Motives

Eran Assaf

Dartmouth College

Shimura Varieties Reading Seminar, June 2020

- X nonsingular projective algebraic variety over $k = \overline{k}$.
- $H^{\bullet}_{\mathsf{P}}(X(\mathbb{C}), \mathbb{Z}), H^{\bullet}_{\mathsf{dP}}(X(\mathbb{C})), H^{\bullet}_{\mathsf{ct}}(X, \mathbb{Q}_{\ell}), H^{\bullet}_{\mathsf{cris}}(X, W(k))$
- No algebraic cohomology theory with coefficients in Q.
 - In char p, dim $H^1(E,\mathbb{O}) \leq 2$, but $[End(E)_{\mathbb{O}} : \mathbb{O}] = 4$.
 - In general, choose $k \hookrightarrow \mathbb{C}$, then

$$\begin{split} H^i_{\text{\'et}}(X,\mathbb{Q}_\ell) &\cong H^i_{\text{\'et}}(X(\mathbb{C}),\mathbb{Q}) \otimes \mathbb{Q}_\ell \\ H^i_{\text{dR}}(X) \otimes_k \mathbb{C} &\cong H^i_B(X(\mathbb{C}),\mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C} \end{split}$$

 X_0 a model of X over k_0 , $\Gamma = Gal(k : k_0)$ infinite, uncountable, stabilizing the countable $H^i(X,\mathbb{Q}) \Rightarrow$ Acts through a finite quotient on $H^i_{\acute{e}t}(X,\mathbb{Q}_\ell)$.

Grothendieck's idea

Motives

There should be a \mathbb{Q} -category, $\mathcal{M}(k)$, which will be called the category of motives. We would like it to have some nice properties:

- $\operatorname{\mathsf{Hom}}_{\mathcal{M}(k)}(A,B) \in \operatorname{\mathsf{Vec}}_{\mathbb{Q}}.$
- $\mathcal{M}(k)$ should be abelian.
- Even better, $\mathcal{M}(k)$ should be Tannakian over \mathbb{Q} .
- There should be a universal cohomology theory

$$X \rightsquigarrow hX : Var_k \to \mathcal{M}(k)$$

where Var_k is the category of non-singular projective varieties.

- Each correspondence* from X to Y (in particular, a regular map $Y \to X$) should define a morphism $hX \to hY$.
- Good cohomology theories factor uniquely through $X \rightsquigarrow hX$.

Algebraic cycles

Definition (k-cycle)

A k-cycle on X is a finite formal sum

$$\sum n_i[V_i]$$

 V_i closed integral k-dim. subschemes. The group of k-cycles on X is denoted by $Z_k(X)$.

If two cycles intersect properly, we can define products.

Rational equivalence

In general, we want to be able to move cycles.

Definition

W closed integral (k+1)-dim. subscheme of X. $f \in K(W)^{\times}$. $\operatorname{div}(f) = \sum_{\operatorname{codim}(W,V)=1} \operatorname{ord}_V(f)[V]$

Definition (rationally equivalent to zero)

$$\alpha \sim 0$$
 if $f_i \in K(W_i)^{\times}$ such that $\alpha = \sum div(f_i)$.
 $Z_k^0(X) = \{\alpha \in Z_k(X) : \alpha \sim 0\}, A_k(X) = Z_k(X)/Z_k^0(X)$

Properties

- 1. $A_k(X) \cong A_k(X_{red})$.
- 2. If $X = |X_i|$, then $A_{\bullet}(X) = \bigoplus A_{\bullet}(X_i)$.
- 3. $A_k(X_1 \cap X_2) \to A_k(X_1) \oplus A_k(X_2) \to A_k(X_1 \cup X_2) \to 0$.

Rational equivalence

Example (Projective space)

(n-1)-cycles = hypersurfaces = irreducible homogeneous polynomials.

Equivalent if have same degree. Thus $A_{n-1}(\mathbb{P}^n_k) \cong \mathbb{Z}$.

Example $(\mathbb{P}^1 \times \mathbb{P}^1)$

1-cycles = irreducible $p(x_0,x_1;y_0,y_1)$ bihomogeneous. Equivalent if both degrees are the same. Thus $A_1(\mathbb{P}^1_k\times\mathbb{P}^1_k)\cong\mathbb{Z}\times\mathbb{Z}$. Basis - $\{0\}\times\mathbb{P}^1$ and $\mathbb{P}^1\times\{0\}$. $\Delta_{\mathbb{P}^1}\sim\{0\}\times\mathbb{P}^1+\mathbb{P}^1\times\{0\}$

Push-forward for cycles

Definition (push-forward)

$$f: X \to Y \text{ proper. } W = f(V).$$

$$f_{\star}[V] = \begin{cases} [K(V) : K(W)] \cdot [W] & \dim W = \dim V \\ 0 & \dim W < \dim V \end{cases}$$

Theorem ([Ful13], Theorem 1.4)

$$f: X \to Y$$
 proper, $\alpha \in Z_k^0(X)$, then $f_*\alpha \in Z_k^0(Y)$.

