
THE NEWTON STRATIFICATION ON THE FLAG VARIETY

1. Where From, Where to

1.1. What we have so far. Recall that we have proved the following, in Ben’s talk (May 29th)

Theorem 1.1. ([Caraiani and Scholze, 2017], Theorem 1.10)

Let (G,X) be a Shimura datum of Hodge type with reflex field E. Let p be a prime, and p | p a place of E. Then
for any sufficiently small compact open subgroup Kp ⊂ G(Apf ), there is a perfectoid space SKp over Ep, such that

SKp ∼ lim←−KpSKpKp

where SK is the adic space corresponding to SK ⊗E Ep. Moreover, there is a Hodge-Tate period map

πHT : SKp → F lG,µ

which is functorial in the Shimura datum.

Why is that helpful?

We can now analyze the cohomology of SKp using a Leray spectral sequence.

Since on the left we have a moduli space of abelian varieties, and on the right a moduli space of p-divisible groups,
(Dan’s talk), the fibres of πHT should be thought of as a moduli space of abelian varieties with trivialization of their
p-divisible group, i.e. Igusa varieties (to be discussed next week - Pol and Raffael). Therefore, we can compute the
fibres of R(πHT )∗Zl in terms of cohomology of Igusa varieties.

1.2. What we want to do next. We would like to identify the fibres of πHT with Igusa varieties. This will be
done as follows:

(1) We will recall the definition of the Newton stratification on the special fibre of a Shimura variety, parametrized
by the finite subset B(G,µ) ⊂ B(G) of Kottowitz’s set of isocrystals with G-structure (to be defined).

(2) Define a natural stratification on F lG,µ, which corresponds under πHT to the Newton stratification (pulled
back from the special fibre).

(3) For any b ∈ B(G,µ∗), we find a p-divisible group Xb over Fp equipped with a certain extra endomorphism
and polarization structures.

(4) We will be able to find a perfect scheme Igb over Fp which parametrizes abelian varieties A with extra
structures, equipped with an isomorphism ρ : A[p∞] ∼= Xb.

In this talk we will discuss the first two steps, in particular prove the following:

Theorem 1.2. ([Caraiani and Scholze, 2017], Theorem 1.11)

Let G be a reductive group over Qp, and µ a conjugacy class of miniscule cocharacters. There is a natural decom-
position F lG,µ =

∐
b∈B(G,µ∗) F lbG,µ into locally closed subsets F lbG,µ. The union∐

b�b′
F lb

′

G,µ

is closed for all b ∈ B(G,µ∗); In particular, F lbG,µ is open when b is the basic element of B(G,µ∗).

The other two will be discussed next week.

Remark 1.3. This is opposite to the closure relations on the Shimura variety. However, we do not prove that the
closure of a stratum is a union of strata. This is related to a subtle behaviour of πHT on certain higher rank points
of the adic space (**).
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2. Motivation - Modular Curve Case

2.1. The Modular Curve. We start by reviewing what we know for the case of the modular curve.
Recall that the special fibre of the modular curve X0(p) (draw a picture) has a supersingular locus, which is closed,
yielding a stratification into two strata (locally closed subsets) - the supersingular stratum and the ordinary stratum,
where the closure of the open ordinary stratum is their union (i.e. everything), and the supersingular stratum is
closed.
In this case, F lG,µ is just the adic projective line P1,ad.
Recall from Chris’s talk that we know the following fact:

Fact 2.1. ([Scholze, 2015], Lemma III.3.19)
The preimage of F lG,µ(Qp) ⊂ F lG,µ under πHT is given by the closure of X ∗Γ(p∞)(0).

In the case of the infinite level modular curve, this is just the ordinary locus (essentially by definition - where the
Hasse invariant is invertible), so π−1

HT (P1(Qp)) = X ordΓ(p∞), and for points (E/C,α : Z2
p → TpE) in this locus, there

exists a unique canonical subgroup, and the Hodge-Tate period map

πHT (E,α) = 0→ (α⊗ 1)−1(LieE)→ C2

just measures its position.
The rest, i.e. the supersingular locus is mapped onto Drinfeld’s upper half plane Ω2 = P1\P1(Qp).
Note that, in contrast to the classical stratification on the modular curve, in the stratification on the perfectoid
modular curve the supersingular locus is open, while the ordinary locus is closed.

3. The structure of B(G)

Let G be a connected reductive group over Qp. Let k be an algebraically closed field of characteristic p. Let
L = W (k)

[
1
p

]
, with Frobenius σ. Let Γ = Gal(Qp/Qp). Recall the following definition from Ashwin’s talk.

Definition 3.1. We call B(G) = G(L)/ ∼σ , where x ∼σ y ⇐⇒ x = gyσ(g)−1, g ∈ G(L) the Kottwitz Set of
G. (This classifies isocrystals with G-structure)

Remark 3.2. Note that k does not appear in the notation. This is justified by the following Lemma.

Lemma 3.3. ([Rapoport and Richartz, 1996], Lemma 1.3) Let k′ ⊂ k be an algebraically closed subfield. Let
L
′

= W (k′)
[

1
p

]
, σ′ its Frobenius, and B

′
(G) = G(L′)/ ∼σ′ . Then the natural map B′(G)→ B(G) is a bijection.

Example 3.4. If G = GLn, then these are just isocrystals of height n, and by Dieudonne-Manin classification they
can be classified by their slopes. That is, if (Ln, bσ) admits a slope decomposition as

⊕
i Vλi , with λi = ri/si and

λ1 ≥ λ2 ≥ . . . then we can consider the vector

(λ1, . . . , λ1︸ ︷︷ ︸
s1

, λ2, . . . , λ2︸ ︷︷ ︸
s2

, . . .) ∈ Qndom = X∗(GLn)⊗Q/Sn

Since X∗(GLn) is an ordered set, this induces an ordering on B(GLn), which will allow us later to define strata by
mapping to B(G). Basically, this will be called the Newton map.
However, we would like to define this map for arbitrary G. Although it is possible to just use a faithful representation
and pullback, we would like some functorial map with nice properties.

