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Symplectic Spaces

Definition
Symplectic space is a pair (V,v) with V a k-vector space and
¥V x V — k a symplectic form.

@ bilinear.

@ alternating - (v, v) = 0.

@ nondegenerate - )(u, V) =0 = u = 0.

Remark Definition
dim(V) = 2n W < V is totally isotropic if ip(W, W) = 0.
Definition

Symplectic basis is a basis B such that

we=( 0 i
1, 0



Symplectic Spaces

Lemma (Milne, 6.1)

W < V totally isotropic, By, a basis of W. Then there is a
symplectic basis By of V extending Byy.

Proof.

By induction on n. ldentify WY with the complement of W+ via
v — (v, —). The dual basis to By, gives a symplectic basis of

W @ W". By the induction hypothesis, (W @ W)t also has a
symplectic basis. [

Corollary

@ Any two symplectic spaces of the same dimension are
isomorphic.

@ V has a symplectic basis.
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Symplectic Groups

Definition

e The symplectic group Sp(v))

Sp(¥)(k) = {g € GL(V)|¢(gu,gv) = ¥(u, v)}
@ The group of symplectic similitudes GSp(v))

GSp() (k) = {g € GL(V)|¢(gu, gv) = v(g)-1h(u,v),v(g) € k*}
@ The group of projective symplectic similitudes PGSp(v))

PGSp() (k) = GSp()(k)/k”




Reductive group

Let G(¢)) = GSp(v)). Note that G(z)*! = PGSp(z)) and
G(¥)* = Sp(¥).

G (R)-conjugacy class of homomorphisms h: S — Gg

For J a complex structure on V(R) s.t. Ygr(Ju, Jv) = ¢Yr(u, v), i.e.
J e Sp(¥)(R) such that J2 = —1, let 1,(u, v) := Yr(u, Jv). Write
X(¥)" ={J e Sp(v)(R) | ¢y > 0},

X(¥)™ ={J € Sp(¥)(R) | by < 0} and X () = X(4)" | X(¥)™.

Lemma

The map J — hy : X(¢p) > Hom(C*, G(R)) defined by

hy(a+ bi) = a + bJ identifies X with a G(R)-conjugacy class in
Hom(C*, G(R)).
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Proof.
For z = a + bi, we have

Y(hy(z)u, hy(z)v) = p(au + bJu,av + blv) =

= a%Y(u, v) + b2Y(Ju, Jv) + ab(y(u, Jv) + 1 (Ju, v))
But ¢ (Ju, Jv) = ¢(u, v) and

Y(Ju, v) = P(SLu, v) = P(—u, Jv) = —p(u, Jv)

hence

Y(hy(2)u, hy(2)v) = (8% + b2)(u,v) = 22 - 3p(u, v)
In particular, hy(z) € G(R). For g € G(R)

bgsg1(u,v) = ¢(u,glg~tv) = v(g)v(g tu, J(g V) =
= v(g)ys(g  u,g )

so that for J € X(¢), gJg~t € X(¢). (Cont...) O
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Proof.

Also, for z = a + bi

hgjg-1(2) = a+ bglg™' = g(a+bJ)g™" = ghy(z)g™*

It remains to show transitivity.
For that, let B(1)) be the set of symplectic bases of (V/,v). We
have B(¢)) — X(¢0)* : B Jg defined for B = (e;)?"; by
€i1n 1<i<n
J €)=
() {—e,-,, n+1l<i<2n

Indeed, _/,23 = —1, and B is orthonormal for ¢;. This map is
surjective (orthonormal basis for ;) and equivariant:

Jga(ger) = gJs(ei) = gJpg " (ge))
Sp(¥)(R) acts transitively on B(1)), hence on X(¢)*.

Finally, the map g € G(R) swapping €; with €, has v(g) = —1
and swaps X(¢)" with X(¢))~. O
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Proposition
The pair (G(v), X (¢)) is a Shimura datum. It satisfies SVI1-SV6.

