{Q} .

Moduli space

 $K \subseteq G(\mathbb{A}_f)$ compact open. \mathcal{H}_K - set of triples $((W, h), s, \eta K)$ s.t.

- (W, h) is a rational Hodge structure of type (-1, 0), (0, -1).
- s or -s is a polarization for (W, h).
- ηK is a *K*-orbit in $Hom_{\mathbb{A}_f}(V(\mathbb{A}_f), W(\mathbb{A}_f))$ with $s_{\mathbb{A}_f}(\eta(u), \eta(v)) = \nu(\eta) \cdot \psi_{\mathbb{A}_f}(u, v)$ for some $\nu(\eta) \in \mathbb{A}_f^{\times}$.

An isomorphism $((W, h), s, \eta K) \rightarrow ((W', h'), s', \eta' K)$ is an isomorphism $b : (W, h) \rightarrow (W', h')$ s.t.

•
$$s'(b(u), b(v)) = \mu(b)s(u, v)$$
 for some $\mu(b) \in \mathbb{Q}^{\times}$.

•
$$b \circ \eta K = \eta' K$$
.

Proposition (Milne, 6.3)

The set $Sh_{\mathcal{K}}(G(\psi), X(\psi))(\mathbb{C})$ classifies the elements of $\mathcal{H}_{\mathcal{K}}$ modulo isomorphism.

The Siegel Modular Variety

Proof.

Let $a : W \to V$ be an isomorphism s.t. $\psi(a(u), a(v)) = \mu(a)s(u, v)$ for some $\mu(a) \in \mathbb{Q}^{\times}$. Then $\psi_{\mathbb{R}}(aJa^{-1}u, aJa^{-1}v) = \mu(a)s_{\mathbb{R}}(Ja^{-1}u, Ja^{-1}v) =$ $= \mu(a)s_{\mathbb{R}}(a^{-1}u, a^{-1}v) = \psi_{\mathbb{R}}(u, v)$

and

SO

$$\begin{split} \psi_{aJa^{-1}}(u,u) &= \psi_{\mathbb{R}}(u,aJa^{-1}u) = \mu(a)s_{\mathbb{R}}(a^{-1}u,Ja^{-1}u) = \\ &= \mu(a)s_{J}(a^{-1}u,a^{-1}u) \\ \text{that } (ah)(z) &:= a \circ h(z) \circ a^{-1} \in X. \text{ From} \\ \psi_{\mathbb{A}_{f}}((a \circ \eta)(u),(a \circ \eta)(v)) = \mu(a)s_{\mathbb{A}_{f}}(\eta(u),\eta(v)) = \\ &= \mu(a)\nu(\eta)\psi_{\mathbb{A}_{f}}(u,v) \end{split}$$

we see that $a \circ \eta \in G(\mathbb{A}_f)$. Define a map

 $\mathcal{H}_{\mathcal{K}} \to \mathcal{G}(\mathbb{Q}) \backslash \mathcal{X} \times \mathcal{G}(\mathbb{A}_f) / \mathcal{K} : ((\mathcal{W}, h), s, \eta \mathcal{K}) \mapsto [ah, a \circ \eta]_{\mathcal{K}}$

Proof.

If $a': W \to V$ is another such isomorphism, then $a' \circ a^{-1} \in G(\mathbb{Q})$, hence $[ah, a \circ \eta]_{\mathcal{K}} = [a'h, a' \circ \eta]_{\mathcal{K}}$, so the map is independent of a. If $b: ((W, h), s, \eta K) \rightarrow ((W', h'), s', \eta' K)$ is an isomorphism, and $a': W' \to V$, then $a \circ b: W \to V$, and $((a \circ b)h)(z) = a \circ b \circ h(z) \circ b^{-1} \circ a^{-1} = a \circ h'(z) \circ a^{-1} = (ah')(z)$ so that $[(a \circ b)h, a \circ b \circ \eta]_{\mathcal{K}} = [ah', a \circ \eta']_{\mathcal{K}}$. Thus, the map factors through the equivalence relation. If $((W, h), s, \eta K)$ and $((W', h'), s', \eta' K)$ map to the same element, take $a: W \to V$ and $a': W' \to V$. Then $(ah, a \circ \eta) = (a'h', a' \circ \eta' \circ k)$. Take $b = a^{-1} \circ a' : W' \to W$. Surjectivity - $[h, g]_K$ is the image of $((V, h), \psi, gK)$.

