1. Elliptic Curves

1.1 Definition

Let $f(x) \in \mathbb{Q}[x]$ be a cubic polynomial with rational coefficients and disting

$$E = E(\mathbb{C}) = \{(x, y) \in \mathbb{C}^2 \mid y^2 = f(x)\}$$

is an *elliptic curve defined over* \mathbb{Q} , and we denote by $E(\mathbb{Q}) = E \cap \mathbb{Q}$ points.

We note that the requirement that f has distinct roots is equivalent to $\Delta($ $\Delta(f)$ is its discriminant, defined as

$$\Delta(f) = a_n^{2n-2} \prod_{i < j} (x_i - x_j)^2$$

where x_1, \ldots, x_n are the roots of f, n is its degree and a_n is the leading coefficients of the second secon The first result in understanding the rational solutions to the equation $y^2 =$

1.2 Theorem (Mordell, 1922)

Let E be an elliptic curve defined over \mathbb{Q} . Then E is an abelian group, ar of rational points, $E(\mathbb{Q})$, is finitely generated.

However, we have not yet determined the rank of this group. To this end, more complicated methods are needed.

2. L-function and The Birch-Swinnerton-Dyer Co

Let p be a prime. Assume $f(x) \in \mathbb{Z}[x]$, we can then consider its reduction

$$E(\mathbb{F}_p) = \{(x, y) \in \mathbb{F}_p^2 \mid y^2 = f(x)\}$$

For any elliptic curve E, there is a number N = N(E), called the **conduct** suring the effect of reduction at the different primes.

For any prime p, there is also a number a_p , which depends on $E(\mathbb{F}_p)$.

2.1 Definition

Let E be an elliptic curve defined over \mathbb{Q} . We call the **Hasse-Weil Zeta fu** *L-function* attached to *E* the following infinite product

$$L(E,s) = \prod_{p^2 \nmid N} L_p(E,s)^{-1}$$

where

$$L_p(E,s) = \begin{cases} (1 - a_p p^{-s} + p^{1-2s}) & p \nmid N \\ (1 - a_p p^{-s}) & p \mid N, p^2 \nmid N \end{cases}$$

This product converges for $\Re(s) > \frac{3}{2}$.

Hasse conjectured (1954) that this function admits an analytic continuatio complex plane, and that it satisfies a functional equation relating L(E,s) wi This allows one to conjecture

2.2 conjecture (Birch, Swinnerton-Dyer 1965)

Let *E* be an elliptic curve defined over \mathbb{Q} . Then

 $rank(E(\mathbb{Q})) = ord_{s=1}L(E,s)$

The *p*-adic Local Langlands Correspondence

Eran Assaf

The Hebrew University of Jerusalem eran.assaf@mail.huji.ac.il

Let $\mathcal{H} = \{z \in \mathbb{C} \mid \mathfrak{I}(z) > 0\}$ be the complex upper half plane. Let $\Gamma \leq GL_2^+(\mathbb{R})$ be a discrete subgroup. Form the quotient space $\Gamma \setminus \mathcal{H}$. It is compactified by adding finitely many points of $\partial \mathcal{H}$, called *cusps*.

3.1 Definition

A *modular form of weight* k with respect to Γ is a function $f : \mathcal{H} \to \mathbb{C}$ satisfying: (*i*) f is holomorphic on \mathcal{H} .

(*ii*) For any $z \in \mathcal{H}$ and any $\gamma \in \Gamma$, one has $f(\gamma z) = j(\gamma, z)^k \cdot f(z)$. (iii) f is holomorphic at the cusps.

If f vanishes at the cusps, we say that f is a **cusp form**.

From now on, for an integer N, we will consider

$$\Gamma = \Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \mid d \right\}$$

3.2 Definition

We say that a modular form with respect to $\Gamma_0(N)$ is a modular form of level N. Let $S_k(N)$ denote the space of cusp forms of weight k and level N.

Since
$$igg(egin{array}{c} 1 & 1 \ 0 & 1 \ igg) \in \Gamma$$
, $f(z+1) = f(z)$ hence there is a F

$$f(z) = \sum_{n=0}^{\infty} a_n q^n \quad q = e$$

4. L-functions of Modular Forms

Modular forms can be viewed as functions on \mathbb{Z} -lattices in \mathbb{C} . Hecke introduced natural operators on these functions, T_n for all $n \in \mathbb{N}$.

4.1 Definition

We say that $f \in S_k(N)$, which is an eigenvector for all the T_n , is a **newform** if it is not in the image of the natural map $S_k(N') \to S_k(N)$ for any $N' \mid N$. We say that f is *normalized* if $a_1 = 1$.