(SV1)

For all h € X, the Hodge structure on Lie(Gg) defined by Ad oh is
of type {(_17 1)7 (07 0)7 (17 _1)}

Proof.
We have Lie(Ggr())) < Lie(GLr(V)) = End(V) and the action
defined by Adoh on End(V) is
(2f)(v) = (h(z) o f o h(2)71)(v)
Let V(C) = V* @ V™ hence h(z)v = zv for ve V' and
h(z)v = Zv for v e V~. We have
End(V(C)) = End(VH)®End(V~)@Hom(V*, V™ )®Hom(V~, V1)
with actions by 1,1, Z/z, z/Z respectively. O
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(SV2)
For all he X, ad(h(i)) is a Cartan involution of G&°.

Proof.
J=h(i). Let ¥ : V(C) x V(C) — C be the sesquilinear form
defined by ¥'(u, v) = ¢c(u, 7). Then for g € G(C)

¥ (gu, J(JBI)V) = ¢ (gu, BIv) = Yc(gu, gv) = ' (u, Jv)
so that ¢, (gu,ad(J)(g)v) = ¢, (u, v), and ¥ is invariant under
G(dY) Since v, is symmetric and positive(negative)-definite, @bIJ
is Hermitian and positive(negative)-definite. Then G©4J) = U(+))
is a definite unitary group, hence compact. [
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(SV3)

G?¢ has no Q-factor on which the projection of h is trivial.

Proof.

The root system of Sp(¢)) is irreducible, hence G2 is Q-simple.
Finally, PGSp(R) is not compact O

(SV4)

The weight homomorphism wx : G, — Gg is defined over Q.

Proof.

re R* acts as r on both V* and V—, so wx(r) = r. O
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(SV5)
The group Z(Q) is discrete in Z(Af).

Proof.
Z = Gpy, and Q* is discrete in Af. ]

(SV6)
The torus Z° splits over a CM-field.

Proof.
Z = Gy, is already split over Q. O
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The Siegel Modular Variety

Moduli space
K < G(Af) compact open. H - set of triples (W, h), s, nK) s.t.
e (W, h) is a rational Hodge structure of type (—1,0), (0, —1).
@ s or —s is a polarization for (W, h).
e nK is a K-orbit in Homy,(V(Ar), W(Af)) with
sar(n(u),n(v)) = v(n) - Ya,(u, v) for some v(n) € Af.
An isomorphism (W, h),s,nK) — (W', H'),s',n'K) is an
isomorphism b: (W, h) — (W' K) s.t.
o s'(b(u),b(v)) = pu(b)s(u,v) for some pu(b) € Q*.
e bonK =1n'K.

Proposition (Milne, 6.3)
The set Shk (G (), X(v))(C) classifies the elements of Hy
modulo isomorphism.
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The Siegel Modular Variety

Proof.

Let a: W — V be an isomorphism s.t.

Y(a(u),a(v)) = pu(a)s(u, v) for some p(a) € Q*. Then
Yr(ata—tu,ada"tv) = p(a)sg(Ja tu, Ja=tv) =

= p(a)sg(a tu,a tv) = Yr(u,v)

and
Yagamr (U, u) = Yr(u,adau) = p(a)sp(a 'u, Jatu) =
= p(a)s;(atu,a tu)
so that (ah)(z) := ao h(z) oa~! e X. From
Yas((@aon)(u),(acn)(v)) = u(a)sa, (n(u),n(v)) =
= w(@)v(n)¥a,(u,v)
we see that aon e G(Af). Define a map
Hk = G(Q\X x G(Af)/K : (W, h),s,nK) — [ah,acn]k
[]
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The Siegel Modular Variety

Proof.