Definition

An Abelian variety over k is a proper connected group variety.

Remark

group variety is smooth - translate the smooth locus. connected group variety is geometrically connected - $1 \in G(k)$.

Lemma (Rigidity Lemma)

 $\alpha : X \times Y \to Z$ with X proper and $X \times Y$ geom. irreducible. $\alpha(X \times \{y\}) = \{z\} = \alpha(\{x\} \times Y)$

Then $\alpha(X \times Y) = \{z\}.$

Observations

May assume $k = \overline{k}$. X is connected. pr : $X \times Y \rightarrow Y$ is closed.

Abelian Varieties

Proof.

Let *U* be an open affine nbd of *z*, consider $V = pr(\alpha^{-1}(Z \setminus U))$. Then $y' \notin V \iff \alpha(X \times \{y'\}) \subseteq U$, so $y \in Y \setminus V$. *X* is connected, proper and *U* is affine, so for $y' \in Y \setminus V$, $\alpha(X \times \{y'\})$ is a point, so $\alpha(X \times (Y \setminus V)) = \{z\}$. $X \times (Y \setminus V)$ is nonempty open, hence dense.But *Z* is separated.

Corollary

Every regular map $\phi : A \rightarrow G$ from an abelian variety to a group variety is the composite of a homomorphism with a translation.

Proof.

May assume
$$\phi(e_A) = e_G$$
. Consider $\alpha : A \times A \to G$ given by $\alpha(a_1, a_2) = \phi(a_1a_2)\phi(a_2)^{-1}\phi(a_1)^{-1}$. Then $\alpha(\{e_A\} \times A) = \{e_G\} = \alpha(A \times \{e_A\})$, hence constant, so $\alpha(A \times A) = \{e_G\}$, hence $\phi(a_1a_2) = \phi(a_1)\phi(a_2)$.

Corollary

Abelian varieties are abelian.

Proposition

Let X be a proper k-variety, K/k a field extension, \mathscr{L} an invertible sheaf on X. If $\mathscr{L} \times_k K$ is trivial, so is \mathscr{L} .

Proof.

X proper, so $k \to H^0(X, \mathscr{O}_X)$ is an isomorphism. Thus \mathscr{L} is trivial iff $H^0(X, \mathscr{L}) \otimes_k \mathscr{O}_X \to \mathscr{L}$ is an isomorphism. \Box

Theorem (Theorem of the cube)

Let X, Y be proper and Z geometrically connected. If $\mathscr{L}|_{\{x\}\times Y\times Z}$, $\mathscr{L}|_{X\times \{y\}\times Z}$, $\mathscr{L}|_{X\times Y\times \{z\}}$ are trivial, then so is \mathscr{L} .

Proof.

Reduce to $k = \bar{k}$. Let Z' be the maximal closed subscheme of Z over which $\mathcal L$ is trivial. Enough to show that it contains an open nbd of z. Let $m \subseteq \mathcal{O}_{Z,z}$ be the maximal ideal and I the ideal defining Z' at z. If $I \neq 0$, there is n s.t. $I \subseteq m^n$ but $I \not\subseteq m^{n+1}$. Let $J_1 = m^{n+1} + I$, and $m^{n+1} \subseteq J_2 \subseteq J_1$ s.t. dim_k $(J_1/J_2) = 1$, hence $J_1 = J_2 + k \cdot a$ for some $a \in J_1$. Let $J_0 = m$, and let $Z_i = \operatorname{Spec}(\mathscr{O}_{Z,Z}/J_i)$. Then $I \subseteq J_0, J_1$, so $Z_0, Z_1 \subseteq Z'$. From $0 \longrightarrow k \xrightarrow{\times a} \mathcal{O}_{Z,z}/J_2 \xrightarrow{\text{res}} \mathcal{O}_{Z,z}/J_1 \longrightarrow 0$, we get $0 \longrightarrow \mathscr{L}_0 \xrightarrow{\times a} \mathscr{L}_2 \xrightarrow{\text{res}} \mathscr{L}_1 \longrightarrow 0$, where $\mathscr{L}_i = \mathscr{L}|_{X \times Y \times Z_i}$ Let $\lambda : \mathscr{O}_{X \times Y \times Z_1} \to \mathscr{L}_1$ be a trivialization. It is enough to lift $\lambda(1)$ to \mathscr{L}_2 . Obstruction is $\xi \in H^1(X \times Y, \mathscr{O}_{X \times Y})$. By assumption the images of ξ in $H^1(X, \mathscr{O}_X)$ and $H^1(Y, \mathscr{O}_Y)$ vanish. Künneth formula then yields $\xi = 0$, contradiction.