Proposition ([Ful13], Proposition 1.4)

- $f: X \to Y$ proper surjective of integral schemes. $r \in K(X)^{\times}$.
 - 1. $f_{\star}(\operatorname{div}(r)) = 0$ if $\operatorname{dim}(Y) < \operatorname{dim}(X)$.
 - 2. $f_{\star}(\operatorname{div}(r)) = \operatorname{div}(N(r))$ if $\operatorname{dim}(Y) = \operatorname{dim}(X)$.

Example (Different dimensions)

$$Y = \operatorname{Spec} k, \ X = \mathbb{P}^1_k, \ r \in k[t], \ \deg(r) = d = [k[t]/(r) : k].$$

$$\operatorname{div}(r) = [P] - d[\infty] \Rightarrow f_* \operatorname{div}(r) = d[Y] - d[Y] = 0$$

Example (Separated is necessary)

$$X$$
 is the projective line with doubled origin, $Y = \operatorname{Spec} k$, $r = x_1/x_0$. $\operatorname{div}(r) = [0_1] + [0_2] - [\infty] \Rightarrow f_{\star}\operatorname{div}(r) = [Y] + [Y] - [Y] = [Y]$

Definition (Degree)

$$\pi: X \to \operatorname{Spec} k \text{ proper, } \alpha \in A_0(X).$$

 $\deg \alpha = \pi_{\star} \alpha \in A_0(\operatorname{Spec} k) \cong \mathbb{Z}.$

Push forward - illustration

Figure 1.8 Pushforwards of equivalent cycles are equivalent.

Cycles of subschemes

Definition (Fundamental cycle)

X scheme. X_i irred. comp. with local Artinian rings $A_i = \mathcal{O}_{X_i X_i}$ $[X] = \sum_{i} \ell_{A_i}(A_i)[X_i]$

Example

$$f: V \to \mathbb{P}^1$$
 dominant. Then $div(f) = [f^{-1}(0)] - [f^{-1}(\infty)]$.

Definition

Let $V \hookrightarrow X \times \mathbb{P}^1$ be such that $f: V \to \mathbb{P}^1$ is dominant. $P \in \mathbb{P}^1$ rational (degree 1) point.

Then $f^{-1}(P)$ is a subscheme of $X \times \{P\}$, mapped isomorphically to a subscheme of X. Denote it by V(P).

Alternate definition of rational equivalence

Proposition ([Ful13], Proposition 1.6)

$$\alpha \in Z_k^0(X)$$
 iff $\exists V_i \hookrightarrow X \times \mathbb{P}^1$ s.t. $p_i : V_i \to \mathbb{P}^1$ dominant,
$$\alpha = \sum_i [V_i(0)] - [V_i(\infty)]$$

Proof.

If $\alpha = div(r)$, $r \in K(W)^{\times}$, then $r : W \longrightarrow \mathbb{P}^1$.

Let V be the closure of its graph in $X \times \mathbb{P}^1$.

 $p: X \times \mathbb{P}^1 \to X$ is proper and maps V to W birationally.

Let $f: V \to \mathbb{P}^1$ be the second projection. Then by prop. 1.4 (b)

$$div(r) = p_{\star}div(f) = [V(0)] - [V(\infty)]$$

Conversely, by Theorem 1.4

$$[V(0)] - [V(\infty)] = p_{\star} div(f) \in Z_{k}^{0}(X)$$

Rational Equivalence

Alternate Definition Figure 1.1 Rational equivalence between two cycles ω_0 and ω_{∞} on X.

Figure 1.2 Rational equivalence between a hyperbola and the union of two lines in \mathbb{P}^2 .

Flat pull-back of cycles

Definition (Flat pull-back)

$$f: X \to Y$$
 flat. Then $f^*[V] = [f^{-1}(V)]$.

Proposition ([Ful13], Prop. 1.7)

$$X' \xrightarrow{g'} X$$

$$\downarrow_{f'} \qquad \downarrow_{f}$$

$$Y' \xrightarrow{g} Y$$

Cartesian, g flat, f proper. Then g' flat, f' proper, $f'_{\star}g'^{\star}=g^{\star}f_{\star}$.

Theorem ([Ful13], Theorem 1.7)

 $f: X \to Y$ flat of rel. dim. $n, \alpha \in Z_{k}^{0}(Y)$, then $f^{\star}(\alpha) \in Z_{k+n}^{0}(X)$.

Proof of theroem

Proof.

Assume $\alpha = [V(0)] - [V(\infty)]$. Consider the diagram

Then

$$f^*\alpha = f^*q_* div(g) = p_*(f \times 1)^*([g^{-1}(0)] - [g^{-1}(\infty)]) = p_*([h^{-1}(0)] - [h^{-1}(\infty)]) = p_* div(h)$$

Pullback - Illustration

Figure 1.9 $2[p] = f_*([P][C]) = f_*([f^*L_1][C]) = [L_1]f_*[C] = [L_1][2L_2].$

Affine bundles

Proposition ([Ful13], Proposition 1.8)

$$i:Y\hookrightarrow X\ closed,\ j:U=X-Y\hookrightarrow X.\ Then$$

$$A_kY\stackrel{i_\star}{\longrightarrow} A_kX\stackrel{j^\star}{\longrightarrow} A_kU\longrightarrow 0$$

Proposition ([Ful13], Proposition 1.9)

 $p: E \to X$ an affine bundle of rank n. $p^*: A_k X \twoheadrightarrow A_{k+n} E$.