If & : W — V is another such isomorphism, then a’ 0 a=! € G(Q),
hence [ah,aon|k = [a'h,a’ on]k, so the map is independent of a.
If b: (W, h),s,nK) — (W', K),s',n'K) is an isomorphism, and
a: W -V, thenaob: W — V, and

((aob)h)(z) = aoboh(z)obloat =aok(z)oat = (ah)(2)
so that [(ao b)h,ao bon]x = [ah, a0 ]k.

Thus, the map factors through the equivalence relation. If

(W, h),s,nK) and (W', H'),s’,n'K) map to the same element,
takea: W — Vand & : W — V. Then

(ah,aon) = (a'H,a on ok). Take b=atloa : W — W,
Surjectivity - [h, g]k is the image of ((V, h), ¢, gK). O
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Abelian Varieties

Definition
An Abelian variety over k is a proper connected group variety.

Remark

group variety is smooth - translate the smooth locus.
connected group variety is geometrically connected - 1 € G(k).

Lemma (Rigidity Lemma)

a: X xY — Z with X proper and X x Y geom. irreducible.
a(X x {y}) = {z} = alix} x ¥)

Then a(X x Y) = {z}.

Observations

May assume k = k. X is connected. pr: X x Y — Y is closed.
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Abelian Varieties

Proof.

Let U be an open affine nbd of z, consider V = pr(a=1(Z\U).
Then y' ¢ V <= a(X x{y’}) c U, soye Y\V.

X is connected, proper and U is affine, so for y' € Y\V,

a(X x {y'}) is a point, so a(X x (Y\V)) = {z}.

X x (Y\V) is nonempty open, hence dense.But Z is separated. [

Corollary

Every regular map ¢ : A — G from an abelian variety to a group
variety is the composite of a homomorphism with a translation.

Proof.

May assume ¢(ea) = eg. Consider a: A x A — G given by

a(ar, a2) = ¢(a1a2)d(az) Lp(a1)~t. Then
a({ea} x A) = {ec} = a(A x {ea}), hence constant, so

a(A x A) = {ec}, hence ¢(a1a2) = ¢(a1)d(a2). O



Abelian Varieties

Corollary

Abelian varieties are abelian.

Proposition

Let X be a proper k-variety, K/k a field extension, £ an invertible
sheaf on X. If & % K is trivial, so is Z.

Proof.
X proper, so k — H(X, Ox) is an isomorphism. Thus .Z is trivial
iff HO(X,.2) ®x Ox — £ is an isomorphism. O

Theorem (Theorem of the cube)

Let X, Y be proper and Z geometrically connected. If,,§f|{x}X Y'xZ»
Llxxiyyxz: ZLIxxyx{z) are trivial, then so is £ .

Eran Assaf The Siegel Modular Variety



Abelian Varieties

Proof.

Reduce to k = k. Let Z’ be the maximal closed subscheme of Z
over which .Z is trivial. Enough to show that it contains an open
nbd of z. Let m S 0z , be the maximal ideal and / the ideal
defining Z’ at z. If | # 0, there is ns.t. | < m" but | € m"*1,
Let 1 = m™ 1 41, and m™1 € S € 4 sit. dimy(J1/h) =1,
hence J; = J, + k- a for some a€ J;. Let Jy = m, and let

Zi = Spec(Oz,/J;). Then | < Jy, 1, so 2y, 21 < Z'.

From 0 —> k —= Oz1)h——=0z,/)1 —=0, we get

0 L2 S 7 0, where % = L|xxyxz-
Let A : Oxxyxz — £ be a trivialization. It is enough to lift \(1)
to .%. Obstruction is £ € HY(X x Y, Oxxy). By assumption the
images of £ in HY(X, Ox) and H'(Y, Oy) vanish. Kiinneth
formula then yields £ = 0, contradiction. O
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Abelian Varieties

Corollary
& invertible sheaf on A abelian variety. The sheaf

PisZ @ Pl QP L QP L T QP L @ P L ®p3 L
on Ax Ax Ais trivial. (pj = pi + pj)