Abelian Varieties

Corollary

 \mathscr{L} invertible sheaf on A abelian variety. The sheaf $p_{123}^*\mathscr{L} \otimes p_{12}^*\mathscr{L}^{-1} \otimes p_{23}^*\mathscr{L}^{-1} \otimes p_{13}^*\mathscr{L}^{-1} \otimes p_1^*\mathscr{L} \otimes p_2^*\mathscr{L} \otimes p_3^*\mathscr{L}$ on $A \times A \times A$ is trivial. $(p_{ij} = p_i + p_j)$

Proof.

Restrict to $A \times A \times \{0\}$ to get $m^* \mathscr{L} \otimes m^* \mathscr{L}^{-1} \otimes p_2^* \mathscr{L}^{-1} \otimes p_1^* \mathscr{L}^{-1} \otimes p_1^* \mathscr{L} \otimes p_2^* \mathscr{L} \otimes \mathscr{O}_{A \times A}$ This is trivial, and by symmetry so are the other two.

Corollary

 $f, g, h: X \to A$ regular, A abelian variety, then $(f+g+h)^* \mathscr{L} \otimes (f+g)^* \mathscr{L}^{-1} \otimes (g+h)^* \mathscr{L}^{-1} \otimes (f+h)^* \mathscr{L}^{-1} \otimes f^* \mathscr{L} \otimes g^* \mathscr{L} \otimes h^*$ is trivial.

Proof.

Pullback through $(f, g, h) : X \to A \times A \times A$.

Theorem (Theorem of the square) \mathscr{L} invertible sheaf on A. For all $a, b \in A(k)$ $t_{a+b}^* \mathscr{L} \otimes \mathscr{L} \cong t_a^* \mathscr{L} \otimes t_b^* \mathscr{L}$

Proof.

Let
$$f, g, h : A \rightarrow A$$
 be $f(x) = x, g(x) = a, h(x) = b$.

Remark

Equivalently, the map $a \mapsto t_a^* \mathscr{L} \otimes \mathscr{L}^{-1} : A(k) \to Pic(A)$ is a homomorphism. In terms of divisors, if $D_a = D + a$, then $a \mapsto [D_a - D]$ is a homomorphism, so if $\sum a_i = 0$, $\sum D_{a_i} \sim nD$.

Theorem (Weil)

Abelian varieties are projective.

Proof.

Assume first $k = \overline{k}$. Start by finding prime divisors Z_i such that $\bigcap Z_i = \{0\}$ and $\bigcap T_0(Z_i) = \{0\}$. If $0 \neq P \in A$, let U be an open affine nbd of 0, and $u \in U \cap (U + P)$. Then U' = U + P - u is an open affine nbd of 0 and P. Identify U' with a closed subset of \mathbb{A}^n , take a hyperplane H passing through 0 but not through P. Take $Z_1 = \overline{H \cap U'}$ in A. If $0 \neq P' \in Z_1$, find Z_2 passing through 0 but not P'. By d.c.c. this process is finite. Next, let $t \in T_0(P)$ be s.t. $t \in T_0(Z_i)$ for all i. Take an open affine nbd U of P, embed it in \mathbb{A}^n and choose a hyperplane through 0 s.t. $t \notin H$. Add $Z = \overline{H \cap U}$ to the set. Again, this process is finite.

Proof.

