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Abstract

Let F be a p-adic �eld, R a commutative complete discrete valuation ring, and L a U3(F )-equivariant coe�cient
system of free R-modules of �nite type over the tree of U3(F ). In this talk, extending the work of Vigneras on the
group GL2(F ), we give a necessary and su�cient criterion for the degree 0 homology of L to be a free R-module.
This allows us to construct integral structures in locally algebraic representations of U3(F ), and by reduction to
show that representations of U3(F ) over a �nite �eld of characteristic p are isomorphic to the degree 0 homology of
a system of coe�cients. For example, we take a moderately rami�ed p-adic character χ⊗ χ1 of the Levi subgroup
M(F ) of U3(F ), such that χ−1(π) and q2

Eχ(π) are p-adic integers, π is a uniformizer of E, a quadratic extension
of F , and qE is the order of the residue �eld of E; Then the principal series of U3(F ) induced, by a smooth
non-normalized induction, from χ⊗ χ1 is integral with a remarkably explicit integral structure.

1. Self introduction

Hello!

First, I would like to thank the organizers for inviting me to give a talk about my research.

My name is Eran Assaf, a PhD student at the Hebrew University of Jerusalem, under the guidance of Prof. de-Shalit.

This will be a talk about a work in progress - I will present the results obtained thus far, and say something about
other expected results.

First, let us state brie�y the main result.

2. Statement of the main result

We begin by introducing some notations -

2.1. Notations

Let F be a �nite extension of Qp, E a quadratic extension of F , and V a 3 dimensional vector space over E.

Let σ ∈ Gal(E/F ) be the nontrivial involution. We shall often denote x = σ(x) for x ∈ E.
OE is the ring of integers in E, π a uniformizer, and q the cardinality of the residue �eld.

We shall denote by E1 the norm one elements in E, i.e. E1 = U1(F ) = {x ∈ E | xx = 1}.
We shall further denote by C a �nite extension of Qp, and by OC its ring of integers.

Denote by θ the Hermitian form on E3 repersented by the matrix

 0 0 1
0 1 0
1 0 0

 with respect to the standard basis,

which we will denote by e1, e2, e3.

Let
G = U3(F ) = U(θ) = {g ∈ GL3(E) |t gθg = θ}

be the unitary group, that is all the invertible linear transformations on V which preserve θ.

We denote by P the standard Borel subgroup of upper triangular matrices, M is its Levi subgroup, which is the
non-split torus

M =

m(t, s) :=

 t 0 0
0 s 0

0 0 t
−1

 | t ∈ E×, s ∈ E1


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We denote by N the unipotent radical so that P = MN and

N =

n(b, z) :=

 1 b z

0 1 −b
0 0 1

 | b, z ∈ E, z + z + bb = 0


2.2. De�nitions

In order to state the results, we will also need the notion of parabolic induction and principal series representation.

De�nition 2.1. (parabolic induction) Let (ρ, V ) be a representation of P . The smooth parabolic induction
IndGP ρ (sometimes denoted also IndGPV ) is de�ned as

IndGP ρ = {f : G→ V | ∀p ∈ P f(pg) = ρ(p) · f(g), f smooth}

This space is equipped with a natural G-action by right translation, explicitly (gf)(x) = f(xg). The functions are
smooth with respect to this action.

De�nition 2.2. (principal series representaions) Let χ : E× → C× , χ1 : E1 → C× be multiplicative
characters. They de�ne a character, which we denote χ⊗ χ1 of P by letting N act trivially, and

(χ⊗ χ1)(m(t, s)) = χ(t) · χ1(s)

The associated principal series representation is PS(χ, χ1) = IndGP (χ⊗ χ1).

We shall also need the de�nition of an integral structure (equivalently, a separated lattice) in a representation of G.

De�nition 2.3. Let V be a representation of G over C. Let L be an OC [G]-submodule which spans V over C and
contains no C-line. We say that V is integral and L is an integral structure.

Note 2.4. Note that all the representations considered are vector spaces over C, which is a p-adic �eld!

2.3. Results

Theorem 2.5. (A.) Let χ : E× → C× , χ1 : E1 → C× be tamely rami�ed characters. Then the following are
equivalent:

1. χ(π)−1, q2χ(π) ∈ OC (equivalently 1 ≤ |χ(π)| ≤ |q−2|)
2. V = IndGP (χ⊗ χ1) is integral.

Note that the �eld C is p-adic, not complex!