Proof.
Restrict to A x A x {0} to get
MZIMLIIpLIRp L I1RpLRpL ® Oaxa

This is trivial, and by symmetry so are the other two. O

Corollary

f,g,h: X — A regular, A abelian variety, then
(F+g+h)*LQ(f+g)* L '®(g+h)* L ®(f+h)* L7 \Qf* Q" LN
is trivial.
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Abelian Varieties

Proof.
Pullback through (f,g,h) : X — Ax A x A. O

Theorem (Theorem of the square)
Z invertible sheaf on A. For all a,b e A(k)
., LRL =t LQRt%

Proof.
Let f,g,h: A— Abe f(x) = x,g(x) = a, h(x) = b. O

Remark

Equivalently, the map a — t:.¢ ® £~ : A(k) — Pic(A) is a
homomorphism. In terms of divisors, if D, = D + a, then
a— [D, — D] is a homomorphism, so if > a; =0, >, D, ~ nD.
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Abelian Varieties

Theorem (Weil)

Abelian varieties are projective.

Proof.

Assume first k = k. Start by finding prime divisors Z; such that
(1Z; = {0} and [ To(Z;) = {0}. If 0 %« P € A, let U be an open
affine nbd of 0, and ue Un (U + P). Then U = U+ P — uis an
open affine nbd of 0 and P. Identify U’ with a closed subset of A",
take a hyperplane H passing through 0 but not through P. Take
Zy=Hn U in A If 0 # P' € Zy, find Z, passing through 0 but
not P’. By d.c.c. this process is finite. Next, let t € To(P) be s.t.
t € To(Z;) for all i. Take an open affine nbd U of P, embed it in
A" and choose a hyperplane through 0 s.t. t ¢ H. Add

Z = H n U to the set. Again, this process is finite. Ol
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Abelian Varieties

Proof.
Let D= > Z Then forany S = {a1,...,an b1,...,bp} S A, we
have

Ds = Z(Zi’ai a4 Z,"b,. a4 Zi,—a,-—b,-) ~ 232,' = 3D
Let a# be A. May assume b —a ¢ Z;. Set a; = a. Then Zy ,,
passes through a but not b. The sets

{bl | be Zl,b1}7 {bl | be Z]-7_31_b1}

are proper closed subsets of A, so can choose b; in neither.
Similarly, can choose a;, b; such that none of Z; 5, Zi p,, Zi —a,—»,
passes through b. Thus, a€ Ds but b ¢ Ds, so the linear system
of 3D separates points. Similarly, we see that it separates
tangents, and so it is very ample, showing that A is projective.
Finally, since A has an ample divisor iff Az has an ample divisor,
we are done. [
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Complex Abelian Varieties

Differential geometry

A(C) has a complex structure as a submanifold of P"(C). It is a
complex manifold which is compact, connected and has a
commutative group structure. We may consider the exponent map.

Proposition

A abelian variety of dimension g over C. Then
exp : To(A(C)) — A(C) is surjective, and its kernel is a full lattice.

Proof.

Let H = Im(exp). It is a subgroup of A(C). exp is a local

isomorphism, hence there is some open nbd of 0, U < H. Then for
any he H, h+ U is an open nbd of hin H, so H is open. It is open
and closed, and A(C) is connected, showing surjectivity. Now there
is some U with U n Ker(exp) = 0. Therefore the kernel is discrete.
It must be a full lattice for the quotient to be compact. Ol

Eran Assaf The Siegel Modular Variety



Complex Abelian Varieties

Corollary
A(C) = C"/N for some full lattice A.

Theorem

Let M = C"/N. There are canonical isomorphisms
r r
/\ H*(M,Z) — H"(M,Z) — Hom (/\A,Z)

Proof.

The cup product is the left map. Kiinneth formula shows that if its
an isomorphism for all r for both X and Y, then it is also for

X x Y. But it holds for S. For the right map, C" is s.c. hence a

universal covering space, and m1(M) = A, so that

HY(M,Z) =~ Hom(A, Z). Use the perfect pairing det(f;(e;)). O
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Complex Abelian Varieties

Definition
Riemann form for M is an alternating form 1) : N x N — Z s.t.