Let $D = \sum Z_i$ Then for any $S = \{a_1, \ldots, a_n; b_1, \ldots, b_n\} \subseteq A$, we have

$$D_{S} = \sum (Z_{i,a_{i}} + Z_{i,b_{i}} + Z_{i,-a_{i}-b_{i}}) \sim \sum 3Z_{i} = 3D$$

Let $a \neq b \in A$. May assume $b - a \notin Z_1$. Set $a_1 = a$. Then Z_{1,a_1} passes through a but not b. The sets

$$\{b_1 \mid b \in Z_{1,b_1}\}, \{b_1 \mid b \in Z_{1,-a_1-b_1}\}$$

are proper closed subsets of A, so can choose b_1 in neither. Similarly, can choose a_i, b_i such that none of $Z_{i,a_i}, Z_{i,b_i}, Z_{i,-a_i-b_i}$ passes through b. Thus, $a \in D_S$ but $b \notin D_S$, so the linear system of 3D separates points. Similarly, we see that it separates tangents, and so it is very ample, showing that A is projective. Finally, since A has an ample divisor iff $A_{\bar{k}}$ has an ample divisor, we are done.

Differential geometry

 $A(\mathbb{C})$ has a complex structure as a submanifold of $\mathbb{P}^n(\mathbb{C})$. It is a complex manifold which is compact, connected and has a commutative group structure. We may consider the exponent map.

Proposition

A abelian variety of dimension g over \mathbb{C} . Then exp : $T_0(A(\mathbb{C})) \rightarrow A(\mathbb{C})$ is surjective, and its kernel is a full lattice.

Proof.

Let $H = \text{Im}(\exp)$. It is a subgroup of $A(\mathbb{C})$. exp is a local isomorphism, hence there is some open nbd of 0, $U \subseteq H$. Then for any $h \in H$, h + U is an open nbd of h in H, so H is open. It is open and closed, and $A(\mathbb{C})$ is connected, showing surjectivity. Now there is some U with $U \cap Ker(exp) = 0$. Therefore the kernel is discrete. It must be a full lattice for the quotient to be compact. \Box

Corollary $A(\mathbb{C}) \cong \mathbb{C}^n / \Lambda$ for some full lattice Λ .

Theorem

Let
$$M = \mathbb{C}^n / \Lambda$$
. There are canonical isomorphisms
 $\bigwedge^r H^1(M, \mathbb{Z}) \to H^r(M, \mathbb{Z}) \to \operatorname{Hom}\left(\bigwedge^r \Lambda, \mathbb{Z}\right)$

Proof.

The cup product is the left map. Künneth formula shows that if its an isomorphism for all r for both X and Y, then it is also for $X \times Y$. But it holds for S^1 . For the right map, \mathbb{C}^n is s.c. hence a universal covering space, and $\pi_1(M) = \Lambda$, so that $H^1(M,\mathbb{Z}) \cong \operatorname{Hom}(\Lambda,\mathbb{Z})$. Use the perfect pairing det $(f_i(e_j))$.

Definition

Riemann form for *M* is an alternating form $\psi : \Lambda \times \Lambda \rightarrow \mathbb{Z}$ s.t. $\psi_{\mathbb{R}}(Ju, Jv) = \psi_{\mathbb{R}}(u, v), \psi_{\mathbb{R}}(u, Ju) > 0.$ *M* is **polarizable** if it admits a Riemann form.

Definition

Let $\psi : \Lambda \times \Lambda \to \mathbb{Z}$ be an alternating form s.t. $\psi(Ju, Jv) = \psi(u, v)$. Let $\psi'(u, v) = \psi_{\mathbb{R}}(Ju, v) + i \cdot \psi_{\mathbb{R}}(u, v)$ be the Hermitian form. Let $\alpha : \Lambda \to U_1(\mathbb{R})$ be s.t. $\alpha(\lambda_1 + \lambda_2) = e^{i\pi\psi(\lambda_1,\lambda_2)}\alpha(\lambda_1)\alpha(\lambda_2)$. Let $\mu(\lambda, v) = \alpha(\lambda) \cdot e^{\pi\psi'(v,\lambda) + \frac{1}{2}\pi\psi'(\lambda,\lambda)}$. Let $\mathscr{L}(\psi, \alpha)$ be the quotient of $\mathbb{C} \times V$ by $\lambda \cdot (z, v) = (\mu(\lambda, v) \cdot z, v + \lambda)$.