Remark 2.6. If one considers the pro-p Iwahori subgroup I(1) (kernel of the reduction map on I), then V is a
module for the pro-p Iwahori-Hecke algebra HC(G, I(1)), and condition 1 is equivalent to the integrality of this
module (namely, V is spanned by a sub OC-module, stable by HOC (G, I(1)) ) .

2.3.1. Locally algebraic representations

Let ρ be a rational algebraic representation of U3(F ) over C. One may consider the locally algebraic representations
V = IndGP (χ⊗ χ1)⊗ ρ.
Note that this is possible since we are working over a p-adic �eld (!).

Further, in such a representation, we note that every vector has a compact open neighbourhood which acts on it
polynomially. Such a vector (in arbitrary representaion) will be called locally algebraic.

This is a work in progress, and we are currently working on the locally algebraic case, and expect to have in a
short time a criterion for the existence of integral structures when χ⊗ χ1 is unrami�ed, and under some smallness
condition on ρ. Furthermore, in the case of unrami�ed characters we shall be able to show that the resulting
completion is admissible, namely

De�nition 2.7. (admissible unitary Banach representations) Let B be a unitary Banach representation of G.
Denote by B0 its unit ball with respect to an invariant norm. Then B is said to be admissible if B0 ⊗OC kC is
admissible in the sense of smooth represntations over kC , i.e. its subspace of invariant elements under any open
compact subgroup of G is �nite dimensional. This de�nition is independent of the choice of B0.
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3. Background

3.1. The p-adic local Langlands programme

The original aim of the local p-adic Langlands programme is to look for a possible p-adic analogue of the classical
and l-adic correspondence.

The local p-adic correspondence for GL2(Qp) was fully developed, essentially by Berger, Breuil and Colmez in
(Berger et al. [2, 3]) using the theory of (ϕ,Γ)-modules.

If we restrict ourselves to certain representations, called �potentially semistable�, on the Galois side, it is possible to
attach to it a smooth representation πsm(ρ) on the automorphic side, as in the classical case. However, ρ πsm(ρ)
is no longer reversible.

The notion of potentially semistable, coming from Fontaine's theory is very technical, hence I will not de�ne it here
as my work is mainly on the automorphic side, but in a sense, these are the �good� representaions.

Essentially, represenations coming from geometry are potentially semistable, but this is very involved.

We may also construct irreducible algebraic representation πalg(ρ) of GL2(Qp) from some data associated to ρ.
Still, one cannot reconstruct ρ from πsm(ρ) and πalg(ρ).

The problem is that in p-adic Hodge theory, these certain ρ are classi�ed by some linear algebra data which includes
a certain �ltration, called the �Hodge �ltration� - and this data is lost when constructing the πalg(ρ) and the πsm(ρ).

Remark 3.1. Note that as the coe�cient �eld is p-adic, these two representations �live� in the same universe, and
it makes sense to consider the representation πsm(ρ)⊗ πalg(ρ).

The p-adic local Langlands correspondence takes any continuous representation ρ : Gal(Qp/Qp) → GL2(C) and
attaches a Banach C-space Π(ρ) with a unitary GL2(Qp)-action. This map ρ Π(ρ) is reversible, and compatible
with classical local Langlands in the following sense: When ρ is potentially semistable,

Π(ρ)alg = πalg(ρ)⊗C πsm(ρ)

Furthermore, Π(ρ)alg = 0 otherwise.

This means that the existence of locally algebraic vectors is equivalent (!) to the fact that our representation comes
from geometry.

Here, the superscript alg indicates taking the locally algebraic vectors, i.e. vectors on which some compact open
subgroup acts polynomially.

When ρ is irreducible, Π(ρ) is known to be the completion of πalg(ρ) ⊗C πsm(ρ) relative to a suitable GL2(Qp)-
invariant norm ‖·‖ which somehow corresponds to the lost �ltration.

3.2. The Breuil Schneider conjecture and integral structures

For groups other than GL2(Qp) very little is known. One of the main conjectures was stated in (Breuil and Schneider
[4]) by Breuil and Schneider, and in some sense it is a ��rst approximation� - for certain ρ : Gal(Qp/F )→ GLn(C),
one can de�ne the representation BS(ρ) := πalg(ρ)⊗C πsm(ρ), and if it is indeed a subrepresentation of some larger,
conjectural, Banach C-space Π(ρ) with a unitary GLn(F )-invariant norm, it should admit an invariant GLn(F )-
invariant norm. The resulting completions should be closely related to the yet unde�ned Π(ρ) - at least in the
irreducible cases.

