The *p***-adic Local Langlands Correspondence**

Eran Assaf

The Hebrew University of Jerusalem eran.assaf@mail.huji.ac.il

1. Elliptic Curves

1.1 Definition

Let $f(x) \in \mathbb{Q}[x]$ be a cubic polynomial with rational coefficients and disting

$$
E = E(\mathbb{C}) = \{(x, y) \in \mathbb{C}^2 \mid y^2 = f(x)\}
$$

is an *elliptic curve defined over* Q, and we denote by $E(\mathbb{Q}) = E \cap \mathbb{Q}$ points.

We note that the requirement that f has distinct roots is equivalent to Δ ($\Delta(f)$ is its discriminant, defined as

not roots. Then
Q^2 its rational
$(f) \neq 0$, where
efficient.
$= f(x)$ was
and it subgroup
on $\overline{f(x)} \in \mathbb{F}_p[x]$.
zero of E , mean
on to the whole
with $L(E, 2 - s)$.

 $_2^+(\mathbb{R})$ be a

 $c \equiv 0 \mod N$ \bigcap

$$
\Delta(f) = a_n^{2n-2} \prod_{i < j} (x_i - x_j)^2
$$

where x_1,\ldots,x_n are the roots of f , n is its degree and a_n is the leading coe The first result in understanding the rational solutions to the equation $y^2 = f(x)$ was

Let *p* be a prime. Assume $f(x) \in \mathbb{Z}[x]$, we can then consider its reduction Let

For any elliptic curve E , there is a number $N = N(E)$, called the *conduct* suring the effect of reduction at the different primes.

For any prime p , there is also a number a_p , which depends on $E(\mathbb{F}_p)$.

1.2 Theorem (Mordell, 1922)

Let E be an elliptic curve defined over $\mathbb Q$. Then E is an abelian group, ar of rational points, $E(\mathbb{Q})$, is finitely generated.

Let E be an elliptic curve defined over $\mathbb Q$. We call the **Hasse-Weil Zeta function** *L-function* attached to *E* the following infinite product

This product converges for $\Re(s)>\frac{3}{2}$ 2 .

However, we have not yet determined the rank of this group. To this end, more complicated methods are needed.

2. L-function and The Birch-Swinnerton-Dyer Congolish

Hasse conjectured (1954) that this function admits an analytic continuatio \mid complex plane, and that it satisfies a functional equation relating $L(E,s)$ wi This allows one to conjecture

Let $\mathcal{H} = \{z \in \mathbb{C} \mid \mathfrak{I}(z) > 0\}$ be the complex upper half plane. Let $\Gamma \leq GL_2^+$ discrete subgroup. Form the quotient space $\Gamma\backslash\mathcal{H}$. It is compactified by adding finitely many points of ∂*H* , called *cusps*.

$$
E(\mathbb{F}_p) = \{(x, y) \in \mathbb{F}_p^2 \mid y^2 = f(x)\}
$$

2.1 Definition

We say that a modular form with respect to $\Gamma_0(N)$ is a modular form *of level N.* Let *Sk*(*N*) denote the space of cusp forms of weight *k* and level *N*.

Since $\sqrt{2}$ 1 1 0 1 \setminus $\epsilon \in \Gamma$, $f(z+1) = f(z)$ hence there is a Fourier expansion

$$
L(E,s)=\prod_{p^2\nmid N}L_p(E,s)^{-1}
$$

where

$$
L_p(E,s) = \begin{cases} (1 - a_p p^{-s} + p^{1-2s}) & p \nmid N \\ (1 - a_p p^{-s}) & p \mid N, \quad p^2 \nmid N \end{cases}
$$

This looks, particularly when $k = 2$, very much like the Hasse-Weil zeta function! Moreover, in this case one obtains a holomorphic continuation of $L(f, s)$ to $\mathbb C$ and a functional equation relationg $L(f,s)$ to $L(f,k-s)$. It therefore remains to show the following.

2.2 conjecture (Birch, Swinnerton-Dyer 1965)

Let E be an elliptic curve defined over $\mathbb Q$. Then

 $rank(E(\mathbb{Q})) = ord_{s=1}L(E,s)$

The Hasse-Weil zeta function can be viewed as an *L*-function associated to a representation ρ of the Galois group $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$, $L(\rho_E, s) = L(E, s)$. For every local factor at a prime p , $L_p(\rho_E, s) = L_p(E, s)$ and $L_p(\pi, s) = L_p(f, s)$.

15.1 Langlands Conjecture for $GL_2(\mathbb{Q})$ **(Langlands, 1969)**

Fix a prime *l*. There is a natural bijection $\rho \mapsto \pi$ between the following categories: \prod {2-dimensional *l*-adic continuous irreducible representations of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ } \leftrightarrow

such that $L(\pi,s) = L(\rho,s)$.