Theorem (Appell-Humbert)

Any line bundle \mathscr{L} on the complex torus M is isomorphic to $\mathscr{L}(\psi, \alpha)$ for a unique pair (ψ, α) .

Proof.

$$\begin{split} \pi^{\star}\mathscr{L} &\cong \mathbb{C} \times V \text{ has a natural action by } \Lambda \text{, lifting the translation.} \\ \text{Then } \lambda \cdot (z,v) &= (\mu(\lambda,v) \cdot z,v+\lambda) \text{ for some} \\ \mu(\lambda,-) \in H^0(V, \mathscr{O}_V^{\times}). \\ \text{From } \lambda_1(\lambda_2(z,v)) &= (\lambda_1+\lambda_2)(z,v), \text{ get} \\ \mu(\lambda_1+\lambda_2,v) &= \mu(\lambda_1,v+\lambda_2) \cdot \mu(\lambda_2,v). \\ \text{This induces an isomorphism } H^1(M, \mathcal{O}_M^{\times}) \to H^1(\Lambda, H^0(V, \mathscr{O}_V^{\times})). \\ \text{From exactness of the exponential sequence, we may write} \\ \mu(\lambda,v) &= e^{2\pi i f_\lambda(v)} \text{ for some holomorphic } f_\lambda. \text{ Then the Chern class} \\ \text{is } F \in H^2(\Lambda, \mathbb{Z}) \text{ given by} \end{split}$$

$$F(\lambda_1, \lambda_2) = f_{\lambda_2}(v + \lambda_1) - f_{\lambda_1 + \lambda_2}(v) + f_{\lambda_1}(v)$$

Now, the map $A: H^2(\Lambda, \mathbb{Z}) \to \text{Hom}\left(\bigwedge^2 \Lambda, \mathbb{Z}\right)$ defined by $AF(\lambda_1, \lambda_2) = F(\lambda_1, \lambda_2) - F(\lambda_2, \lambda_1)$ is an isomorphism, and $A(a \cup b) = a \land b$. We get the form $\psi(\lambda_1, \lambda_2) = f_{\lambda_2}(v + \lambda_1) + f_{\lambda_1}(v) - f_{\lambda_1}(v + \lambda_2) - f_{\lambda_2}(v)$.

Proof.

Since ψ is in the image of $H^1(M, \mathscr{O}_M^{\times}) \to H^2(M, \mathbb{Z})$, its image in $H^2(M, \mathscr{O}_M)$ vanishes. This factors through the \mathbb{R} -linear extension $H^2(M, \mathbb{Z}) \to H^2(M, \mathbb{C}) \to H^2(M, \mathscr{O}_M)$. Let $Hom_{\mathbb{R}}(V, \mathbb{C}) = T \oplus \overline{T}$, then

$$H^2(M,\mathbb{C})\cong \bigwedge^2 \left(T\oplus \overline{T}\right)\cong \left(\bigwedge^2 T\right)\oplus \left(\bigwedge^2 \overline{T}\right)\oplus (T\otimes \overline{T})$$

Write $\psi_{\mathbb{R}} = \psi_1 + \psi_2 + \psi_3$. Since it is real, $\psi_1 = \bar{\psi}_2$, and from vanishing under the projection onto the second factor, we see that $\psi = \psi_3$ which precisely means $\psi(ix, iy) = \psi(x, y)$. Conversely, given such ψ , we can set (and these are all the linear solutions)

$$f_{\lambda}(\mathbf{v}) = \frac{1}{2i}\psi'(\mathbf{v},\lambda) + \beta_{\lambda}$$

s.t.

$$\frac{1}{2}\psi'(\lambda_1,\lambda_2)+i\beta_{\lambda_1}+i\beta_{\lambda_2}-i\beta_{\lambda_1+\lambda_2}\in i\mathbb{Z}$$

Proof.