For that we will need the following. Let W (L/Qp) be the Weil group, i.e. the group of continuous automorphisms
which fix Qp and induce on the redisue field k an integral power of Frobenius.

Lemma 3.5. There is a natural injective map H1(Qp, G)→ B(G)

Proof. There is an exact sequence of topological groups

1→ Gal(L/L)→W (L/Qp)→ 〈σ〉 → 1

where 〈σ〉 denotes the infinite cyclic (discrete) group generated by σ. The Inflation-Restriction exact sequence gives
us the induced map

0→ B(G) = H1(〈σ〉 , G(L))→ H1(W (L/Qp), G(L))→ H1(Gal(L/L), G(L))〈σ〉
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But by Steinberg’s induced theorem, since G is connected and linear, and the cohomological dimension of L is at
most 1, the term on the right vanishes, so we get a bijection.
The restriction homomorphism W (L/Qp)→ Γ and the inclusion G(Qp) ⊆ G(L) give us a map

H1(Qp, G)→ H1(W (L/Qp), G(L))

However, if F is a finite Galois extension of Qp in L, we have an exact sequence

1→W
(
L/F

)
→W (L/Qp)→ Gal(F/Qp)→ 1

yielding the inflation-restriction exact sequence

0→ H1(Gal(F/Qp), G(F ))→ H1(W (L/Qp), G(L))→ H1(W (L/F ), G(L))〈σ〉

hence injectivity of the above map. Combining the two we get the injective map as claimed. Note that one could
realize this map by taking a cocycle c : Γ → G(Qp) ↪→ G(L), finding an equivalent cycle c′ : Γ → G(L), and
restricting it to a lift of σ. �

Let D be the pro-algebraic torus with character group Q. The following theorem will establish the existence of such
a Newton map, as we wanted.

Theorem 3.6. ([Kottwitz, 1985], Section 4) Let b ∈ G(L). There exists a unique element νb ∈ HomL(D, G) such
that for any ρ : G→ GL(V ), ρ◦νb is the slope decomposition of (VL,Φ) := (V ⊗Qp L, ρ(b)◦ (idV ⊗σ)). The element
νb is called the slope homomorphism associated to b. It induces a map

B(G)→ N (G) := (Int(G(L))\HomL(D, G))〈σ〉

Furthermore, νb is trivial if and only if b is in the image of the map H1(Qp, G)→ B(G).

Proof. (Sketch) Let b ∈ B(G). Then for any finite-dimensional Qp-representation ρ : G → GL(V ), the pair
(VL,Φ) := (V⊗QpL, ρ(b)◦(idV⊗σ)) is an isocrystal. Its slope decomposition gives us an element νρ ∈ HomL(D, GL(V )).
Let R be an L-algebra, and let x ∈ D(R). Let RepQpG be the category of finite-dimensional representations
ρ : G→ GL(V ). Then the elements νρ(x) give an automorphism of the standard fiber functor of RepQpG. By Tan-
naka reconstruction (End(RepG→ V ect) ∼= k[G]), there exists a unique element y ∈ G(R) suc h that ρ(y) = νρ(x)
for all ρ. Moreover, the homomorphism x 7→ y is functorial in R and thus defines an element ν = νb ∈ HomL(D, G)
such that ρ◦νb = νρ for all ρ. This type of argumetnis called Tannakaian formalism, and will be used frequently. Kot-
twitz goes on to show that νb could be defined intrinsically, and this intrinsic description shows that σ-conjugation
leads to conjugate weights, and that these are σ-invariant. �

Note that being invariant under Gal(Qp/L) and under σ is the same as being Γ-invariant.
Thus, for example, if G = T is a torus, conjugation is trivial and

N (T ) = (HomL(D, T ))
〈σ〉

= Hom(D, T )Γ = X∗(T )Γ ⊗Q
More generally, if T ⊂ G is a maximal torus, with Weyl group W , then any morphism D→ G factors through one
of the maximal tori, hence through NG(T ), and the conjugation factors through W = NG(T )/T , so that

N (G) = ((X∗(T )⊗Q)/W )
Γ

Thus, we obtain a map νG : B(G)→ N (G), which we call the Newton map.
It follows that the map b 7→ νb induces a natural transformation of set-valued functors on the category of connected
reductive algebraic groups

ν : B(·)→ N (·)

3.1. A partial ordering on the set of Newton points. Let T be a maximal torus, with Φ = Φ(G,T ) its set of
roots, and fix a basis ∆ for Φ. Let ∆∨ be the corresponding basis for the set of coroots. Let

(X∗(T )⊗Q)dom = {x ∈ X∗(T )⊗Q | 〈x, α〉 ≥ 0, ∀α ∈ ∆}
and

(X∗(T )⊗Q)
∨

=

{
x ∈ X∗(T )⊗Q | x =

∑
α∨∈∆∨

nα∨ · α∨, nα∨ ∈ Q≥0

}
be the corresponding closed Weyl chamber, and obtuse Weyl chamber.
Then (X∗(T )⊗Q)dom is a fundamental domain for the action of W on X∗(T )⊗Q, and we can be identify

N (G) = (X∗(T )⊗Q)
Γ
dom
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Let W = NG(T )/T be the Weyl group of G,T . We then have the following Lemma.

Lemma 3.7. ([Rapoport and Richartz, 1996], Lemma 2.2, rational version) Let ν, ν′ ∈ X∗(T )⊗Q. The following
conditions are equivalent.
(i) ν lies in the convex hull of the finite set {wν′ | w ∈W}.
(ii) Let ν̃, ν̃′ be representatives in (X∗(T )⊗Q)dom of ν, ν′ respectively for the action of W . Then ν̃′ − ν̃ ∈
(X∗(T )⊗Q)

∨.