Proof.

$$A_{\bullet}Y \longrightarrow A_{\bullet}X \longrightarrow A_{\bullet}U \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A_{\bullet}(p^{-1}Y) \longrightarrow A_{\bullet}E \longrightarrow A_{\bullet}(p^{-1}U) \longrightarrow 0$$

reduces to $E = X \times \mathbb{A}^n$, then to n = 1.

Proof.

Replace X by $\overline{p(V)}$, so X integral and p dominant.

$$\begin{array}{ccc}
V & \longrightarrow \overline{p(V)} \\
\downarrow & & \downarrow \\
X \times \mathbb{A}^1 & \xrightarrow{p} X
\end{array}$$

$$A = K[X], K = K(X), q = I(V) \subseteq A[t].$$

 $V \neq E$, dominant hence qK[t] = (r) is nontrivial. Then

$$[V] - div(r) = \sum n_i [V_i]$$

where V_i don't dominate X. Then

$$[V] = div(r) + \sum_{i} n_i p^*[p(V_i)] \quad \Box$$

Example (Affine space)

$$A_k(\mathbb{A}^n) = \begin{cases} 0 & k < n \\ \mathbb{Z} & k = n \end{cases}$$

Affine bundles

Example (Projective space)

 $L^k = k$ -dim. linear subspace of \mathbb{P}^n . From

$$A_k([L^{n-1}]) \to A_k(\mathbb{P}^n) \to A_k(\mathbb{A}^n) \to 0$$

we get $\mathbb{Z} \cdot [L^k] \twoheadrightarrow A_k(\mathbb{P}^n)$. Isomorphism for k = n - 1, n. If k < n - 1, and $d[L^k] = \sum n_i div(r_i)$, $r_i \in K(V_i)$, set $Z = \bigcup V_i$ and project from a linear (n - k - 2)-dimensional subspace disjoint from Z to get $f: Z \to \mathbb{P}^{k+1}$. Using proper push-forward and induction, $A_k(\mathbb{P}^n) = \mathbb{Z} \cdot [L^k]$.

Example (Hypersurface)

Let H ve a reduced hypersurface of degree d in \mathbb{P}^n . Then [H] = d[L], for a hyperplane L and

$$A_{n-1}(\mathbb{P}^n - H) = \mathbb{Z}/d\mathbb{Z}$$

Exterior Products

Definition (Exterior Product)

The exterior product

$$Z_k X \otimes Z_l Y \xrightarrow{\times} Z_{k+l} (X \times Y)$$

is defined by $[V] \times [W] = [V \times W]$.

Proposition ([Ful13], Proposition 1.10)

- 1. If $\alpha \sim 0$ or $\beta \sim 0$, then $\alpha \times \beta \sim 0$.
- 2. If $f: X' \to X, g: Y' \to Y$ proper, then $(f \times g)_*(\alpha \times \beta) = f_*\alpha \times g_*\beta$
- 3. If $f: X' \to X, g: Y' \to Y$ flat, then $(f \times g)^*(\alpha \times \beta) = f^*\alpha \times g^*\beta$

Chern class of a line bundle

Definition (Chern class)

L line bundle on X. $V \subseteq X$, dim V = k. Then $L|_{V} \cong \mathscr{O}_{V}(C)$, $C \in Div(V)$.

$$c_1(L) \cap -: Z_k(X) \to A_{k-1}(X), \quad [V] \mapsto [C]$$

Proposition ([Ful13], Proposition 2.5)

- 1. $\alpha \sim 0 \Rightarrow c_1(L) \cap \alpha = 0$. Hence $c_1(L) \in Hom(A_kX, A_{k-1}X)$.
- 2. (Commutativity) $c_1(L) \cap (c_1(L') \cap \alpha) = c_1(L') \cap (c_1(L) \cap \alpha)$.
- 3. (Projection formula) $f: X' \to X$ proper

$$f_{\star}(c_1(f^{\star}L) \cap \alpha) = c_1(L) \cap f_{\star}(\alpha)$$

4. (Flat pull-back) $f: X' \to X$ flat of rel. dim. n.

$$c_1(f^*L) \cap f^*\alpha = f^*(c_1(L) \cap \alpha)$$

5. (Additivity)
$$c_1(L \otimes L') \cap \alpha = c_1(L) \cap \alpha + c_1(L') \cap \alpha$$
.

Segre classes

Example (Projective space)

$$c_1(\mathscr{O}(1)) \cap [L^k] = [L^{k-1}]$$

Definition (Segre classes)

E line bundle on X of rank e + 1, P = P(E), $p : P \rightarrow X$, and $\mathcal{O}(1)$ the canonical line bundle on P.

$$s_i(E) \cap \alpha = p_{\star}(c_1(\mathcal{O}(1))^{e+i} \cap p^{\star}\alpha)$$

Proposition ([Ful13], Proposition 3.1)

- 1. $s_i(E) \cap \alpha = \begin{cases} 0 & i < 0 \\ \alpha & i = 0 \end{cases}$
- 2. If E line bundle, $s_1(E) \cap \alpha = -c_1(E) \cap \alpha$.
- 3. Commutativity, projection formula and flat pull-back.