Write $i\beta_{\lambda} = \gamma_{\lambda} + \frac{1}{4}\psi'(\lambda,\lambda)$, to reduce to

$$\gamma_{\lambda_1} + \gamma_{\lambda_2} - \gamma_{\lambda_1 + \lambda_2} + \frac{1}{2}i\psi(\lambda_1, \lambda_2) \in i\mathbb{Z}$$

Modifying by a coboundary, we may assume that $\gamma \in i\mathbb{R}$. Write $\alpha(\lambda) = e^{2\pi\gamma_{\lambda}}$. Then $|\alpha(\lambda)| = 1$ and $\alpha(\lambda_1 + \lambda_2) = e^{i\pi\psi(\lambda_1,\lambda_2)}\alpha(\lambda_1)\alpha(\lambda_2)$

This establishes that every $\mathscr{L}(\psi, \alpha)$ is a line bundle and conversely, that every line bundle is of this form. It remains to establish uniqueness. It follows from

Sections of $\mathscr{L}(\psi, \alpha)$

These lift to holomorphic functions $\theta: V \to \mathbb{C}$ s.t.

$$\theta(\mathbf{v} + \lambda) = \alpha(\lambda) \cdot e^{\pi \psi'(\mathbf{v}, \lambda) + \frac{1}{2}\pi \psi'(\lambda, \lambda)} \theta(\mathbf{v})$$

If ψ is degenerate, for $\lambda \in Rad(\psi) \cap \Lambda$ we have $\theta(v + \lambda) = \alpha(\lambda)\theta(v)$. Recall that $|\alpha(\lambda)| = 1$, so θ is bounded, hence constant on cosets mod $Rad(\psi)$, and $\alpha(Rad(\psi)) = 1$. But then θ factors through $Rad(\psi)$, so $\mathscr{L}(\psi, \alpha)$ can't be ample. Next, assume $\psi|_W < 0$, then for $w \in W$

$$\begin{aligned} \Re\psi'(\mathbf{v}_0+\mathbf{w}-\lambda,\lambda) &+ \frac{1}{2}\psi(\lambda,\lambda) = \Re\psi'(\mathbf{v}_0+\mathbf{w}-\lambda,\mathbf{w}) - \\ &- \Re\psi'(\mathbf{v}_0+\mathbf{w}-\lambda,\mathbf{w}-\lambda) + \frac{1}{2}\psi'(\mathbf{w},\mathbf{w}) + \frac{1}{2}\psi'(\mathbf{w}-\lambda,\mathbf{w}-\lambda) - \\ &- \Re\psi'(\mathbf{w},\mathbf{w}-\lambda) = \frac{1}{2}\psi'(\mathbf{w},\mathbf{w}) + \Re\psi'(\mathbf{v}_0,\mathbf{w}) + f(\mathbf{w}-\lambda,\mathbf{v}_0) \end{aligned}$$

Sections of $\mathscr{L}(\psi, \alpha)$

Then this tends to $-\infty$, showing that $\theta = 0$, so $H^0(\mathscr{L}(\psi, \alpha)) = 0$. Thus, we must have ψ positive-definite.

Proposition (Mumford, p.26)

If $\psi > 0$ then dim $H^0(\mathcal{A}, \mathscr{L}(\psi, \alpha)) = \sqrt{\det \psi}$.

Proof.

Rough idea - in $\mu(\lambda,\nu)$, the exponent is linear in ν . Multiply by $e^{Q(\nu)}$ for a suitable quadratic form Q to have periodicity w.r.t. a big sublattice Λ' . The Fourier coefficients then determine the dimension.

Theorem (Lefschetz)

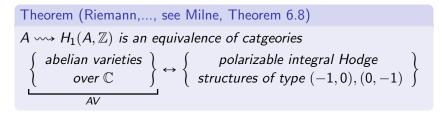
$$\mathscr{L}(\psi, \alpha)$$
 is ample if and only if $\psi > 0$.

Proof.

If $\theta \in H^0(\mathscr{L}(\psi, \alpha))$, then $\phi_{a,b}(v) = \theta(v - a)\theta(v - b)\theta(v + a + b)$ is a section of $\mathscr{L}(3\psi, \alpha^3)$. Thus, for any v, we get a section of $\mathscr{L}(3\psi, \alpha^3)$ not vanishing at v, showing it is base-point free. For injectivity, taking log derivatives of $\phi_{a,b}(v_1) = c \cdot \phi_{a,b}(v_2)$ we get $\pi \psi(v_2 - v_1, \lambda) - I(\lambda) \in 2\pi i \mathbb{Z}$ for some linear form $I(\lambda)$. This then shows that θ is a theta function for $\Lambda + (v_2 - v_1) \cdot \mathbb{Z}$. Counting dimensions, we get a contradiction. Injectivity on the tangent space is shown in a similar manner.