(iii) Let ν̃′ be the representative of ν′ in (X∗(T )⊗Q)dom. Then ν̃′ − wν ∈ (X∗(T )⊗Q)
∨ for all w ∈W .

Definition 3.8. If the above equivalent conditions are satisfied, we say that ν � ν′. This defines a partial ordering
on N (G).

Lemma 3.9. ([Rapoport and Richartz, 1996], Lemma 2.2 (d)) ν � ν′ iff for any representation ρ : G → GL(V ),
if T ′ ⊂ GL(V ) is a maximal torus containing ρ(T ), then ρ ◦ ν � ρ ◦ ν′.

At this point, we could have defined a partial ordering on B(G), by pulling back through the Newton map. However,
there are two problems with it:

1. Not every two elements are comparable - indeed, even for GLn, we must have
∑
νi =

∑
ν
′

i , e.g. (0, 0) and (1, 1)
are incomparable.
You could argue: OK, but we can still order them by the sum.
2. The following example shows that it might not be enough.

Example 3.10. (The Newton map is not injective in general) Let F/Qp be a finite extension. Let

G := U1 = ker(NmF/Qp : ResF/QpGm → Gm)

be the norm one elements. Then we have a SES 1 → U1 → ResF/QpGm → Gm → 1, giving rise to the long exact
sequence of cohomology

1→ U1(Qp)→ F×
NmF/Qp→ Q×p → H1(Qp, U1)→ H1(Qp,ResF/QpGm) = 0

where the last equality follows from Hilbert’s Theorem 90. Therefore H1(Qp, U1) = Q×p/NmF/Qp (F×) is nontrivial,
showing that the Newton map νU1

has a nontrivial kernel, by Theorem 3.6. This could also be seen directly by
looking at the slopes, as the weights of U1 are the same as [F : Qp]-tuples corresponding to the different embedings
F ↪→ Qp, restricted to elements of norm 1. Therefore, all tuples which sum to zero give a trivial weight for U1.
We see that although in the GLn case, the Newton map suffices to determine the original element (by Dieudonne-
Manin), in general this map is not injective, and one needs another invariant, namely the Kottwitz map.

3.2. The Kottwitz map. Next, we would like to define the Kottwitz map.
For that we will need to define the algebraic fundamental group of G.

Definition 3.11. Let T ⊂ GQp be a maximal torus defined over Qp. Let Φ(G,T ) be the set of roots of T , and for
α ∈ Φ(G,T ) we denote by α∨ by the corresponding root. We denote by

π1(G,T ) := X∗(T )/
∑

α∈Φ(G,T )

Zα∨

the algebraic fundamental group of G with respect to T .

Lemma 3.12. π1(G,T ) has an action of Γ. For any other maximal torus T ′, π1(G,T ) ∼= π1(G,T ′) as Γ-modules.

Remark 3.13. If we let ρ : T sc → T be the simply connected cover of T , then one can write π1(G) = X∗(T )/ρ∗X∗(T
sc),

which gives a more conceptual definition. Ths functor is also exact.

Example 3.14. Let G = T be a torus. Then π1(G) = X∗(T ). We will describe in this case a natural map
X∗(T )Γ → B(T ). Let F be such that T splits over F . Let F0 be the largest unramified subfield of F . Consider
µ ∈ X∗(T ). We map µ to the σ -conjugacy class containing NmF/F0

(µ(πF )), where πF is a uniformizing element
for F and NmF/F0

is the norm homomorphism T (F ) → T (F0). Note that F0 ⊂ L. If γ ∈ Γ and µ ∈ X∗(T ), then
γµ and µ map to the same value, hence this map factors through the Γ-coinvariants.
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This is in fact an isomorphism, and the inverse map generalizes well to a functorial construction. We first extend it to
groups G such that Gder is simply connected via composition with B(G)→ B(G/Gder), since π1(G) = π1(G/Gder).
Next, for arbitrary G, take a simply connected central extension H → G, with kernel C. Then the diagram

B(C) //

��

π1(C)Γ

��
B(H) // π1(H)Γ

is commutative. Hence we get a map B(G)→ π1(G)Γ (SES 1→ C → H → G→ 1).

Example 3.15. Let G = GLn. Then Gder = SLn is simply connected, and G/Gder ∼= Gm via the det map.
The isomorphism X∗(Gm)Γ → B(Gm) is given by mapping µ = t 7→ tm to µ(p) = pm. Therefore the map
B(G)→ π1(G)Γ

∼= Z is given by
[b] 7→ [det(b)] = [pm] 7→ m

i.e. b 7→ valp(det(b)).
The Kottwitz map is so useful since we have the following theorem.

Theorem 3.16. ([Kottwitz, 1997], 4.13) The map (ν, κ) : B(G)→ (X∗(G)⊗Q)Γ
dom × π1(G)Γ is injective.

(maybe just draw the diagram with exact rows that commutes, and induces bijections)

3.3. The set B(G,µ). Now, we can define a partial ordering on B(G) by setting

b � b′ ⇐⇒ νb � νb′ , κ(b) = µ[

Note that on fibres of the Kottwitz map, we can compare elements, by definition!
Now, given a conjugacy class of cocharacters µ : Gm → GQp , we can identify it with an element of X∗(T )dom. There

is a natural map X∗(T )dom → (X∗(T )⊗Q)
Γ
dom given by

µ 7→ µ :=
1

[F : Qp]
∑

γ∈Gal(F/Qp)

γ(µ)

where F is a field where T splits. There is also a natural quotient map X∗(T ) → π1(G)Γ, which we denote by
µ 7→ µ[. (Why the notation - is there a goos reason!?)