Segre classes

Proof.

(3) follows formally from the same for c_1 .

For (1), consider [V]. Use projection formula to reduce to X = V.

Then $A_{k-i}X = 0$ for i < 0. Also

$$s_0(E) \cap \alpha = p_{\star}(c_1(\mathcal{O}(1))^e \cap [P]) = m[X]$$

To show m = 1, by flat pull-back, reduce to trivial E.

Then $P(E)=X\times \mathbb{P}^e$, and $\mathscr{O}(1)$ has sections whose zero scheme is $X\times \mathbb{P}^{e-1}$, so

$$c_1(\mathscr{O}(1)) \cap [X \times \mathbb{P}^e] = [X \times \mathbb{P}^{e-1}]$$

For (2) , note that P(E)=X and $\mathscr{O}(-1)=E$, so $\mathscr{O}(1)=E^{\vee}$. \square

Rational equivalence on bundles

Theorem ([Ful13], Theorem 3.3)

 $\pi: E \to X$ vector bundle of rank r = e + 1.

- 1. $\pi^*: A_{k-r}X \to A_kE$ is an isomorphism.
- 2. The map $\theta_E : \bigoplus_{i=0}^e A_{k-e+i} X \to A_k P(E)$ defined by

$$\theta_E(\bigoplus \alpha_i) = \sum_{i=0}^e c_1(\mathscr{O}(1))^i \cap \rho^*\alpha_i$$

is an isomorphism.

Proof.

Start by showing θ_E is surjective. Noetherian induction reduces to trivial E. Induction on the rank reduces to $F=E\oplus 1$, θ_E surjective. Write P=P(E), $Q=P(F)=P(E\oplus 1)$.

Rational equivalence on bundles

Proof.

For $\beta \in A_{\bullet}Q$, $j^{\star}\beta = \pi^{\star}\alpha$, so by induction and projection formula

$$\beta - q^* \alpha = i_* \left(\sum_{i=0}^e c_1(\mathscr{O}_E(1))^i \cap p^* \alpha_i \right) = \sum_{i=0}^e c_1(\mathscr{O}_F(1))^i \cap i_* p^* \alpha$$

 $\mathcal{O}_F(1)$ has a section vanishing on P, so

$$c_1(\mathscr{O}_F(1)) \cap [q^{-1}V] = [p^{-1}V] \implies c_1(\mathscr{O}_F(1)) \cap q^*\alpha = i_*p^*\alpha$$

showing θ_F surjects.

For injectivity, if $\beta = \sum_{i=0}^{l} c_1(\mathcal{O}(1))^i \cap p^*\alpha = 0$ with $\alpha_l \neq 0$, then $p_*(c_1(\mathcal{O}(1))^{e-l} \cap \beta) = \sum_{i=0}^{l} s_{i-l}(E) \cap \alpha_i = \alpha_l$.

Gysin homomorphism

Proof.

Finally, to show π^* is injective, let $F = E \oplus 1$, assume $\pi^*\alpha = 0$.

Then $j^*q^*\alpha = 0$, so using surjectivity of θ_F

$$q^{\star}\alpha = i_{\star} \left(\sum_{i=0}^{e} c_{1}(\mathscr{O}_{E}(1))^{i} \cap p^{\star}\alpha_{i} \right) = \sum_{i=0}^{e} c_{1}(\mathscr{O}_{F}(1))^{i+1} \cap q^{\star}\alpha_{i}$$
 contradicting the injectivity of θ_{F} .

Definition (Gysin homomorphism)

s zero section of $\pi: E \to X$ of rank r.

$$s^* = (\pi^*)^{-1} : A_k E \to A_{k-r} X$$

Deformation to the normal cone

Definition (Normal cone)

$$X \subseteq Y$$
 closed, ideal \mathscr{I} . $C_X Y = \operatorname{Spec} \left(\bigoplus_{n=0}^{\infty} \mathscr{I}^n / \mathscr{I}^{n+1} \right)$.

Theorem

Let $M = M_X Y$ be the blow-up of $Y \times \mathbb{P}^1$ along $X \times \{\infty\}$.

commutes and:

- 1. Over \mathbb{A}^1 , $\rho^{-1}(\mathbb{A}^1) = Y \times \mathbb{A}^1$, and $X \times \mathbb{A}^1 \hookrightarrow Y \times \mathbb{A}^1$.
- 2. Over ∞ , the divisor $M_{\infty} = \varrho^{-1}(\infty) = P(C \oplus 1) + \tilde{Y}$.
- 3. $X \times \{\infty\} \hookrightarrow M_{\infty}$ is the zero section to $C \hookrightarrow P(C \oplus 1)$.
- 4. $P(C \oplus 1) \cap \tilde{Y} = P(C)$, the hyperplane at ∞ , exc. divisor.