Corollary (Milne, Theorem 6.7)

The complex torus \mathbb{C}^n/Λ is projective iff it is polarizable. By Chow's theorem, this is iff it is an algebraic variety. Riemann form for M = polarization of the integral Hodge structure Λ .



Corollary (Milne, Corollary 6.9)

 $\begin{array}{c} A \dashrightarrow H_{1}(A, \mathbb{Q}) \text{ is an equivalence of categories} \\ \\ \left\{ \begin{array}{c} abelian \text{ varieties} \\ over \mathbb{C} \text{ with} \\ Hom_{AV^{0}}(A, B) = \\ = Hom_{AV}(A, B) \otimes \mathbb{Q} \end{array} \right\} \leftrightarrow \left\{ \begin{array}{c} polarizable \text{ rational Hodge} \\ structures \text{ of type} \\ (-1,0), (0,-1) \end{array} \right\}$

Moduli Space

 (V,ψ) symplectic space over \mathbb{Q} . \mathcal{M}_{K} is triples $(A, s, \eta K)$ where

- A is an abelian variety over \mathbb{C} , as object in AV^0 .
- s or -s is a polarization on $H_1(A, \mathbb{Q})$.
- $\eta: V(\mathbb{A}_f) \to T_f(A) \otimes_{\mathbb{Z}} \mathbb{Q}$ is s.t. $s(\eta(u), \eta(v)) = \psi(u, v)$.

Theorem (Milne, Theorem 6.11)

The set $Sh_{\mathcal{K}}(\mathbb{C})$ classifies the elements of $\mathcal{M}_{\mathcal{K}}$ modulo isom.

Specific Level Example

Assume \exists a \mathbb{Z} -lattice $V(\mathbb{Z})$ in V s.t. $det(\psi|_{V(\mathbb{Z})}) = \pm 1$.

$$\mathcal{K}(\mathcal{N}) = \left\{ g \in \mathcal{G}(\mathbb{A}_f) \mid g(\mathcal{V}(\hat{\mathbb{Z}})) = \mathcal{V}(\hat{\mathbb{Z}}), g \equiv 1 \bmod \mathcal{NV}(\hat{\mathbb{Z}}) \right\}$$

Specific Level Example

Let $\Gamma(N) = K(N) \cap Sp(\psi)(\mathbb{Z})$. Then

$$\Gamma(N) = \{g \in Sp(\psi)(\mathbb{Z}) \mid g \equiv 1 \bmod NV(\mathbb{Z})\}$$

The components are

$$\begin{split} \pi_0(\mathrm{Sh}_{\mathcal{K}(N)}(G,X)) &= T(\mathbb{Q})^{\dagger} \backslash T(\mathbb{A}_f) / \nu(\mathcal{K}(N)) \cong (\mathbb{Z}/N\mathbb{Z})^{\times} \\ Sp(\psi) \text{ satisfies Hasse principle, hence } \mathrm{Sh}_{\mathcal{K}(N)}(\mathbb{C})^{\circ} &= \Gamma(N) \backslash X^+. \\ \mathrm{If } \lambda : A \to A^{\vee} \text{ is p.p., it induces a perfect alternate pairing} \\ e_N^{\lambda} : \mathcal{A}(\mathbb{C})[N] \times \mathcal{A}(\mathbb{C})[N] \to \mu_N \end{split}$$

a level N structure is

$$\eta_{N}: V(\mathbb{Z}/N\mathbb{Z}) \to A(\mathbb{C})[N]$$

s.t. ψ_N is a multiple of e_N^{λ} . Then $\operatorname{Sh}_{\mathcal{K}}(\mathbb{C})$ classifies (A, λ, η_N) , and $\operatorname{Sh}_{\mathcal{K}}(\mathbb{C})^{\circ}$ are those for which ψ_N corresponds exactly to e_N^{λ} .