We say that a representation V is locally algebraic if V = V alg.

Conjecture 3.2. (Breuil, Schneider Breuil and Schneider [4]) The representation V arises from a (potentially
semistable) Galois representation if and only if V admits a GLn(F )-invariant norm.

The �if� part is completely known for GLn(F ) (Hu [8]), and is due to Y. Hu. The �only if� part remains open.

Note that asking for a norm amounts to asking for a lattice: Given a norm || · ||, the unit ball is a lattice. Conversely,
given a lattice Λ, its gauge ||x|| = q

−vΛ(x)
C , where vΛ(x) = sup{v | x ∈ πvCΛ} is a norm. Thus we are looking for

integral structures in locally algebraic representations of G.
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3.3. Progress on the BS conjecture

• Note that the central character of BS(ρ) always attains values in O×C . Sorensen (Sorensen [12]) has proved
for any connected reductive group G de�ned over Qp, that if πalg is an irreducible algebraic representation of
G(Qp), and πsm is an essentially discrete series representation of G(Qp), both de�ned over C, then πalg⊗C πsm
admits a G(Qp)-invariant norm if and only if its central character is unitary.

• Recently there has been spectacular progress on the BS conjecture in the principal series case, which is the
deepest, by joint work of Caraiani, Emerton, Gee, Geraghty, Paskunas ans Shin (Caraiani et al. [5]). Using
global methods, they construct a candidate Π(ρ) for a p-adic local Langlands correspondence for GLn(F )
and are able to say enough about it to prove new cases of the conjecture. Their conclusion is even somewhat
stronger than the existence of a norm on BS(ρ), in that it asserts admissibility.

Both works employ the usage of global methods, and as this is a question of local nature, we believe that there
must be some local method to recover these results. There has also been some progress employing local methods,
which yields results also for �nite extensions of Qp, namely:

• For GL2(F ), de Ieso (De Ieso [6]), following the methods of Breuil for Qp, used compact induction together
with the action of the spherical Hecke algebra to produce a separated lattice in BS(ρ) where ρ is an unrami�ed
locally algebraic principal series representation, under some technical p-smallness condition on the weight. In
his thesis, de Ieso also shows that these lattices form an admissible completion.

• For GL2(F ), in a joint work with Kazhdan and de Shalit (Assaf et al. [1]), we have used p-adic Fourier theory
for the Kirillov model to get integral structures if ρ is tamely rami�ed smooth principal series or unrami�ed
locally algebraic principal series.

• For general split reductive groups, Grosse-Klonne (Groÿe-Klönne [7]) looked at the universal module for the
spherical Hecke algebra, and was able to show some cases of the conjecture for unrami�ed principal series, again
under some p-smallness condition on the Coxeter number (when F = Qp) plus other technical assumptions.

3.4. The case of G = U3(F )

As many attempts were made in order to �nd criteria for the existence of integral structures in representations
of GL2(F ), where F is a �nite extension of Qp, and towards the proof of the Breuil-Schneider conjecture, which
concerns the case of GLn(F ), and somewhat more generally, the case of split reductive groups, very little is known
about the correspondence for non-split reductive groups, and the unitary group, in particular.

We restrict ourselves only to the case of a smooth tamely rami�ed principal series representation, and give a
necessary and su�cient criterion for the existence of such a norm.

We shall use the method of coe�cient systems on the Bruhat-Tits building, which is a tree for U3, introduced by
Vigneras in (Vignéras [13]).

This is still a work in progress, as we currently extend the methods of Breuil and de Ieso to obtain similar results
for the unrami�ed locally algebraic principal series representations.

4. Coe�cient systems on the tree

4.1. The Bruhat-Tits tree of U3(F )

De�nition 4.1. Let L ⊂ E3. The hermitian form (·, ·) induces a dual lattice

L] = {v ∈ V | (v, l) ∈ OE ∀l ∈ L}

If L is a lattice satisfying L ⊆ L# ⊆ π−1L, we say that L is a standard lattice.

Remark 4.2. The vertices of the tree T consist of equivalence classes (under #) of standard lattices.
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We then have two types of vertices - the vertices represented by standard lattices with L] = L, and the vertices
represented by pairs of standard lattices L] ) L ) πL].

Let
T 0

0 = {σ ∈ T0 | σ = [L], L = L]}, T 1
0 = {σ ∈ T0 | σ = [L], L 6= L]}

We call T 0
0 vertices of type 0, and T 1

0 vertices of type 1.