Specialization to the Normal Cone

Definition (specialization)

$$\sigma: Z_k Y \to Z_k C, \quad \sigma[V] = [C_{V \cap X} V].$$

Proposition ([Ful13], Proposition 5.2)

If $\alpha \sim 0$, then $\sigma(\alpha) \sim 0$.

Proof.

Let $M^{\circ} = M - \tilde{Y}$ (deformation of $X \hookrightarrow Y$ to $X \hookrightarrow C_X Y$).

$$A_{k+1}C \xrightarrow{i_{\star}} A_{k+1}M^{\circ} \xrightarrow{j^{\star}} A_{k+1}(Y \times \mathbb{A}^{1}) \longrightarrow 0$$

$$\downarrow^{i^{\star}} \qquad pr^{\star} \uparrow$$

$$A_{k}C < ----A_{k}Y$$

Enough to show this is the map. Use

$$pr^{\star}[V] = [V \times \mathbb{A}^1] = j^{\star}[M_{V \cap X}^{\circ}V] \quad \Box$$

Intersection products

The basic construction

 $i: X \hookrightarrow Y$ regular embedding of codim. d defined by \mathscr{I} .

V pure k-dim. $f: V \to Y$, $W = f^{-1}(X)$.

$$N = g^* N_X Y$$
, $\pi : N \to W$, $C = C_W V$.

Set \mathscr{J} the ideal sheaf of W in V.

$$\bigoplus_n f^\star(\mathcal{I}^n/\mathcal{I}^{n+1}) \twoheadrightarrow \bigoplus_n \mathcal{J}^n/\mathcal{J}^{n+1} \implies C \hookrightarrow N$$

Define $X \cdot V = s^*[C] \in A_{k-d}W$.

Example

Let $\pi:X\to\mathbb{A}^2$ be the blow-up of \mathbb{A}^2 at the origin. Let D,D' be the inverses of the x-axis and the y-axis. Then $D\cdot D'$ and $D'\cdot D$ are well-defined cycles on $D\cap D'=E$, the exceptional divisor. These cycles are not equal, although they are rationally equivalent.

Intersection products

Definition (Canonical decomposition)

 C_1, \ldots, C_r irreducible components of C. $Z_i = \pi(C_i) \subseteq W$ their support. Z_1, \ldots, Z_r are the distinguished varieties of $X \cdot V$. $N_i = N|_{Z_i}$, s_i the zero sections, and $\alpha_i = s_i^{\star}[C_i] \in A_{k-d}(Z_i)$. Then

$$[C] = \sum_{i=1}^{r} m_i [C_i] \implies X \cdot V = \sum_{i=1}^{r} m_i \alpha_i$$

Example

$$Y=\mathbb{P}^2$$
, $X_1=\{xy=0\}$, $X_2=\{x=0\}$, P the point $(0,0)$. For $X_1\cdot X_2$, only X_2 is distinguished. For $X_2\cdot X_1$, locally
$$k[C_{X_2}X_1]\cong k[x,y,T]/(x,yT)\cong {}^k[x,y,T]/(x,y)\times {}^k[x,y,T]/(x,T)$$
 so both X_2 and P are distinguished. Similarly for $(X_1\times X_2)\cdot \Delta_{\mathbb{P}^2}$.

Example

A, B lines in
$$\mathbb{P}^2$$
 meeting at P. Set $D_1=2A+B$, $D_2=A+2B$. $X=D_1\times D_2$, $Y=\mathbb{P}^2\times \mathbb{P}^2$, $V=\mathbb{P}^2$, $f:V\to Y$ the diagonal. A, B, P distinguished varieties, canonical decomposition is $X\cdot V=\alpha+\beta+3[P], \alpha\in Z_0(A), \beta\in Z_0(B), \deg(\alpha)=\deg(\beta)=3$

Definition (Refined Gysin homomorphism)

Let $i^!: A_k V \to A_{k-d} W$ be the composite

$$A_k V \xrightarrow{\sigma} A_k C \longrightarrow A_k N \xrightarrow{s^*} A_{k-d} W$$

Explicitly, $i^! (\sum_i n_i [V_i]) = \sum_i n_i X \cdot V_i$. If V = Y, $f = id_Y$, then we denote $i^* : A_k Y \to A_{k-d} X$.

Refined Gysin Homomorphism

Theorem ([Ful13], Theorem 6.2)

$$X'' \xrightarrow{q} X' \xrightarrow{g} X$$

$$\downarrow^{i''} \qquad \downarrow^{i'} \qquad \downarrow^{i}$$

$$Y'' \xrightarrow{p} Y' \xrightarrow{f} Y$$

Cartesian with i regular of codim. d. Then

- 1. (Push-forward) If p is proper, $i^!p_* = q_*i^!$.
- 2. (Pull-back) If p is flat, $i^!p^* = q^*i^!$.
- 3. (Compatibility) If i' regular of codim. d, then i! = i'!.

