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Cohomology theories

* X nonsingular projective algebraic variety over k = k.
* Hg(X(C),Z), Hgp(X(C)), H&(X, Qe), His(X, W(k))

cris
* No algebraic cohomology theory with coefficients in Q.
® In char p, dim HY(E,Q) < 2, but [End(E)g : Q] = 4.
® In general, choose k — C, then

He[t(Xan) = Hét(X((C)aQ) ®QE
Hir(X) ®« C = Hj(X(C),Q) ®g C

Xo a model of X over ko, ' = Gal(k : ko) infinite, uncountable,
stabilizing the countable H'(X,Q) =
Acts through a finite quotient on H., (X, Q).
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Grothendieck's idea

Motives

There should be a Q-category, M(k), which will be called the
category of motives. We would like it to have some nice properties:

® Hom v(x) (A, B) € Vecg.
* M(k) should be abelian.
* Even better, M(k) should be Tannakian over Q.
® There should be a universal cohomology theory
X v hX i Varg — M(k)
where Vary is the category of non-singular projective varieties.

* Each correspondence® from X to Y (in particular, a regular
map Y — X) should define a morphism hX — hY.

® Good cohomology theories factor uniquely through X v~ hX.
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Algebraic cycles

Definition (k-cycle)

A k-cycle on X is a finite formal sum

> ni[Vi]
Vi closed integral k-dim. subschemes.
The group of k-cycles on X is denoted by Z(X).

If two cycles intersect properly, we can define products.

Example 1 Example 2

P
¥2 T

rvz=Pi+ P+ P ¥ip2=2P
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Rational equivalence
In general, we want to be able to move cycles.

Definition
W closed integral (k + 1)-dim. subscheme of X. f € K(W)*.
div(f) = > ordy(A)[V]

codim(W,V)=1
Definition (rationally equivalent to zero)

a~ 0 iffie K(W;)* such that « = Y div(f;).
Z{(X) = {a € Zi(X) s a ~ 0}, Ad(X) = Zu(X)/Z{(X)

Properties

1. Ak(X) = Ak(Xre )
2. 1f X = I_lX,', then A.(X) = (—BA.(X,‘).
3. Ak(Xin Xo) = AL (X)) P AL (X)) = A( X u Xo) — 0.
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Rational equivalence

Example (Projective space)

(n — 1)-cycles = hypersurfaces = irreducible homogeneous
polynomials.
Equivalent if have same degree. Thus A,_1(P}) = Z.

Example (P! x P?!)

1-cycles = irreducible p(xp, x1; Yo, y1) bihomogeneous. Equivalent
if both degrees are the same.Thus A; (P} x P}) =~ Z x Z.
Basis - {0} x P! and P! x {0}. Am ~ {0} x P! + P! x {0}
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Push-forward for cycles

Definition (push-forward)

f: X —Y proper. W =f(V).
V] = [K(V): K(W)]-[W] dim W =dimV
o dim W < dim V

Theorem ( [Full3], Theorem 1.4)
f: X — Y proper, a € Z)(X), then fua € Z2(Y).

Proposition ( [Full3], Proposition 1.4)

f : X — Y proper surjective of integral schemes. r € K(X)*.
1. fu(div(r)) = 0 ifdim(Y) < dim(X).
2. fi(div(r)) = div(N(r)) if dim(Y) = dim(X).
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Push-forward for cycles

Example (Different dimensions)

Y = Speck, X =PL, re k[t], deg(r) = d = [k[t]/(r) : K].
div(r) = [P] — d[w] = fidiv(r) = d[Y] —d[Y] =0

Example (Separated is necessary)

X is the projective line with doubled origin, Y = Speck, r = x1/xp.
div(r) = [01] + [02] — [o0] = fidiv(r) = [Y] + [Y] = [Y] = [Y]

Definition (Degree)

7 : X — Spec k proper, a € Ag(X).
dega = m,v € Ao(Speck) = Z.
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Push forward - illustration

atb+ec~d+e+ f~2g+h

o d

a_.l+b.l+c|l_u]d|l_u1¥.l+ﬁ.l

Figure 1.8 Pushforeards of equivalent cyeles are equivalent.
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Cycles of subschemes

Definition (Fundamental cycle)

X scheme. X; irred. comp. with local Artinian rings A; = Ox x;

X1 = 3 a (A X

Example
f : V — P! dominant. Then div(f) = [f~1(0)] — [f~*(e0)].