Definition 3.17. The subset B(G,µ) ⊂ B(G) of µ-admissible elements is

B(G,µ) :=
{
b ∈ B(G) | νb � µ, κ(b) = µ[

}
Example 3.18. Let G = GLn. Then

π1(G) = X∗(T )/
∑

Z · α∨ ∼= Zn/
n−1∑
i=1

Z · (ei − ei+1) ∼= Z

where the rightmost isomorphism is the map (µ1, µ2, . . . , µn) 7→ µ1 + µ2 + . . . + µn. Therefore, we may identify
π1(G) = π1(G)Γ with Z, and set µ[ = µ1 + µ2 + . . .+ µn.
Also, ν � µ means that there exist a1, . . . , an−1 ≥ 0 such that

µ− ν =

n−1∑
i=1

ai(ei − ei+1) = (a1, a2 − a1, a3 − a2, . . . , an−1 − an−2,−an−1)

so that

a1 = µ1 − ν1

a2 = µ1 + µ2 − ν1 − ν2

...
an−1 = µ1 + . . .+ µn−1 − ν1 − . . .− νn−1
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Therefore, b ∈ B(G,µ) if and only if “the Newton polygon lies above the Hodge polygon”: (draw!)

ν1 ≤ µ1

ν1 + ν2 ≤ µ1 + µ2

...
ν1 + . . .+ νn−1 ≤ µ1 + . . .+ µn−1

ν1 + . . .+ νn = µ1 + . . .+ µn

4. Newton Stratification on (special fibers) of Shimura Varieties

4.1. Short Review of Shimura Varieties. The stratification we have seen on the special fibre of the modular
curve is only a special case of the much more general Newton stratification on special fibres of Shimura varieties.
Let (G,X) be a Shimura datum. Let Kp ⊂ G(Apf ) a sufficiently small open compact subgroup, and let Kp be
maximal. Let K = KpKp ⊂ G(Af ), and ShK = G(Q)\X × G(Af )/K the corresponding Shimura variety. Let E
be the reflex field, and let v be a prime of E above p.
Let SK be the canonical integral model of ShK ⊗E Ev over OEv , and let SK its special fiber, over κ(v).
Recall that SK(R) can be viewed as classifying (semi-)abelian schemes over R with some additional structure.
Let Auniv be the universal abelian scheme over SK , and let H = Auniv[p∞] its p-divisible group. Then H has a
GQp -structure.
After choosing a local embedding at p of the algebraic closure Q of Q in C, ν : Q → Qp, any Hodge cocharacter
µh : Gm → GC determines a local version ν ◦ µh : Gm → GQp , which respects the conjugation action.

Therefore X induces a minuscule conjugacy class of cocharacters µQp : Gm → GQp .

Let L = W (Fp)
[

1
p

]
, and assume for simplicity that G is connected reductive, quasi-split and µ is unramified (so

that it will be defined over L).
The group H is compatible with µQp .

To each geometric closed point x ∈ SK , we associate the the fibre Hx, and the Dieudonne module D(Hx), Nx =
DHx ⊗Zp Qp is the isocrystal of Hx.
Therefore, the isocrystal Nx determines a unique element bx ∈ B(GQp). This induces a map b : SK → B(GQp).

4.2. What is the upshot of all of this? We can now use the map b : SK → B(GQp), and the partial ordering
on B(GQp) to define

SK(� b) =
{
x ∈ SK | bx � b

}
Theorem 4.1. (Grothendieck’s Specialization Theorem, [Rapoport and Richartz, 1996], Theorem 3.6) Let b ∈
B(G). Then SK(� b) is a (Zariski-)closed subscheme of SK (endowed with the induced reduced structure).

Remark 4.2. This is true in general for any isocrystal with G-structure over a scheme.

Definition 4.3. The closed subscheme SK(� b) is the closed Newton stratum associated with b. The Newton
Stratum associated with b is the open subscheme of SK(� b) defined by

SK(b) =
{
x ∈ SK | bx = b

}
Moreover, the compatibilty of H with µQp shows that the strata SK(b) are empty for b /∈ B(GQp , µQp). Thus,
the strata are parameterized by the set B(G,µ). However, even though it is conjectures, it is unknown in general
whether the strata with b ∈ B(G,µ) are nonempty. Viehmann and Wedhorn has proved it for PEL type Shimura
varieties, and there are some other results.

5. Newton Stratification on the Adic Flag Variety

The rough idea of the stratification (as in the classical case) is to consider a point in the flag variety as a point in
the affine Grassmannian, which is a G-bundle with a trivialization over the generic fiber.
These will correspond, by Fargue’s theorem, to isocrystals with G-structure, which are classified by their Newton
polygons. (Basically, Dieudonne-Manin)
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5.1. The mixed characteristic affine Grassmannian. Let (R,R+) be a perfectoid affine algebra over Qp.
(Here it is defined as a uniform adic Banach algebra with a surjective Frobenius on R+/(p), and the existence of
x ∈ R+ such that xp − p ∈ p2R+. This only depends on R, and when R contains a perfectoid field, it agrees with
the usual definition - take a topologically nilpotent elementa, bp ≡ a mod p, cp ≡ p/a mod p, take the units, and
find dp ≡ u−1

1 u−1
2 , so that x = bcd is the element)

Recall we have a surjective map θ : W (R[+) → R+ (namely,
∑

[rn]pn 7→
∑
r]np

n), whose kernel is generated by a
non-zero divisor ξ ∈W (R+) (e.g. SW Lemma 6.2.8 - look for ξ = p+ [π]α).
Then B+

dR,R is defined as the ξ-adic completion ofW (R[+)[1/p], and BdR.R = B+
dR,R[ξ−1]. SinceW (R[+)[1/p]/ ker θ ∼=

R+[1/p] = R, we see that these rings are independent of R+.

Definition 5.1. Let GrB
+
dR

G be the functor associating to any perfectoid affinoid Qp-algebra (R,R+) the set of
G-torsors over SpecB+

dR,R trivialized over SpecBdR,R, up to isomorphism.