Two such vertices, L0 = L]0, and L
]
1 ⊇ L1 ⊇ πL]1 are connected with an edge if L]1 ⊇ L0 ⊇ L1.

De�nition 4.3. We set σ0 = [L0] where L0 = OEe1 +OEe2 +OEe3, and σ1 = [L1], where

L1 = OE · e1 +OE · e2 + πOE · e3 =

 1 0 0
0 1 0
0 0 π

 · L0

and σ01 = (σ0, σ1) ∈ T1 is an edge - in fact, the standard chamber.

4.2. Coe�cient systems

Coe�cient systems were introduced over C by Schneider and Stuhler [10]. In this section, we follow Paskunas [9]
and translate the language of coe�cient systems to the group G.

Let T be the Bruhat-Tits tree of G. Let R be a commutative ring.

De�nition 4.4. An R-coe�cient system V = {Vσ}σ is a contravariant functor from the category of simplices in T
(with inclusions as morphisms) to the category of R-modules.

Let V = ({Vσ}σ⊂T , {rτσ}σ⊂τ ) be a R-coe�cient system on T . We say that V is G-equivariant if for every g ∈ G and
every simplex σ ⊂ T , we have linear maps gσ : Vσ → Vgσ satisfying the following properties:

• For every g, h ∈ G and every simplex σ ⊂ T , we have (gh)σ = ghσ · hσ

• For every simplex σ ⊂ T , we have 1σ = idVσ .

• For every g ∈ G and every inclusion σ ⊂ τ , the following diagram commutes:

Vτ
gτ //

rτσ

��

Vgτ

rgτgσ

��
Vσ

gσ // Vgσ

Let the denote the stabilizers of σ0, σ1 by K0,K1 respectively. These are the maximal compacts of G (up to
conjugacy). The stabilizer of the edge (σ0, σ1) is the Iwahori subgroup of G, I = K0 ∩K1.

We further note that each G-equivariant coe�cient system is, in fact, equivalent to a diagram, i.e.

De�nition 4.5. Let R be a commutative ring. An R[G]-diagram consists of the following data:

• A representation of I on an R-module L01.

• A representation of K0 on an R-module L0.

• A representation of K1 on an R-module L1.

• R[I]-equivariant maps r0 : L01 → L0 , r1 : L01 → L1.

We will refer to a diagram as a quintuple (L01, L0, L1, r0, r1) , and depict such a diagram as

L0

L01

r0

==

r1

!!
L1
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Remark 4.6. The word �diagram� was introduced by Paskunas Paskunas [9] in his construction of supersingular
irreducible representations of GL2(F ) on �nite �elds of characteristic p, and there is an equivalence of categories
between R[G]-diagrams and G-equivariant coe�cient systems on T .

We may now consider the complex of chains with �nite support - Ci(V), with the obvious boundary maps, and a
natural G-action, and its 0-th homology, which will be denoted by H0(V).

5. Integrality of irreducible locally algebraic representations

Let V be an irreducible locally algebraic C-representation of G. Then by (Schneider et al. [11], Appendix, Thm
1), V = Vsm ⊗C Valg, where Vsm is a uniquely determined irreducible smooth representation and Valg is a uniquely
determined algebraic one. We will present the �rst local integrality criterion for Vsm⊗Valg, by a purely representation
theoretic method. The idea, due to Vigneras (Vignéras [13]) is to realize Vsm ⊗ Valg as the 0-homology of a G-
equivariant coe�cent system on the tree.

First, we consider any representation V , and formulate a criterion in terms of a given coe�cient system.

Corollary 5.1. Let R be a complete discrete valuation ring of fraction �eld S, and let r0 : V01 → V0, r1 : V01 → V1

be the maps in the R[G]-diagram corresponding to a G-equivariant R-coe�cient system V. Assume r0, r1 are
injective. The S-representation H0(V) of G is R-integral if and only if there exist R-integral structures L0, L1 of
the representations V0 of K0, V1 of K1, such that L01 = r−1

0 (L0) = r−1
1 (L1) .

When this is true, the diagram
L0

L01

r0

==

r1

!!
L1

de�nes a G-equivariant coe�cient system L of R-modules on T , and H0(L) is an R-integral structure of H0(V).

The next idea is to begin with some coe�cient system and some integral srtucture in one of the modules. We then
generate an integral coe�cient system as above by a method of zig-zagging.