Yr(Ju, Jv) = Yr(u, v), Yr(u, Ju) > 0.
M is polarizable if it admits a Riemann form.

Definition

Let ¢ : N x N — Z be an alternating form s.t. 1 (Ju, Jv) = 1(u, v).
Let ¢/ (u,v) = ¢Yr(Ju,v) + i - Yr(u, v) be the Hermitian form.

Let a: A — Ui(R) be s.t. a(M + Ap) = ™22 a(\)a(Na).
Let p(\, v) = a()) - e (N3 AN [ o Z (Y, a) be the
quotient of C x V by A - (z,v) = (u(\,v) - z,v + ).

Theorem (Appell-Humbert)

Any line bundle £ on the complex torus M is isomorphic to
Z (¢, a) for a unique pair (1, ).
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Complex Abelian Varieties

Proof.
7% =~ C x V has a natural action by A, lifting the translation.
Then A - (z,v) = (u(\,v) - z,v + A) for some
(A, —) e HO(V, 0y).
From A1(A2(z,v)) = (A1 + A2)(z, v), get
(A1 + A2, v) = p(A1, v+ A2) - u(Ag, v).
This induces an isomorphism H(M, O},) — HX(A, H(V, 0y)).
From exactness of the exponential sequence, we may write
(X, v) = e (V) for some holomorphic fy. Then the Chern class
is F e H2(A,Z) given by
F(A1,A2) = (v + A1) = Ay (v) + By (v)
Now, the map A : H2(A, Z) — Hom (/\2/\,2) defined by
AF (A1, A2) = F(A1,A2) — F(A2, A1) is an isomorphism, and
A(au b) = a A b. We get the form
PY(A1,A2) = H,(v+ A1) + H, (v) — i, (v + A2) — i, (v). L]
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Complex Abelian Varieties

Proof.

Since ¢ is in the image of HY(M, 0;) — H?*(M,Z), its image in
H?(M, O) vanishes. This factors through the R-linear extension
H?(M,Z) — H*(M,C) — H*(M, O). Let

Homg(V,C) = T@® T, then

2 2
H*M,C)= N\ (T@T) (/\ T) ® (/\ T) S(T®T)

Write 1r = 11 + ¥ + 3. Since it is real, ¥1 = ¥, and from
vanishing under the projection onto the second factor, we see that
1 = 13 which precisely means ¢ (ix, iy) = 1(x, y). Conversely,
given such 1), we can set (and these are all the linear solutions)

1
f(v) = ET//(Va A) + B
s.t. 1
§¢/(>\1,)\2) + B +iBx, — iBri+x, € IZ



Complex Abelian Varieties

Proof.
Write i8y = v + 34/(X, A), to reduce to

1. :
Mt Mo = atre + 510(A1, A2) €72
Modifying by a coboundary, we may assume that v € /R. Write
a(X) = €™ Then |a()\)| =1 and
(A1 + Ao) = ™LA (X)) a(An)

This establishes that every .Z (1, a) is a line bundle and
conversely, that every line bundle is of this form. It remains to
establish uniqueness. It follows from

0 —— Hom(A, §%) — {(, @)} —— {4 : (A x ) € Z} ——

| | |

0 — Pic®(M) —— Pic(M) — ker(H?>(M,Z) — H?*(M, Oy)) -
O
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Complex Abelian Varieties

Sections of £ (1, «)
These lift to holomorphic functions 8 : V — C s.t.
B(v + \) = a(N) - ™ NI AN g ()
If 9 is degenerate, for A € Rad(y)) n A we have
O(v+ A) = a(N)0(v). Recall that |a(\)| =1, so 6 is bounded,
hence constant on cosets mod Rad(v), and a(Rad(v))) = 1. But

then 6 factors through Rad(v), so £ (1, «) can't be ample.
Next, assume 9|y < 0, then for w e W