Definition

Let V < X x P! be such that f : V — P! is dominant.

P e P! rational (degree 1) point.

Then f~1(P) is a subscheme of X x {P}, mapped isomorphically
to a subscheme of X. Denote it by V(P).
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Alternate definition of rational equivalence

Proposition ( [Full3], Proposition 1.6)
= ZB(X) iffaV; — X x P! s.t. pj: V; — P! dominant,
a =) [Vi(0)] - [Vi()]

i

Proof.

If a = div(r), re K(W)*, then r: W --» PL.

Let V be the closure of its graph in X x P!.

p: X x P! - X is proper and maps V to W birationally.

Let f : V — P! be the second projection. Then by prop. 1.4 (b)

div(r) = pudiv(f) = [V(0)] - [V()]
Conversely, by Theorem 1.4
[V(0)] — [V(0)] = pudiv(f) € Z(X) O
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Rational Equivalence

Alternate Definition Hyperbola ~ two lines

Figure 1.1 Rational equivalence between twe cycles g and aie on X.

Figure 1.2 Rational equivalence besween a hyperbola and the union of two lines in B2
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Flat pull-back of cycles

Definition (Flat pull-back)
f:X — Y flat. Then f*[V] = [f~1(V)].

Proposition ( [Full3], Prop. 1.7)

X/LI)X
]
y £,y

Cartesian, g flat, f proper. Then g’ flat, f’ proper, flg"* = g*f..

Theorem ( [Full3], Theorem 1.7)

f: X — Y flat of rel. dim. n, a € ZX(Y), then f*(a) € Z?2

k+n(X)'
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Proof of theroem

Proof.
Assume a = [V/(0)] — [V/(c0)]. Consider the diagram

w %
\ \
X x P! fxl Y x Pl —>pl
I I
X f y
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Pullback - lllustration

[F1=f*[L1]

S=lC] = 2[Ls]

Figure 19 2[p] = LAPIIC]) = Ll FLaIC]) = [La] falC] = [L1]I2La].
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Affine bundles
Proposition ( [Full3], Proposition 1.8)
i:Y — Xclosed, j: U=X—-Y — X. Then

ik

J

ALY 2= A X AU 0

Proposition ( [Full3], Proposition 1.9)
p: E — X an affine bundle of rank n. p* : Ay X — Ak nE.

Proof.
A Y A X AU—=0
Ad(p~lY) A.E Au(p~tU) —=0

reduces to E = X x A", then to n = 1.
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Proof.
Replace X by p(V), so X integral and p dominant.

V—>pf/
X x Al X

A = KIX], K = K(X), g = (V) < A[].
V # E, dominant hence gK|[t] = (r) is nontrivial. Then

[V]—div(r) = ) m[Vi]

where V; don't dominate X. Then

[V] = div(r +Zn,p

Example (Affine space)

0 k<n
SRR
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Affine bundles

Example (Projective space)

Lk = k-dim. linear subspace of P". From
Ak([L"™1]) — Ak(P") — Ak(A") — 0
we get Z - [L¥] — A, (P"). lsomorphism for k = n — 1, n.
If k< n—1, and d[LX] = X nidiv(r;), e K(V;), set Z =] V;
and project from a linear (n — k — 2)-dimensional subspace disjoint

from Z to get f : Z — PK*1. Using proper push-forward and
induction, A, (P") = Z - [L¥].

Example (Hypersurface)

Let H ve a reduced hypersurface of degree d in P”. Then
[H] = d[L], for a hyperplane L and

An_1(P" — H) = Z/dZ
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Exterior Products

Definition (Exterior Product)

The exterior product
ZkX ® Z/Y X Zk+/(X X Y)
is defined by [V] x [W] = [V x W].