Example 5.2. Let G = GLn. Then G-torsors are vector bundles of rank n, which in turn are just finite projective
B+
dR,R-modules of rank n, Λ, such that Λ⊗B+

dR,R
BdR,R ∼= BndR,R (trivialization), i.e. B+

dR,R-lattices Λ ⊂ BndR,R with
Λ[ξ−1] = BndR,R.

If (R,R+) = (K,K+) where K is a perfectoid field, then B+
dR,K

∼= K[[ξ]] (as abstract rings) is a complete discrete
valuation ring. In this case, this is our familiar affine Grassmanian, which admits a loop space interpretation:

GrB
+
dR

G (K,K+) = G(BdR,K)/G(B+
dR,K)

In particular, chooseK = C algebraically closed, and fix an embeddingQp ↪→ C. Then using Cartan’s decomposition

G(BdR,C) =
∐

µ∈X∗(T )dom

G(B+
dR,C)µ(ξ)−1G(B+

dR,C)

Here µ(ξ) is defined for µ : Gm → GQp via Qp ↪→ B+
dR,C . Thus, we can map each element x ∈ GrB

+
dR

G (C,OC) to its
(inverse) Schubert cell µ(x) ∈ X∗(T )dom.
We would like now to begin with a given conjugacy class of Hodge cocharacters µ : Gm → GQp and identify a
corresponding flag variety with the Schubert cell in the affine Grassmannian. That way, points on the flag variety
will give rise to G-bundles.

Definition 5.3. Let E be the field of definition of µ. µ (its conjugacy class) determines an ascending filtration
Fil•(µ) on RepQpG by setting

Film(µ)(V ) =
⊕

m′≥−m

V µ=m′

Let F lG,µ/E be the rigid-analytic flag variety parametrizing such filtrations. The choice of µ identifies F lG,µ =
G/Pµ, where Pµ ⊂ G is the stabilizer of Fil•(µ).

Example 5.4. (maybe replace with GLn and arbitrary µ)˙Let G = GL2, µ = z 7→
(
z

1

)
. Letting V = Q2

p be

the standard representation of G, we see that V µ=1 = Qp · e1, V µ=0 = Qp · e2. Therefore

Film(µ)(V ) =


0 m ≤ −2

Qp · e1 m = −1

V m ≥ 0

Thus Pµ =

(
∗ ∗
∗

)
is the standard Borel of upper triangular matrices, fixing e1.

Definition 5.5. Let GrB
+
dR

G,µ ⊂ GrB
+
dR

G ×Qp E be the subfunctor on perfectoid affinoid E-algebras

GrB
+
dR

G,µ (R,R+) =
{
x ∈ GrB

+
dR

G,E (R,R+) | µ(x) = µ
}

(Note a subtlety - want it here for all the points in the adic spectrum of R,R+, because we only defined it for the
case (R,R+) = (C,OC) an algebraically closed field.)
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Proposition 5.6. ([Caraiani and Scholze, 2017], Proposition 3.4.3) There is a natural map (Bialynicki-Birula)

πG,µ : GrB
+
dR

G,µ → F lG,µ

where we regard F lG,µ as a functor on perfectoid affinoid E-algebras.

Proof. Enough to prove for G = GLn. Write µ = (µ1, . . . , µn) with µ1 ≥ µ2 ≥ . . . ≥ µn. Recall that the functor

GrB
+
dR

GLn
parametrizes B+

dR,R-lattices Λ ⊂ BndR,R. This gives rise to a filtration on Rn by setting

FilmRn =
(

(B+
dR,R)n ∩ ξ−mΛ

)
/
((
ξB+

dR,R

)n
∩ ξ−mΛ

)
Recall also that we have

B+
dR,R/ξB+

dR,R
∼=
W (R[+)[1/p]

ker(θ)
∼= R+[1/p] = R

so this is indeed an ascending filtration on Rn. Moreover, the lattice Λ corresponding to µ is given by

µ(ξ)−1 =


ξ−µ1

ξ−µ2

. . .
ξ−µn

 · (B+
dR,R

)n
Therefore, we see that

rank(FilmRn) =


0 m < −µ1

i −µi ≤ m < µi+1

n −µn ≤ m
which is a filtration parametrized by F lG,µ. �

(One should verify also thatRn/FilmRn is a finite projectiveR-module (Why?). This is achieved by [Kedlaya and Liu, 2013],
proposition 2.8.4 - a finitely generated module M with a continuous rank function x 7→ dimk(x)(M ⊗R k(x)) is pro-
jective. These are definitley finitely generated, and dimC(Rn/FilmRn ⊗R C) = dimC(Cn/FilmCn) is constant
(depends on µ by the formula above)).
This is nice, but we would like to go the other way. For that we need:

Lemma 5.7. ([Caraiani and Scholze, 2017], Lemma 3.4.4) Assume that µ is minuscule, and that (R,R+) =
(K,K+), where K/E is a perfectoid field. Then

πG,µ : GrB
+
dR

G,µ (K,K+)→ F lG,µ(K,K+)

is a bijection.

Proof. In this case, B+
dR,R is a complete DVR with residue field K, hence by the Cohen structure theorem, we may

choose an isomorphism B+
dR,R

∼= K[[ξ]]. Then we get the usual affine Grassmannian, and this is known ([NP], Lemma
2.3) basically the fact that µ is minuscule shows that the preimage of the unipotent under the natural map L+G→ G
is contained in G, hence the inverse image of Pµ is L+G ∩ µ(ξ)−1(L+G)µ(ξ), deducing the isomorphism. �

Theorem 5.8. ([Caraiani and Scholze, 2017], Lemma 3.4.5) Assume that µ is minuscule. Then the Bialynicki-
Birula morphism

πG,µ : GrB
+
dR

G,µ → F lG,µ

is an isomorphism.