R (vo +w — A\, A) + %w(/\,)\) =Ry (vo+w— A\, w)—
— R (vog+w—Aw—N)+ %’(,Z),(W, w) + %¢/(W —Aw—\)—

— R (w,w —\) = %w’(w, w) + R (vo, w) + f(w — A, vo)
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Complex Abelian Varieties

Sections of £ (1, @)

Then this tends to —o0, showing that # =0 , so
H°(Z (1), a)) = 0. Thus, we must have v positive-definite.

Proposition (Mumford, p.26)
If ) > 0 then dim H°(A, £ (v, a)) = +/det .

Proof.

Rough idea - in (A, v) , the exponent is linear in v. Multiply by
eQ() for a suitable quadratic form Q to have periodicity w.r.t. a
big sublattice A’. The Fourier coefficients then determine the
dimension. ]

Theorem (Lefschetz)
L, «) is ample if and only if 1) > 0.
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Complex Abelian Varieties

Proof.

If 0 € HO(ZL (¥, a)), then ¢, p(v) = O0(v — a)0(v — b)8(v + a + b)
is a section of .Z(3¢,a3). Thus, for any v, we get a section of

Z (3%, a3) not vanishing at v, showing it is base-point free.

For injectivity, taking log derivatives of ¢, p(v1) = ¢ ¢, p(v2) we
get ) (va — vi, A) — I(\) € 2wiZ for some linear form /(\). This
then shows that 6 is a theta function for A + (v, — vq) - Z.
Counting dimensions, we get a contradiction.

Injectivity on the tangent space is shown in a similar manner. [

Corollary (Milne, Theorem 6.7)

The complex torus C" /A is projective iff it is polarizable.
By Chow's theorem, this is iff it is an algebraic variety. Riemann
form for M = polarization of the integral Hodge structure N.
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Complex Abelian Varieties

Theorem (Riemann,..., see Milne, Theorem 6.8)

A v~ Hi(A,Z) is an equivalence of catgeories

abelian varieties polarizable integral Hodge
over C structures of type (—1,0), (0, —1)

AV

Corollary (Milne, Corollary 6.9)
A v~ Hi(A,Q) is an equivalence of categories

abelian varieties
over C with
Homayo(A, B) =
= HomAV(A, B) ® Q

AV0

polarizable rational Hodge
structures of type
(—=1,0),(0,-1)
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Modular Siegel Variety

Moduli Space

(V, 1) symplectic space over Q. M is triples (A, s, nK) where
@ A is an abelian variety over C, as object in AV°.
@ s or —s is a polarization on H;i(A, Q).
o 11 V(Ar) — Tr(A) @2 Q is st. s(1(u),n(v)) = 1(u, v).

Theorem (Milne, Theorem 6.11)

The set Shk(C) classifies the elements of My modulo isom.

Specific Level Example
Assume 3 a Z-lattice V(Z) in V sit. det(¢]y(z)) = £1.

K(N) = {g e G(ar) | (V(2) = V(2),g = 1 mod NV(2)}
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Modular Siegel Variety

Specific Level Example
Let [(N) = K(N) n Sp(¢)(Z). Then
F(N) ={g e Sp(¥)(Z) | g =1mod NV(Z)}

The components are

mo(Shik(vy (G, X)) = T(@MNT(Ar)/v(K(N)) = (Z/NZ)*
Sp(v) satisfies Hasse principle, hence Shy ) (C)° = T(N)\X™.
If A\: A— AY is p.p., it induces a perfect alternate pairing

eh - A©)IN] x AC)IN] = uw
a level N structure is
nv = V(Z/NZ) — A(C)[N]

s.t. ¥y is a multiple of e,)\‘,.

Then Shk(C) classifies (A, \,nn), and Shi(C)° are those for
which vy corresponds exactly to e,’\\,.
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