Example

$$\delta: \mathbb{P}^n \to \mathbb{P}^n \times \dots \mathbb{P}^n$$
. Then
$$\delta^{\star}([k_1] \times \dots \times [k_r]) = [k_1 + \dots + k_r - (r-1)n]$$

Intersection on smooth varieties

Definition (Intersection product)

$$f: X \to Y$$
, Y smooth, $\dim Y = n$. $p_X: X' \to X$, $p_Y: Y' \to Y$.
$$X' \times_Y Y' \longrightarrow X' \times Y'$$

$$\downarrow \qquad \qquad \downarrow p_X \times p_Y$$

$$X \xrightarrow{\gamma_f} X \times Y$$

Define
$$x \cdot_f y = \gamma_f^!(x \times y) : A_k X' \times A_l Y' \to A_{k+l-n}(X' \times_Y Y').$$

Example

$$X' = X, Y' = Y$$
. Then $x \cdot_f y = \gamma_f^*(x \times y)$.
If $X = Y, f = id_Y$, then $\gamma_f = \delta$, and $x \cdot y = \delta^*(x \times y)$.
Given x, y can take X', Y' to be their supports.

Refined intersections

Proposition ([Ful13], Proposition 8.1.1)

- 1. (Associativity) $x \cdot_f (y \cdot_g z) = (x \cdot_f y) \cdot_{gf} z$.
- 2. (Commutativity) $(x \cdot_{f_1} y_1) \cdot_{f_2} y_2 = (x \cdot_{f_2} y_2) \cdot_{f_1} y_1$.
- 3. (Projection formula) If $p_Y f' = f p_X$, $(f' \times_Z id_Z)_{\star}(x \cdot_{gf} z) = f'_{\star}(x) \cdot_{g} z$
- 4. (Compatibility) If $g: V' \to Y'$ a regular, $g^!(x \cdot f y) = x \cdot f g^! y$.

Corollary

- 1. $j: V \to Y$ regular, $x \cdot [V] = j!(x)$.
- 2. $x \cdot_f y = (x \times y) \cdot [\Gamma_f]$. If X = Y, $x \cdot y = (x \times y) \cdot [\Delta]$.
- 3. $x \cdot_f [Y] = x$.

Definition (Correspondence)

$$X, Y$$
 varieties. The correspondences of degree r are $\alpha: X \vdash Y$
$$\mathsf{Corr}^r(X, Y) = A_{\mathsf{dim}\ Y - r}(X \times Y)$$

Definition (composition)

If
$$\alpha: X \vdash Y$$
, $\beta: Y \vdash Z$, X, Y, Z smooth, the product is
$$\beta \circ \alpha = (p_{XZ})_{\star}(p_{XY}^{\star}\alpha \cdot p_{YZ}^{\star}\beta)$$

Example

 $f: Y \to X$ regular. Its graph $\Gamma_f \in A_{\dim Y}(Y \times X)$ hence its transpose $\Gamma_f^t \in A_{\dim Y}(X \times Y) = \operatorname{Corr}^0(X, Y)$.

Proposition

$$\alpha: X \vdash Y, \beta: Y \vdash Z$$
.

- 1. If $\gamma: Z \vdash W$, then $\gamma \circ (\beta \circ \alpha) = (\gamma \circ \beta) \circ \alpha$.
- 2. $(\beta \circ \alpha)^t = \alpha^t \circ \beta^t$ and $(\alpha^t)^t = \alpha$.
- 3. 3.1 If $\beta = \Gamma_{\sigma}$, then $\beta \circ \alpha = (1_X \times g)_{\star}(\alpha)$.
 - 3.2 If $\alpha = \Gamma_f$, then $\beta \circ \alpha = (f \times 1_Z)^*(\beta)$.
 - 3.3 If $\alpha = \Gamma_f$, $\beta = \Gamma_\sigma$, then $\beta \circ \alpha = \Gamma_{\sigma f}$.

Corollary

The product $(\alpha, \beta) \mapsto \alpha \circ \beta$ makes $A_{\bullet}(X \times X)$ a ring, with unit $[\Delta_X]$, and an involution $\alpha \mapsto \alpha^t$.

Correspondences and cohomology

Theorem (cycle class map)

There exists a map

$$cl: A_{\bullet}(X)_{\mathbb{O}} \to H^{\bullet}(X)$$

which doubles degrees and sends intersection products to cup products.

Corollary

If
$$\alpha \in \mathsf{Corr}^0(X,Y)$$
 then it defines $\alpha^{\star} : H^{\bullet}(X) \to H^{\bullet}(Y)$
 $x \mapsto (p_Y)_{\star}(p_X^{\star} x \cup cl(\alpha))$

First Attempt

Define $\mathcal{M}(k)$ to be the category with objects hX and $\operatorname{Hom}(hX, hY) = \operatorname{Corr}^{0}(X, Y)_{\mathbb{O}}, h(f) = [\Gamma_{f}]^{t}$

Example

If $e: V \to V$ is s.t. $e^2 = e$, then $V = \ker(e) \oplus eV$. If (W, f) is another pair, then $\mathsf{Hom}_{\mathbb{O}}(eV, fW) = f \circ \mathsf{Hom}_{\mathbb{O}}(V, W) \circ e$ add images of idempotents in $\operatorname{End}(hX) = \operatorname{Corr}^{0}(X \times X)_{\mathbb{O}}$.