Proof. First, we check injectivity. Take x, y ∈ GrB
+
dR

G,µ (R,R+) such that πG,µ(x) = πG,µ(y). We use (again) Tan-
nakian formalism. Thus, for any (ρ, V ) ∈ RepG, ρ(x), ρ(y) correspond to lattices ΛV,x,ΛV,y ⊂ V ⊗ BdR . Thus, it
is enough that we show ΛV,x = ΛV,y for all V . However, at any point z ∈ Spa(R,R+) with completes residue field
K(z), we have by Lemma 5.7 that

ΛV,x ⊗B+
dR,R

B+
dR,K(z) = ΛV,y ⊗B+

dR,R
B+
dR,K(z)

which establishes the result. (Indeed, let a ∈ Λx. Then there is a minimal m ≥ 0 such that a ∈ ξ−mΛy. If m > 0,
a induces a nonzero element a ∈ ξ−mΛy/ξ

−m+1Λy(finite projective R-module), but the specialization of a to K(z)
vanishes for all z, and R is reduced. contradiction).
Now, for surjectivity, there sre two ways to proceed.
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1. (CS way) GrB
+
dR

G is in fact a sheaf for the pro-etale topology. Then, given a point in the Flag variety, which
defines a filtration on G-representations, we will construct, for any representation V of G, a B+

dR-local system
MV ⊂ V ⊗ BdR on the pro-etale site of F lG,µ, compatibly with tensor products and short exact sequences, which
maps to the correct filtration. By pullback, this will induce a similar B+

dR-lo

cal system on the pro-etale site of Spa(R,R+) for any (R,R+)-valued point of F lG,µ. In order to glue them, it is
enough to prove that one can glue finite projective B+

dR,R-modules in the pro-etale topology. As B+
dR,R is ξ-adically

complete with ξ a nonzerodivisor and B+
dR,R/ξ = R, we are reduced to gluing finite projective R-modules, which is

known ([Kedlaya and Liu, 2013], Theorem 9.2.15.)

We are thus left with construction of MV . Note that V gives rise to a filtered module with an integrable connection
(V ⊗OF lG,µ , id⊗∇,Fil−•), where Fil• is the universal ascending filtration parametrized by F lG,µ (so that Fil−• is
descending). Because µ is minuscule, this filtered module with integrable connection satisfies Griffiths transversal-
ity. Scholze constructs in [Scholze, 2013] the B+

dR-local system MV = Fil0
(
(V ⊗OF lG,µ)⊗O OBdR

)id⊗∇=0 . The
induced filtration is the correct one (check!), and we are done.

2. (SW way) Since µ is minuscule, the source GrB
+
dR

G,µ = GrB
+
dR

G,≤µ and the target (which we now consider as a diamond)
F l�G,µ are small v-sheaves which are q.c.q.s. over SpdC, for any algebraically closed field C/Qp. Thus, (by a result
of Scholze) it is enough to check it on (C,C+)-valued points, which is Lemma 5.7. We recall that a diamond X�
is a functor on perfectoid spaces in characteritic p, sending T to the isomorphism classes of its untilts over X. In
the v-topology on perfectoid spaces, we allow open covers and all surjective maps of affinoids. A small v-sheaf is
one that admits a surjection from a perfectoid X. Basically, since the datum of G-torsor with a trivialization is a
set-theoretically bounded amount of data, it is clear that these are small v-sheaves.

The way to show that GrG is separated is by taking X = Spa(R,R+) with untilt R] and two B+
dR(R])-lattices

M1,M2 ⊂ BdR(R])n, and showing that locus where {M1 = M2} is representable by a closed subdiamond of X�. It
is in fact representable by an affinoid perfectoid space X0 ⊂ X that is closed in X. This is done by considering the
locus{M1 ⊂ M2}. Assume by induction that M1 ⊂ ξ−1M2. Then it suffices to show that {m 7→ 0 ∈ ξ−1M2/M2}
is closed and representable by an affinoid perfectoid. But this quotient is a finite projecive R]-module. Thus, this
is the vanishing locus of a tuple in (R])n (writing as a direct summand), hence we are reduced to showing that
{f = 0} is closed for f ∈ R], but {f = 0} =

⋂
{|f | ≤ |π|n}, and each of these is a rational. Hence the limit is

also affinoid perfectoid, and the complement is open. Now GrG≤µ is a closed subfunctor of GrG, which is proper
over SpdC. This follows, as in the classical case, by reducing to GLn, noting that the relative position condition
determines a closed subfunctor, and reducing properness to the case of µ = (n, 0, . . . , 0) which defines a successive
Pn−1,�-bundle on SpdC. �

5.2. The Fargues-Fontaine curve. We are now ready to return to the curve. We know how to get from the
flag variety to a point on the mixed characteristic affine Grassmannian, which represents a G-bundle on SpecB+

dR,R

which trivializes on SpecBdR,R. We still need to get from that to a G-bundle on the curve.

The main result that will help us get there is the following theorem.

Theorem 5.9. ([Kedlaya and Liu, 2013], Theorem 8.9.6]) Let Z be the image of the canonical closed immersion
i∞ : SpecR→ X(R[). The category of vector bundles over X(R[) (or over X (R[, R[+)) is equivalent to the category
of triples (M1,M2, ι), where M1 is a vector bundle on X(R[)\Z, M2 is a vector bundle over SpecB+

dR,R, and
ι : M1 |SpecBdR,R

∼= M2 |SpecBdR,R . This equivalence is compatible with tensor products and short exact sequences.

Remark 5.10. Note that by GAGA for the curve, it is enough to define a G-bundle on the scheme version. The
idea is that the map i∞ is induced from θ, so that Z is the locus of ξ = 0. Therefore, SpecB+

dR,R is the completion
of X(R[) along Z, and SpecBdR,R = SpecB+

dR,R ×X(R[) Z
c. We can now get a functor from B+

dR,R-lattices in BndR,R
to vector bundles on the curve by gluing it to a trivial rank n vector bundle on X(R[)\Z. This gives us a map

E : GrB
+
dR

G (R,R+)→ {G− bundles over X (R[, R[+)}

in the case G = GLn. It follows from Tannakian formalism for general G.