Proposition ( [Full3], Proposition 1.10)

1. fa~0orpB ~0, thena x 8 ~ 0.
2. Iff: X' — X,g: Y — Y proper, then

(f x g)s(a x B) = fuar x g3
3. Iff: X' > X,g: Y — Y flat, then

(f x g)"(axB)=faxgB
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Chern class of a line bundle
Definition (Chern class)
L line bundle on X. V. < X, dimV = k. Then L|y = Oy(C),
C e Div(V).
ca(l) n—: Zx(X) > Ak_1(X), [V]—[C]

Proposition ( [Full3], Proposition 2.5)

1. a~0=c(L) na=0. Hence c1(L) € Hom(Ax X, Ax—1X).
2. (Commutativity) c1(L) n (c1(L') na) = c1 (L") n (a (L) n «).
3. (Projection formula) f : X' — X proper
fi(a(f*L)yna)=ca(l)n fi(a)
. (Flat pull-back) f : X" — X flat of rel. dim. n.
a(f*L)n ffa=f*(a(l) na)
. (Additivity) a1 (L& L") na = c1(L) na+ a (L) na.

~

o1
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Segre classes

Example (Projective space)

ca(0(1) n [LA] = [k

Definition (Segre classes)

E line bundle on X of rank e+ 1, P = P(E), p: P — X, and
O(1) the canonical line bundle on P.

si(E) na = pu(a(0(1))5F n p*a)

Proposition ( [Full3], Proposition 3.1)
0 i<0

a =0

1. si(E)na= {

2. If E line bundle, s1(E) n o = —c1(E) n .
3. Commutativity, projection formula and flat pull-back.
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Segre classes

Proof.

(3) follows formally from the same for c;.
For (1), consider [V]. Use projection formula to reduce to X = V.
Then Ax_;X =0 for i < 0. Also

s0(E) na = p.(a(0(1)° n [P]) = m[X]
To show m = 1, by flat pull-back, reduce to trivial E.
Then P(E) = X x IP¢, and &'(1) has sections whose zero scheme is
X x Pe1 so

a(01) n[X x P®] = [X x P71]

For (2) , note that P(E) = X and 0(—1) = E, so 0(1) = EV. [
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Rational equivalence on bundles

Theorem ( [Full3], Theorem 3.3)

7 . E — X vector bundle of rank r = e + 1.
1. 7 : Ak_ X — ALE is an isomorphism.
2. The map 0 : @;_g Ak—etiX — AP (E) defined by

e

0e(@ai) = Y a(0)) np*a

i=0
is an isomorphism.

Proof.

Start by showing 0 is surjective. Noetherian induction reduces to
trivial E. Induction on the rank reducesto F = E® 1, 0
surjective. Write P = P(E), Q = P(F) = P(E®1). O
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Rational equivalence on bundles

Proof.
P*>Q<7E AP — o A QL= AYE——0
q .

Ax_r X
For 5 € A.Q , J*B = m*«, so by induction and projection formula
B—qa=i (Z a(Oe(1)) n p*a,-> = Z a(Or(1) nip
i=0 i=0

OF(1) has a section vanishing on P, so

a(OF(D) A [V] = [pV] — a(@r(1) N g'a - ip'a
showing ¢ surjects.
For injectivity, if 8 = Z c1(0(1)) n p*a = 0 with o # 0, then
pe(c(0(1) n ) = Z, 0Si—1(E) naj = ay. O
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Gysin homomorphism

Proof.

Finally, to show 7* is injective, let F = E@ 1, assume 7"« = 0.
Then j*gq*a = 0, so using surjectivity of g

e e

ga=i (Z ca(Oe(1)) n p*ai> = Z a(Or(1) ! A g oy
i=0 i=0

contradicting the injectivity of Of. [

Definition (Gysin homomorphism)

s zero section of m: E — X of rank r.
s = ()71 AE - A X
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Deformation to the normal cone
Definition (Normal cone)

X C Y closed, ideal .. CxY = Spec (P2 "/F"1).