Remark

When
$$X$$
 is not pure dim. $X = \bigcup_i X_i$, we let $\operatorname{Corr}^r(X,Y) = \bigoplus \operatorname{Corr}^r(X_i,Y) \subseteq A_{\bullet}(X \times Y)$

Second Attempt

Define $\mathcal{M}(k)$ to be the category with objects h(X, e) where $e \in \operatorname{Corr}^0(X,X)_{\mathbb{O}}$ is an idempotent $(e^2 = e)$ and $\operatorname{Hom}(h(X,e),h(Y,f))=f\circ\operatorname{Corr}^0(X,Y)_{\mathbb{Q}}\circ e$

Example

 $\operatorname{End}(h(\mathbb{P}^1,\Delta_{\mathbb{P}^1}))=\mathbb{Z}\oplus\mathbb{Z}$ with $e_0=(1,0)$ represented by $\{0\}\times\mathbb{P}^1$ and $e_2 = (0,1)$ represented by $\mathbb{P}^1 \times \{0\}$. Since $\Delta_{\mathbb{P}^1} \sim e_0 + e_2$, we get

$$h(\mathbb{P}^1,\Delta_{\mathbb{P}^1})=h^0\mathbb{P}^1\oplus h^2\mathbb{P}^1$$

with $h^i\mathbb{P}^1=h(\mathbb{P}^1,e_i)$. Write $\mathbb{1}=h^0\mathbb{P}^1$ and $\mathbb{L}=h^2\mathbb{P}^1$.

This is the category of effective motives. However, we would like objects to have duals.

Third attempt

We invert \mathbb{L} . Objects - h(X, e, m) with X, e as before, $m \in \mathbb{Z}$.

$$\mathsf{Hom}(\mathit{h}(X,e,m),\mathit{h}(Y,f,n)) = \mathit{f} \circ \mathsf{Corr}^{\mathit{n-m}}(X,Y)_{\mathbb{Q}} \circ e$$

This is the category of (Chow) motives over k.

Definition (pseudoabelian category)

An additive category is pseudoabelian if every idempotent $f \in \operatorname{End} M$ has an image, and the canonical map $\operatorname{Im}(f) \oplus \operatorname{Im}(1-f) \to M$ is an isomorphism.

Theorem ([Sch94, Theorem 1.6])

The category of Chow motives over k, \mathcal{M}_k , is an additive, \mathbb{Q} -linear category, which is pseudoabelian.

Remark

In general, \mathcal{M}_k is not abelian.

We begin by constructing direct sums for equal degrees.

Definition (Direct sum)

$$e \in \mathsf{Corr}^0(X,X), f \in \mathsf{Corr}^0(Y,Y).$$
 Recall that $\mathsf{Corr}^0(X \sqcup Y, X \sqcup Y) = \\ = \mathsf{Corr}^0(X,X) \oplus \mathsf{Corr}^0(X,Y) \oplus \mathsf{Corr}^0(Y,X) \oplus \mathsf{Corr}^0(Y,Y)$ Define

$$(X, e, m) \oplus (Y, f, m) = (X \sqcup Y, e \oplus f, m)$$

Exercise

 $g \circ \phi_X \circ e : (X, e, m) \to (Z, g, n), g \circ \phi_Y \circ f : (Y, f, m) \to (Z, g, n)$ then $g \circ (\phi_X \circ e \oplus \phi_Y \circ f) \circ (e \oplus f) : (X \sqcup Y, e \oplus f, m) \to (Z, g, n)$ satisfies the universal property.

Pseudoabelian

Example

$$e \circ f \circ e \in \operatorname{End}(X, e, m) = e \circ \operatorname{Corr}^0(X, X) \circ e$$
 is an idempotent.
 $(X, e \circ f \circ e, m) \oplus (X, e - e \circ f \circ e, m) = (X \sqcup X, e \circ f \circ e \oplus (e - e \circ f \circ e), m)$

The morphisms

$$(efe, e - efe) : (X, e, m) \rightarrow (X \sqcup X, efe \oplus (e - efe), m)$$
$$(efe, e - efe) : (X \sqcup X, efe \oplus (e - efe) \rightarrow (X, e, m)$$

are inverses since

$$\textit{efe} \circ \textit{efe} + (\textit{e} - \textit{efe}) \circ (\textit{e} - \textit{efe}) = \textit{efe} + \textit{e} - \textit{efe} = \textit{e} = \mathsf{id}_{\mathsf{End}(X,e,m)}$$

This shows if \mathcal{M}_k is additive, then it is also pseudoabelian.

Proof.

Quick check shows that $\operatorname{Im}(e \circ f \circ e) = (X, e \circ f \circ e, m)$, and the above shows that $\operatorname{Im}(efe) \oplus \operatorname{Im}(e - efe) \to (X, e, m)$ is an isomorphism.

Tensor Products

Definition (Tensor product)

Define

$$(X, e, m) \otimes (Y, f, n) = (X \times Y, e \times f, m + n)$$

and on morphisms

$$\mathit{f}_{1} \circ \phi_{1} \circ \mathit{e}_{1} \otimes \mathit{f}_{2} \circ \phi_{2} \circ \mathit{e}_{2} = (\mathit{f}_{1} \times \mathit{f}_{2}) \circ (\phi_{1} \times \phi_{2}) \circ (\mathit{e}_{1} \times \mathit{e}_{2})$$

Example (Unit and Lefschetz motives)

Let $\mathbb{1} = (\operatorname{Spec} k, \operatorname{id}, 0)$. Then $\mathbb{1}$ is a unit for \otimes .