In particular, if (R,R+) = (C,OC) with C/Qp complete and algebraically closed, and OC its ring of integers, we
may fix an embedding Qp ↪→ C. By Fargues’.classification of G-bunles on the curve, we get a map

b(·) : GrB
+
dR

G (C,OC)→ B(G) : x 7→ b(E(x))
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When µ is miniscule, defined over E, we obtain a map

E : F lG,µ(R,R+)
π−1
G,µ−→ Gr

B+
dR

G,µ (R,R+)→
{
G-bundles over X (R[, R[+)

}
We can now define a map

b(·) : |F lG,µ| → B(G)

by sending a (C,C+)-valued point x ∈ F lG,µ(C,C+), where C is a complete algebraically closed extension of E,
and C+ ⊂ C is an open and bounded valuation subring, to the isomorphism class of the associated bundle E(x).

Definition 5.11. For any β ∈ B(G), the Newton β-stratum of the adic flag variety F lβG,µ ⊂ F lG,µ is simply
b−1(β).

Remark 5.12. Recall that if k′ ⊂ k are algebraically closed fields of characteristic p, and B′(G) is the Kottwitz set
for k′, then B′(G) ∼= B(G) via the natural map induced from G(L′) → G(L). Thus this map is well-defined and
points of rnak higher than one have the same image as their maximal, rank 1, generalization, and therefore the map
factors over the underlying Berkovich space.
In order to get an actual stratification by locallly closed strata, we need to prove the following proposition.

Proposition 5.13. (1) The image of the map b(·) : |F lG,µ| → B(G) is contained in the set of µ∗-admissible
elements B(G,µ∗).
(2) The map b(·) : |F lG,µ| → B(G) is lower (!? Shouldn’t that be upper - yes, it should !?) semicontinuous.

Proof. We start by proving the first statement. Let b = b(E(x)) for some x ∈ GrB
+
dR

G,µ (C,OC). We have to prove (a)
νb � µ∗ as elements of (X∗(T )⊗Q)Γ

dom and that (b) κb = µ∗[ = −µ[.
(a) This reduces to the case of G = GLn by [RR, Lemma 2.2] (Change to location in these notes). Let E = E(x)
be the vector bundle of rank n over XC[ , together with a trivialization outside the point ∞ (the closed subset Z).
Then µ = µ(E) is its relative position. Let ν = νE ∈ (X∗(GLn) ⊗ Q)dom be the Newton polygon of E , with slopes
λ1 ≥ λ2 ≥ . . . ≥ λn, i.e. E ∼=

⊕n
i=1OXC[ (λi). Then, since O(λ) corresponds to the isocrystal V−λ, we see that

νb = ν∗E , and we need to prove ν∗E � µ∗. However, this is equivalent to νE � µ. (Write equations if needed). We
note that

r∧
E ∼=

⊕
i1<i2<...<ir

OX
C[

 r∑
j=1

λij


has smallest (first) Newton slope

∑n
i=n+1−r λi, and

µ

(
r∧
E

)
=


r∑
j=1

µij : i1 < i2 < . . . < ir


has smallest (first) Hodge slope

∑n
i=n+1−r µi. Therefore, if we prove that νE = µ when E is a line bundle, we get

that the top exterior powers agree, and if we show that the first slope λn of the Newton polygon of E lies above the
first slope of the Hodge polygon, i.e. λn ≥ µn, then applying it to

∧r E , we get the result.
Verification for the case of line bundles is direct - the modification E is given by the lattice E⊗O

X[
B+
dR,C = ξ−dBdR,C

for a unique d ∈ Z, and in that case µ(E) = d ∈ X∗(Gm) = Z. The resulting line bundle is given by OX[(d) which
is of slope d, as desired.

For the first slope, we may twist to assume that µn = 0. This implies
(
B+
dR,C

)n
⊆ E ⊗OX

C[
B+
dR,C , so that the

trivialization of E extends to an injection OnX
C[
↪→ E . Then we have a quotient map E → O(λn), inducing a nonzero

map OnX → O(λn) by rank considerations, but then we get a nonzero map O → O(λn), hence λn ≥ 0 (more or less
by definition - the graded ring has only nonnegative grading).

(b) The map GrB
+
dR

G,µ (C,OC)→ B(G)→ π1(G)Γ is functorial in (G,µ). If G̃→ G is a central extension with a simply
connected derived group (e.g. G̃ = Z×Gsc, where Gsc is the simply connected cover of Gder), and µ̃ is any lift of µ,
the map on Grassmannians is surjective, and by functoriality it’s enough to prove the result for (G̃, µ̃). (draw the
commutative diagram!) Next, if Gder is simply connected, then T = G/Gder is a torus such that π1(G)Γ → π1(T )Γ

is an isomorphism (π1(Gder) = 0, π1 is exact). If G = T is a torus, can find a surjection T̃ → T where T̃ is a
product of induced tori ResK/QpGm, and enough to prove for T̃ . Then it is enough to prove for a single factor
in the product, T̃ = ResK/QpGm. But then π1(T̃ )Γ = Z (since X∗(ResK/QpGm) ∼= Z[Gal(K/Qp)] is the regular
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representation), which is torsion-free, so because of the norm map NormK/Qp : T̃ → Gm, it is enough to consider
the case Gm, but this is the case of line bundles, which we have already covered.
For the second statement, from the fact that the Kottwitz map is constant on |F lG,µ|, it is enough to show that
the Newton map is lower semicontinuous. Consider a topological quotient map π : Spa(R,R+) → F lG,µ (use a
pro-etale cover). Since π is an open and surjective map,

{y : b(y) � α} = π({x : (b ◦ π)(x) � α})

and so it is enough to prove the b ◦ π is upper (lower) semicontinuous. By Lemma 3.9, this can be checked on
representations of G. Such a representation gives rise to a vector bundle on X (R[, R[+). This, in turn, translates
to a ϕ-module on the Robba ring R̃R, for which the result is the next theorem. �

Theorem 5.14. ([Kedlaya and Liu, 2013], Theorem 7.4.5) For any ϕ-module M over R̃R, the function mapping
β ∈ Spa(R,R+) to the slope polygon of M ⊗R̃R R̃k(β) is upper (lower - mistake(?) in the original) semicontinuous.