3.1 Definition

A *modular form of weight k with respect to* Γ is a function $f : \mathcal{H} \to \mathbb{C}$ satisfying: (i) f is holomorphic on H .

(*ii*) For any *z* ∈ *H* and any γ ∈ Γ, one has *f*(γ*z*) = *j*(γ,*z*) *k* · *f*(*z*). (*iii*) *f* is holomorphic at the cusps.

If *f* vanishes at the cusps, we say that *f* is a *cusp form*.

From now on, for an integer *N*, we will consider

$$
\Gamma = \Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \mid
$$

bijection $\rho \mapsto \pi$ between the following categories: semisimple}

 \leftrightarrow {irreducible smooth *l*-adic representations of *GLn*(*F*)} such that $L_p(\pi, s) = L_p(\rho, s)$.

3.2 Definition

Let $G = GL_n(F)$ for some $n \in \mathbb{N}$. A *Unitary G-Banach space representation* is a || *C*-Banach space *V*, with a continuous action of *G* such that the norm is *G*-invariant.

When $n=2$ and $F=\mathbb{Q}_p$, this conjecture can be made precise, the bijection is functorial

In our research, we attempt to find good candidates for $\Pi(\rho)$ either when $n=2$ and $F \neq \mathbb{Q}_p$ or when considering different reductive groups, such as $U_3(F)$.

$$
f(z) = \sum_{n=0}^{\infty} a_n q^n \quad q = e
$$

2π*iz*

4. L-functions of Modular Forms

Modular forms can be viewed as functions on $\mathbb Z$ -lattices in $\mathbb C$. Hecke introduced natural operators on these functions, T_n for all $n \in \mathbb{N}$.

> and has been proved by Colmez, Berger, Breuil and others. | In all other cases, $n>2$ or $F\neq \mathbb{Q}_p,$ very little is known.

Let $\mathbb{A}=\mathbb{R}\times \prod'_P \mathbb{Q}_P$ be the Adéle ring. Cusp forms give rise to certain representations of $GL_2(\mathbb{A})$, called *cuspidal automorphic representations*. We denote it by $f \mapsto \pi_f$. ∞ ${}_{p}\pi_{p}$ with π_{p} a representation of $GL_{2}(\mathbb{Q}_{p}).$ For all *p*, there are $L_p(\pi, s) = L(\pi_p, s)$ and let $L(\pi, s) = \prod_p L_p(\pi, s)$. Then $L(\pi_f, s) =$

4.1 Definition

We say that $f \in S_k(N)$, which is an eigenvector for all the T_n , is a *newform* if it is not in the image of the natural map $S_k(N') \to S_k(N)$ for any $N' \mid N$. We say that f is **normalized** if $a_1 = 1$.

For normalized newforms, one may form

$$
L(f,s) = \sum_{n=1}^{\infty} a_n n^{-s} = \prod_p L_p(f,s) = \prod_{p \nmid N} (1 - a_p p^{-s} + p^{k-1-2s})^{-1} \cdot \prod_{p \mid N} (1 - a_p p^{-s})^{-1}
$$

4.2 The Modularity Theorem (Breuil, Conrad, Diamond, Taylor, Wiles 2001)

Let E be an elliptic curve defined over $\mathbb Q$. Let N be the conductor of E . Then there exists a cusp eigenform of weight 2 and level $N, f \in S_2(N)$ such that

 $L(E, s) = L(f, s)$

and this verifies Hasse's conjecture (as well as Fermat's Last Theorem).

5. The Langlands Correspondence

For such a representation π , write $\pi = \otimes$ $L(f, s)$

{cuspidal automorphic representations of *GL*2(A), algebraic at infinity}

Fix primes l, p such that $l \neq p$. Let F be a finite extension of \mathbb{Q}_p . There is a natural

 $\lceil \{n\text{-dimensional } l\text{-adic continuous representations of } Gal(\overline{\mathbb{Q}_p}/\mathbb{Q}_p) \text{ which are Frobenius }\rceil$

The compatibility with Euler products should even give more.

5.2 Local Langlands Correspondence (Harris, Taylor, Henniart 2001)

6. p-adic Local Langlands Correspondence

6.1 Definition

Let F/\mathbb{Q}_p be a finite extension. A p-adic Galois representation is a continuous action of the absolute Galois group $Gal(\overline{F}/F)$ of F on a finite dimensional \mathbb{Q}_p -vector space.

6.2 Definition

Roughly speaking, the *p*-adic Langlands programme suggests the following:

6.3 Conjecture (p-adic Langlands philosophy)

There is a natural bijection $\rho \mapsto \Pi(\rho)$ between the following categories: ${n-}$ dimensional *p*-adic representations of $Gal(\overline{F}/F)$ } \leftrightarrow

{unitary Banach space representations of *GLn*(*F*)}