Let $\mathbb{L} = (\operatorname{Spec} k, \operatorname{id}, -1)$. Then

$$(X, e, m) = e(hX) \otimes \mathbb{L}^{\otimes -m} \subseteq h(X) \otimes \mathbb{L}^{\otimes -m}$$

Pullback and Pushforward

Definition (Pullback)

For
$$\phi: Y \to X$$
, $\phi^* = h(\phi) = [\Gamma_{\phi}] \in Corr^0(X, Y)$.

Example (Diagonal)

$$\Delta: X \to X \times X$$
 defines a product structure on $h(X) = (X, \mathrm{id}, 0)$
 $m_X: h(X) \otimes h(X) = h(X \times X) \stackrel{h(\Delta)}{\to} h(X)$

Definition (Pushforward)

$$\phi: Y \to X$$
, X, Y pure of dim. d, e , then ϕ_{\star} is the image $[\Gamma_{\phi}]^t \in A_e(Y \times X) = \mathsf{Corr}^{d-e}(Y, X) = \mathsf{Hom}(h(Y), h(X) \otimes \mathbb{L}^{e-d})$

Subobjects and Quotients

Example (finite maps)

$$d = e$$
, ϕ finite of degree r , then $\phi^* \circ \phi_* = [r] \in \operatorname{End} h(X)$. Indeed $\phi_* \circ \phi^* = p_{XX_*}(p_{XY}^*([\Gamma_\phi]) \cdot p_{YX}^*([\Gamma_\phi]^t)) = p_{XX_*}([\Gamma_\phi \times X] \cdot [X \times \Gamma_\phi^t]) = p_{XX_*}(\phi, \operatorname{id}, \phi)_*[Y] = r[\Delta_X]$

Example (subobjects, quotients)

X irred. of dim. $d. x \in X(k)$, $\alpha: X \to \operatorname{Spec} k$. Then $x^* \circ \alpha^* = 1$, so $\alpha^*: \mathbb{1} \to h(X)$ is a subobject. Similarly, $\alpha_*: h(X) \to \mathbb{L}^d$ is a quotient.

In general, let $k' = \Gamma(X, \mathcal{O}_X)$, $\alpha: X \to \operatorname{Spec} k'$, let k''/k be separable s.t. $\exists x \in X(k'')$. Write $\gamma = \alpha \circ x$. Then it is finite, so $\gamma_{\star} \circ x^{\star} \circ \alpha^{\star} = \gamma_{\star} \circ \gamma^{\star} = [k'': k']$, and $\alpha^{\star}: h(\operatorname{Spec} k') \to h(X)$ defines a subobject, denoted by $h^0(X)$. Similarly, $\alpha_{\star}: h(X) \to h(\operatorname{Spec} k') \otimes \mathbb{L}^d$ is a quotient, denoted $h^{2d}(X)$.

Subobjects and Quotients

Proposition ([Sch94, Proposition 1.12])

Any motive M can be expressed as a direct factor of some $h(X) \otimes \mathbb{L}^n$, with X equidimensional.

Proof.

Enough to consider M = h(X).

$$h(X) = \bigoplus h(X_i) = \bigoplus \left(h(X_i) \otimes h^0(\mathbb{P}^{d_i})\right)$$

This is a direct factor of $\bigoplus h(X_i) \otimes h(\mathbb{P}^{d_i}) = h\left(\bigsqcup X_i \times \mathbb{P}^{d_i}\right)$.

Example (canonical idempotents)

X irred., Z a 0-cycle on X of degree d>0. Then $p_0=(1/d)[Z\times X]\in A_d(X\times X)$ is an idempotent, inducing $h^0(X)\simeq (X,p_0,0),\quad h^{2d}(X)\simeq (X,p_{2d},0)\quad p_{2d}=p_0^t$

Direct Sums and Duals

Definition (Direct Sum)

$$(X,e,m), (Y,f,n), m < n$$
. Then $(X,e,m) = (X,e,n) \otimes \mathbb{L}^{n-m} = (X,e,n) \otimes h^2(\mathbb{P}^1)^{n-m}$ which is a direct factor of $h(X \times (\mathbb{P}^1)^{n-m}) \otimes \mathbb{L}^{-n}$. Denote by e' the projection, so $(X,e,m) = (X \times (\mathbb{P}^1)^{n-m},e',n)$. Then $(X,e,m) \oplus (Y,f,n) = (X \times (\mathbb{P}^1)^{n-m} \sqcup Y,e' \oplus f,n)$

Definition (Dual)

X pure of dim. d. Set $(X, e, m)^{\vee} = (X, e^t, d - m)$. In particular $h(X)^{\vee} = h(X) \otimes \mathbb{L}^{-d}$ ("Poincaré Duality").

Intersection theory, volume 2.

Springer Science & Business Media, 2013.

Classical motives.

In Proc. Symp. Pure Math, volume 55, pages 163-187, 1994.