Proof. (Sketch) Let L be a complete algebraic closure of k(β). We know that for some positive integer d, there is
a basis for M ⊗R̃R R̃L on which ϕd acts via a diagonal matrix D with values in pZ. We can approximate the basis
by a basis for M ⊗R̃R R̃E where E is a finite Galois extension of k(β). Since Rβ is a Henselian local ring, Then
one can find a rational localization R → R′ encircling β and a faithfully finite etale R′-algebra S such that S is
Galois over R′, S admits a unique extension γ of β, and γ has residue field E. Then we can approximate these by
generators of M ⊗R̃R R̃S . These, in turn, can be approximated by a basis on which ϕd acts via an invertible matrix
of the form FD, where F − 1 is p-integral. The slope polygon of M at a given point of Spa(R′) is the same as at
any point of Spa(S) restricting to the given point. Thus, the negation of p-adic valuations on the diagonal entries
of D give the slopes in the slope polygon at β. But the above shows that this is also the generic slope polygon at
each γ ∈ Spa(S). But the special slope polygon lies on or above the generic one, and we are done. �

Corollary 5.15. ([Caraiani and Scholze, 2017], Corollary 3.5.9) The strata F lbG,µ are locally closed in F lG,µ.
More precisely, the stratum corresponding to the basic element is open in F lG,µ, and the strata

F l�bG,µ :=
∐
b�b′

F lb
′

G,µ

are closed.

Remark 5.16. Note that this is in a stark contrast to the Newton stratification on classical Shimura varieties, where
the basic stratum is closed.

5.3. Example - on Pn−1 in the HT case.

Example 5.17. Let G = GU(1, n− 1). More precisely, let

J =

(
1
−In−1

)
Then, setting a quadratic extension K/Qp, write

GU(1, n− 1) =
{
g ∈ GLn(K) |t gJg = J

}
We can consider the Hodge cocharacter

µ(z) =

(
z

z · In−1

)
⇒ µC(z, 1) =

(
z

In−1

)
It follows that for b ∈B(G,µ), if νb = (ν1, . . . , νn) with ν1 ≥ ν2 ≥ . . . ≥ νn, then, as µ = (1, 0, 0, . . . , 0), we get

ν1 ≤ 1

ν1 + ν2 ≤ 1

...
ν1 + ν2 + . . .+ νn−1 ≤ 1

ν1 + ν2 + . . .+ νn−1 + νn = 1

However, the last two equations imply that νn ≥ 0. If νn > 0, we further know (by dimension cosideration) that
νn ≥ 1

n , and hence
∑
νi ≥ 1 with equality iff νi = 1

n for all i.
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It follows that either νn = 0 or νb =
(

1
n , . . . ,

1
n

)
. If νn = 0, then we get the same equations for (ν1, . . . , νn−1), so

either νn−1 = 0 or νb =
(

1
n−1 , . . . ,

1
n−1 , 0

)
. Thus we see that the possible µ-admissible elements in B(G,µ) are

precisely

ν =

 1

n− i
, . . . ,

1

n− i︸ ︷︷ ︸
n−i

, 0, . . . , 0︸ ︷︷ ︸
i


(Draw Newton polygons!!!!) and the corresponding (to b∗ ∈ B(G,µ∗)) vector bundles are Ei = Oi ⊕O

(
1
n−i

)
, with

E0 the basic (minimal) one, and En−1 = On−1 ⊕O(1) the µ-ordinary (maximal) one.
Then, looking for example at the representation V = Qnp , one sees that V µ=1 = 〈e1〉, V µ=0 = 〈e2, . . . , en〉, and the
filtration is

Film(µ)(V ) =


0 m ≤ −2

Qp · e1 m = −1

V m ≥ 0

corresponding to the parabolic

Pµ =


∗ ∗ · · · ∗
0 ∗ · · · ∗

0
...

. . .
...

0 ∗ · · · ∗


hence F lG,µ = G/Pµ = Pn−1 is simply projective space. By Theorem 5.9, we know that for an algebraically closed
complete extension C of E, the G-bundles on XC[ are in bijection with G(E)\G(BdR,C)/G(B+

dR,C), and in particular
those with relative position µ are in bijection with G(E)\G(B+

dR,C) · µ(ξ)−1 ·G(B+
dR,C)/G(B+

dR,C).
Stated differently, a point x ∈ Pn−1 defines a filtration, which in our case is simply a subspace Filx on every G-
representation, and in particular on k(x)n. The isomorphism classes of G-bundles correspond to the G(E)-orbit of
this filtration.
One can see (exercise) that the orbits underG(Qp) correspond to the dimension of the maximal rational subspace:dimE(En∩
Filxk(x)n). Moreover, from the description of the isomorphism classes of G-bundles, we see that

dimE(En ∩ Filxk(x)n) = i ⇐⇒ E(x) ∼= Oi ⊕O
(

1

n− i

)
Therefore, we get a stratification via (for i = 0, . . . , n− 1)

(Pn−1)(i) =
{
x ∈ Pn−1 | dimE E

n ∩ Filxk(x)n = i
}

In particular, the open (basic) stratum is (
Pn−1

)(0)
= Ωn−1

Drinfeld space! (removing all rational hyperplanes). For each i > 0, the i-th stratum is fibered over the Grass-
mannian Gri of i-dimensional subspaces of Qnp via x 7→ Qnp ∩ Filxk(x)n, with fibers the Drinfeld spaces Ωn−1−i. In
particular, we get the description of the stratification for the modular curve by considering n = 2.
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