For normalized newforms, one may form

$$L(f,s) = \sum_{n=1}^{\infty} a_n n^{-s} = \prod_p L_p(f,s) = \prod_{p \nmid N} (1 - a_p p^{-s} + p^{k-1-2s})^{-1} \cdot \prod_{p \mid N} (1 - a_p p^{-s})^{-1}$$

This looks, particularly when k = 2, very much like the Hasse-Weil zeta function! Moreover, in this case one obtains a holomorphic continuation of L(f,s) to \mathbb{C} and a functional equation relationg L(f,s) to L(f,k-s). It therefore remains to show the following.

4.2 The Modularity Theorem (Breuil, Conrad, Diamond, Taylor, Wiles 2001)

Let E be an elliptic curve defined over \mathbb{Q} . Let N be the conductor of E. Then there exists a cusp eigenform of weight 2 and level N, $f \in S_2(N)$ such that

L(E,s) = L(f,s)

and this verifies Hasse's conjecture (as well as Fermat's Last Theorem).

et roots. Then

$$Q^2$$
 its rational
 $(f) \neq 0$, where
efficient.
 $= f(x)$ was
and it subgroup
onjecture
 $n \overline{f(x)} \in \mathbb{F}_p[x]$.
etor of *E*, mea-
unction or the
whole
 $vith L(E, 2-s)$.

 $c \equiv 0 \mod N$

-ourier expansion

 $2\pi iz$

5. The Langlands Correspondence

L(f,s)

The Hasse-Weil zeta function can be viewed as an L-function associated to a representation ρ of the Galois group $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$, $L(\rho_E, s) = L(E, s)$. For every local factor at a prime p, $L_p(\rho_E, s) = L_p(E, s)$ and $L_p(\pi, s) = L_p(f, s)$.

5.1 Langlands Conjecture for $GL_2(\mathbb{Q})$ (Langlands, 1969)

Fix a prime l. There is a natural bijection $\rho \mapsto \pi$ between the following categories: {2-dimensional *l*-adic continuous irreducible representations of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ }

such that $L(\pi, s) = L(\rho, s)$.

The compatibility with Euler products should even give more.

5.2 Local Langlands Correspondence (Harris, Taylor, Henniart 2001)

bijection $\rho \mapsto \pi$ between the following categories: $\{n$ -dimensional l-adic continuous representations of $Gal(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$ which are Frobenius semisimple}

{irreducible smooth *l*-adic representations of $GL_n(F)$ } such that $L_p(\pi, s) = L_p(\rho, s)$.

6. p-adic Local Langlands Correspondence

6.1 Definition

Let F/\mathbb{Q}_p be a finite extension. A *p*-adic Galois representation is a continuous action of the absolute Galois group $Gal(\overline{F}/F)$ of F on a finite dimensional \mathbb{Q}_p -vector space.

6.2 Definition

Roughly speaking, the p-adic Langlands programme suggests the following:

6.3 Conjecture (p-adic Langlands philosophy)

There is a natural bijection $\rho \mapsto \Pi(\rho)$ between the following categories: {*n*-dimensional *p*-adic representations of Gal(F/F) }

{unitary Banach space representations of $GL_n(F)$ }

and has been proved by Colmez, Berger, Breuil and others. In all other cases, n > 2 or $F \neq \mathbb{Q}_p$, very little is known.

Let $\mathbb{A} = \mathbb{R} \times \prod_{p=1}^{\prime} \mathbb{Q}_p$ be the Adéle ring. Cusp forms give rise to certain representations of $GL_2(\mathbb{A})$, called *cuspidal automorphic representations*. We denote it by $f \mapsto \pi_f$. For such a representation π , write $\pi = \bigotimes_p \pi_p$ with π_p a representation of $GL_2(\mathbb{Q}_p)$. For all p, there are $L_p(\pi,s) = L(\pi_p,s)$ and let $L(\pi,s) = \prod_p L_p(\pi,s)$. Then $L(\pi_f,s) = \prod_p L_p(\pi,s)$.

(cuspidal automorphic representations of $GL_2(\mathbb{A})$, algebraic at infinity)

Fix primes l, p such that $l \neq p$. Let F be a finite extension of \mathbb{Q}_p . There is a natural

Let $G = GL_n(F)$ for some $n \in \mathbb{N}$. A Unitary G-Banach space representation is a C-Banach space V, with a continuous action of G such that the norm is G-invariant.

When n = 2 and $F = \mathbb{Q}_p$, this conjecture can be made precise, the bijection is functorial

In our research, we attempt to find good candidates for $\Pi(\rho)$ either when n=2 and $F \neq \mathbb{Q}_p$ or when considering different reductive groups, such as $U_3(F)$.