Theorem
Let M = MxY be the blow-up of Y x P! along X x {oo}.
XxPle— M

pr
o - flat
Pl
commutes and:

1. Over Al, o 1(AY) = Y x Al, and X x Al — Y x Al

2. Over o, the divisor My, = 9~ (0) = P(C®1) + Y.

3. X x {0} < My, is the zero section to C — P(C@1).

4. P(C®1) n Y = P(C), the hyperplane at o, exc. divisor.
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Specialization to the Normal Cone
Definition (specialization)
UZZkY—>ZkC, U[V]:[Cvmxv].
Proposition ( [Full3], Proposition 5.2)
If a ~ 0, then o(a)) ~ 0.
Proof.
Let M° = M — Y (deformation of X < Y to X < CxY).

Ak+1C4I'*>Ak+1MO 4J>Ak+1(y X Al) ——0

Enough to show this is the map. Use
pri[V]=[V x AY] = j*[My xV] O
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Intersection products
The basic construction

i : X = Y regular embedding of codim. d :

defined by .7. w—Lsv
V pure k-dim. f:V — Y, W = F~1(X). . lf
N=g*NxY,7:N—W,C=CyV.

X—=vy
Set ¢ the ideal sheaf of W in V.

@f*(/”/ﬂ""‘l)_»@f"/f”"'l — C— N
Define X - V = s*[C] € Ak_gW.

Example

Let 7 : X — A2 be the blow-up of A? at the origin. Let D, D’ be
the inverses of the x-axis and the y-axis. Then D - D’ and D’ - D
are well-defined cycles on D n D’ = E, the exceptional divisor.
These cycles are not equal, although they are rationally equivalent.
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Intersection products

Definition (Canonical decomposition)

Gi, ..., C, irreducible components of C. Z; = n(C;) € W their
support. Zi,...,Z, are the distinguished varieties of X - V.
Ni = N|z, s; the zero sections, and «j = s'[Cj| € Ax—_q(Z;). Then

r

[C] = Zm,[C,] — X -V = Zm,-a,-

i=1 i=1

Example
Y =P?, X; = {xy = 0}, Xo = {x = 0}, P the point (0,0). For
X1+ X, only X5 is distinguished. For X; - Xy, locally

k[Cx,X1] = k[x,y, T]/(x,yT) = klxw:T)/(x,y) x kIxy:Tl(x,T)
so both X and P are distinguished.
Similarly for (X1 x X3) - Apo.
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Refined Gysin Homomorphism

Example

A, B lines in P2 meeting at P. Set D; =2A+ B, D, = A+ 2B.
X=DyxDy, Y=P>xP? V=P f:V — Y the diagonal.
A, B, P distinguished varieties, canonical decomposition is

X -V=a+pB+3[Pl,ae Zy(A),B € Zy(B),deg(a) = deg(B) = 3

Definition (Refined Gysin homomorphism)

Let i' : AV — Ax_gW be the composite

AV —7- AC AN — A W

Explicitly, i* (3. n;[V;]) = 2 niX - V.
IfV =Y,f =idy, then we denote i* : A,Y — Ax_aX.
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Refined Gysin Homomorphism
Theorem ( [Full3], Theorem 6.2)

X//4q>X/i>X

L

y' oy oy

Cartesian with i regular of codim. d. Then
1. (Push-forward) If p is proper, i'p, = g.i'.
2. (Pull-back) If p is flat, i'p* = g*i'.
3. (Compatibility) If i’ regular of codim. d, then i* = i"".

Example
0:P" > P"x...P". Then
0 ([ka] x ... x [k]) = [ks + ...+ kr — (r — 1)n]
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Intersection on smooth varieties

Definition (Intersection product)
f:X—Y,Y smooth, dmY =n. px : X' - X,py : Y = Y.
X xyY —=X'xY
l prva
X—2 o Xxy
Define x ¢ y = ’y,!c(x xy): ARX x AlY' — Apri—n(X xy Y.