De�nition 5.2. When Vi, for i = 0, 1 identi�ed with an element of Z/2Z, contains an R-integral structure Mi

which is a �nitely generated R-submodule, one constructs inductively an increasing sequence of �nitely generated
R-integral structures (zn(Mi))n≥1 of Vi, called the zigzags of Mi, as follows:

The R[Ki+1]-moduleMi+1 de�ned byMi+1 = Ki+1 ·ri+1(r−1
i (Mi)) is an R-integral structure of the S[Ki+1]-module

Vi+1 (a �nitely generated R-module is free if and only if it is torsion free and does not contain a line). We repeat
this construction to get the �rst zigzag z(Mi):

z(Mi) = Ki · ri
(
r−1
i+1

(
Ki+1 · ri+1

(
r−1
i (Mi)

)))
Corollary 5.3. Let i ∈ Z/2Z and let Mi be an R-integral structure of the S[Ki]-module Vi. The representation of
G on H0(V) is R-integral if and only if the sequence of zigzags (zn(Mi))n≥0 is �nite.

The main idea allowing us to make use of the above criterion for arbitrary irreducible locally algebraic representa-
tions, is the fact that any such representation can be obtained as the 0-homology of some coe�cient system on the
tree. This was shown for smooth representations over C by Schneider and Stuhler in Schneider and Stuhler [10],
and we will extend the result further here. The proof is the same as in Vignéras [13] for the case G = GL2(F ).

For the sake of the following proposition, we recall that K0,K1, I have pro-p subgroups, which will be denotes by
K0(1),K1(1), I(1).

Proposition 5.4. Let Valg be an irreducible algebraic C-representation of G, let Vsm be a �nite length smooth
C-representation of G and assume that Vsm is generated by its K0(1)-invariants.
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1) The locally algebraic C-representation V := Vsm ⊗C Valg of G is isomorphic to the 0-th homology H0(V) of the
coe�cient system V associated with the inclusions

V0 = V
K0(1)
sm ⊗C Valg

V
I(1)
sm ⊗C Valg

r0

66

r1

((
V1 = V

K1(1)
sm ⊗C Valg

2) The representation of G on V is OC-integral if and only if there exist OC-integral structures L0, L1 of the
representations of K0,K1 on V0, V1 such that L01 := r−1

0 (L0) = r−1
1 (L1). Then the 0-th homology L of the G-

equivariant coe�cient system on T de�ned by the diagram

L0

L01

==

!!
L1

is an OC-integral structure of V .

5.1. In�ation

The next idea is to reduce our problem to a problem concerning groups over �nite �eld, which is done by reduction
and in�ation.

Since our characters are tamely rami�ed, and the quotients are �nite groups, our diagrams are equivalent to diagrams
of representations of groups over �nite �elds which will be easier to handle.

We note that here there is a di�erence between the rami�ed and unrami�ed case.

5.2. Sketch of the proof of the main theorem

One begins with the coe�cient system introduced by Schneider and Stuhler, which is equivalent to a tamely rami�ed
diagram.

We may now consider a natural candidate - the module L0 ⊂ (IndGPχ)K0(1) of integral-valued functions, and begin
the process of zig-zag.

As all the representations are equivalent to representations of groups over �nite �elds, we have reduced our problem
to that of stablizing a certain sequence of representations over �nite �elds.

Quite surprisingly, it is solved by using the Fourier transform for �nite groups.

5.2.1. Remark - Wild rami�cation and Locally algebraic representations

Essentially, this zig-zag method, due to Vigneras, should work also for the wildly rami�ed cases, by incorporating
the Ki(e) and I(e)-invariants, for arbitrary e. However, the resulting computations for the groups over the ring
A = OE/πeOE indicate that the zig-zag sequence does not stabilize after a few steps, and calculations become
increasingly di�cult.

The same could be said about the locally algebraic representations. The method should work, but the calculations
become very complicated.

5.2.2. Remark - higher rank groups

This example shows that when the Bruhat-Tits building is a tree, one can incorporate the zig-zag method e�ectively.
The question for groups of higher rank remains. It seems that one can develop a similar method of zig-zag for
diagrams on the Bruhat-Tits building, but there are still some set-backs to overcome.
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5.3. Locally algebraic case

Our work on the locally algebraic case currently follows closely the ideas of Breuil and de Ieso, by considering the
action of the spherical Hecke algebras (note that there are two of them) on the coe�cient systems on the tree.

As in the work by de Ieso, we believe that in these cases we will also be able to show admissibility.

This is backed also by the recent work of Grosse-Klonne, who uses the universal spherical Hecke algebra to obtain
the criterion for split reductive groups over Qp, and it seems that it will be able to generalize his results to groups
over F .
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