Example

X' =X,Y' =Y. Then x sy = v (x x y).
If X =Y,f =idy, then v =6, and x -y = 6*(x x y).
Given x, y can take X’, Y’ to be their supports.
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Refined intersections

Proposition ( [Full3], Proposition 8.1.1)

[y

. (Associaitivity) x ¢ (y g 2) = (X £ y) gf 2.
. (Commutativity) (x - y1) *f, Y2 = (X, ¥2)  y1-
. (Projection formula) If py f' = fpx,
(f' xzidz)u(x gf 2) = f(x) g 2
. (Compatibility) If g : V' — Y' a regular, g'(x ry) = x-rg'y.

w N

~

Corollary
1. j:V =Y regular, x - [V] = j!(x).
2. xpy=(xxy) [[f]. FX =Y, x-y=(xxy)-[A]
3. X *f [Y] = X.
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Algebra of Correspondences

Definition (Correspondence)

X, Y varieties. The correspondences of degree r are o : X - Y
Corr’(X, Y) = Adim y,r(X X Y)

Definition (composition)
Ifa: XEY,B:YEZ X,Y,Z smooth, the product is
Boa=(pxz)«(Pxy - PyzB)

Example

f:Y — X regular. Its graph I'r € Agim y (Y x X) hence its
transpose [t € Agimy (X x Y) = Corr®(X, Y).
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Proposition

a: XEFY,B:YEZ

1. Ify:Z+ W, thenyo(Boa)=(yop)oa.
2. (Boa)t =atopt and (at)t = a.

3. 31 IfB =T, then foa = (1x x g).(a).

32 Ifa =Ty, then Boa = (f x 12)*(B).
33 Ifa=Tf =T, then foa =Tg.

Corollary

The product (a, 8) — « o 3 makes As(X x X) a ring, with unit

[Ax], and an involution o — at.
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Correspondences and cohomology

Theorem (cycle class map)

There exists a map

cl: Ad(X)g — H*(X)
which doubles degrees and sends intersection products to cup
products.

Corollary
If a € Corr®(X, Y) then it defines a* : H*(X) — H*(Y)
x> (py)a(pix U cl(a))
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First Attempt

Define M (k) to be the category with objects hX and
Hom(hX, hY) = Cor®(X, Y)q, h(f) = [I¢]*

Example
lfe:V — Visst e =e, then V = ker(e) D eV.
If (W, f) is another pair, then
Homg(eV, W) = f o Homg(V, W)oe
add images of idempotents in End(hX) = Corr®(X x X)g.

Remark
When X is not pure dim. X = U,-X,-, we let
Corr"(X,Y) = @ Cort"(Xi, Y) = Au(X x Y)
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Second Attempt

Define M (k) to be the category with objects h(X, e) where
e € Corr’(X, X)g is an idempotent (e? = e) and

Hom(h(X,e), h(Y,f)) = foCorr®(X,Y)goe

Example
End(h(PY, Ap1)) = Z@® Z with eg = (1,0) represented by {0} x P!
and e; = (0, 1) represented by P! x {0}.
Since Ap1 ~ ey + e, we get
h(PY, Ap1) = h°P! @ h?P?
with h'P! = h(PP!, ;). Write 1 = h°P! and L = h?PL.

This is the category of effective motives. However, we would like
objects to have duals.
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Third attempt
We invert L. Objects - h(X, e, m) with X, e as before, m € Z.
Hom(h(X,e,m),h(Y,f,n)) = foCorr" "(X,Y)goe

This is the category of (Chow) motives over k.
Definition (pseudoabelian category)

An additive category is pseudoabelian if every idempotent
f € End M has an image, and the canonical map
Im(f)®Im(1 — f) - M is an isomorphism.

Theorem ( [Sch94, Theorem 1.6] )

The category of Chow motives over k, My, is an additive, Q-linear
category, which is pseudoabelian.

Remark

In general, My is not abelian.
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Direct Sums

We begin by constructing direct sums for equal degrees.

Definition (Direct sum)

e e Corr®(X, X), f € Corr®(Y, Y). Recall that
Cor®( XL Y, XuY)=
— Corr®(X, X) @ Cor®(X, Y) @ Corr®(Y, X) ® Cor® (Y, Y)

Define
(X,e,m)@ (Y, f,m)=(XuY,e®f,m)

Exercise

gopxoe: (X,e,m)— (Z,g,n), gogyof:(Y,f,m)—(Z,g,n
then go (¢pxoe@pyof)o(ed®f): XuY,e®df,m)— (Z,g,n
satisfies the universal property.

~— —
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Pseudoabelian

Example
eofoeeEnd(X,e, m) =eoCorr®(X,X)oeis an idempotent.
(X, eofoe, m)®(X, e—eofoe, m) = (XX, eofoe®(e—eofoe), m)
The morphisms

(efe,e —efe) : (X,e,m) — (X u X, efe® (e — efe), m)

(efe,e — efe) : (X u X, efe® (e — efe) — (X, e, m)
are inverses since

efe o efe + (e — efe) o (e — efe) = efe + e — efe = e = idgna(x,e,m)

This shows if My is additive, then it is also pseudoabelian.

Proof.

Quick check shows that Im(eofoe) = (X,eof oe,m), and the
above shows that Im(efe) @ Im(e — efe) — (X, e, m) is an
isomorphism. []
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Tensor Products

Definition (Tensor product)
Define
(X,e,m)® (Y, f,n)= (X xY,exf,m+n)
and on morphisms
hoproer®@hogroe = (h xfh)o(d1 x ¢2)o (1 x &)

Example (Unit and Lefschetz motives)
Let 1 = (Speck,id,0). Then 1 is a unit for ®.
Let L = (Speck,id,—1). Then
(X,e,m) = e(hX)®L® ™ c h(X)@LE™
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Pullback and Pushforward

Definition (Pullback)
For¢:Y — X, ¢* = h(¢) = [[4] € Corr®(X, Y).

Example (Diagonal)
A : X — X x X defines a product structure on h(X) = (X,id,0)
mx 1 h(X)® h(X) = h(X x X) "8 h(x)

Definition (Pushforward)

¢:Y — X, X,Y pure of dim. d, e, then ¢, is the image
[T4]f € Ac(Y x X) = Corr?¢(Y, X) = Hom(h(Y), h(X) @ L¢9)
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Subobjects and Quotients
Example (finite maps)
d = e, ¢ finite of degree r, then ¢* o ¢, = [r] € End h(X). Indeed

$e 00" = pxx«(Pxy ([Mo]) - PYx([T]")) =
= pxx«([Tg x X] - [X x T§]) = pxx«(¢,id, ¢)«[Y] = r[Ax]

Example (subobjects, quotients)

X irred. of dim. d. x € X(k), a: X — Speck. Then x* o a* =1,
so a* : 1 — h(X) is a subobject.

Similarly, a : h(X) — L9 is a quotient.

In general, let k' =T(X, Ox),a : X — Speck’, let k" /k be
separable s.t. 3x € X(k”). Write v = a o x. Then it is finite, so
Yoo x* oar =, 09" = [k" : k'], and a* : h(Spec k") — h(X)
defines a subobject, denoted by h°(X). Similarly,

a1 h(X) — h(Spec k') ® L9 is a quotient, denoted h?9(X).
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Subobjects and Quotients
Proposition ( [Sch94, Proposition 1.12] )
Any motive M can be expressed as a direct factor of some

h(X) ® ", with X equidimensional.

Proof.
Enough to consider M = h(X).
h(X) = @ h(X) = P (h(X,-) ® hO(IPdf))
This is a direct factor of @ h(X;) ® h(P%) = h (|| X; x P%). [

Example (canonical idempotents)

X irred., Z a 0-cycle on X of degree d > 0. Then
po = (1/d)[Z x X] € Ag(X x X) is an idempotent, inducing

hO(X) = (Xapf)vo)v h2d(X) = (Xap2d70) P2d = P(g
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Direct Sums and Duals

Definition (Direct Sum)
(X,e,m),(Y,f,n),m < n. Then
(X,e,m) = (X,e,n) QL""" = (X, e, n) ® h*(P1)"~™
which is a direct factor of h(X x (P')"~™)®IL~". Denote by ¢’
the projection, so (X, e, m) = (X x (P)"=™ ¢/ n). Then
(X,e,m)@ (Y, f,n) = (X x PH"™ " LY, DF, n)

Definition (Dual)

X pure of dim. d. Set (X, e, ) = (X,et,d — m).
In particular h(X)¥ = h(X) ® L=9 (" Poincaré Duality”).
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