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Abelian Motives
Definition (Abelian motive)

An abelian motive over C is a triple (V, e, m) such that V is a
variety over C whose connected components are abelian varieties,
ee CorrO(V, V) is an idempotent, and m € Z.

Conjecture ( [Mil13, Conjecture C], Murre, 1993 )

In the ring End(hX) = Corr®(X, X) = Agimx (X x X), the diagonal
Ax has a canonical decomposition into a sum of orthogonal
idempotents
Ax =7+ ...+ g
This induces a decomposition
X = PXOhXD...®h"X
which maps to
H*(X) = HOX)@ HY(X) @ ...® H?>"(X)
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Category of abelian motives

Example (Projectors)

Let A be an abelian variety. Let 7; € Corr®(X, X) be the
idempotent from Murre's conjecture. Then it induces a projection
H*(A,Q) — H'(A,Q) € H*(A,Q)

Denote h'(A) = (A, m;,0).

Proposition (Properties)
The category of abelian motives, AM, admits biproducts, tensor
products and duals, which satisfy
(V,e,m)@ (V',e',m) = (Vu V', e+ e, m)
(V,e,m)@ (V' e',m') = (V x V' e &, m+m)
(V,e,m)¥ = (V,e', d — m)
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Polarizable Hodge Structures

Proposition

Hod(Q) the category of polarizable rational Hodge structures is
abelian, closed under tensor products and duals. Moreover, it is
semisimple. = Hod(Q) ~ Repg(GHod), MHod : S — GHod-

Proof.

Let C = Repg(S) be the category of all rational Hodge structures.
As a category of rep., it is abelian with tensor products and duals.
(0, @) is the zero object. (polarizable condition is empty).
Biproducts are polarizable by ¥\ + ¥, kernels are polarizable by
restriction. Have to check cokernels. But polarization induces
f(V)+ = W/f(V). This also shows semisimplicity.

Tensor products by taking ¥y ® ¥y on pure weights.

Duals since polarization induces V'V ~ V. []



Abelian Motives
00000

Abelian Hodge Structures

Definition
(V, e, m) abelian motive. H(V,e,m) = eH*(V,Q)(m).

Proposition

The functor
(V,e,m) v~ H(V,e,m): AM — Hod(Q)

commutes with @, ®," .

Proof.
If V is connected,
H*(V,Q) ~ /\ H(V,Q) ~ Homg (/\Hl(V,Q),@)

inducing a polarizable Hodge structure.
The rest is additivity, Kiinneth and Poincare for cohomology. O
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Abelian Hodge Structures

Definition (Abelian Hodge structure)

(W, h) is abelian if it is in the essential image, iso. to H(V,e, m).

Example (Tate)
E elliptic curve, then A? Hi(E,Q) ~ Q(1), hence Q(1) is abelian.

Proposition ( [Mil05, Proposition 9.1] )

The category Hod?®(Q) is the smallest strictly full subcategory of
Hod(Q) containing H1(A, Q) for each abelian variety A and closed
under direct sums, subquotients, duals and tensor products.
Moreover, H : AM — Hod??(Q) is an equivalence of categories.

— Hod*(Q) ~ Repg(Guab),  : Grod — Guab-
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Hodge Structures of CM-type
Definition (CM-type)

(V, h) € Hod(Q) is of CM-type if MT(V, h) is a torus.

Proposition

The category Hod“"(Q) is a Tannakian subcategory of Hod(Q).

Proposition ( [Mil94a, Proposition 4.6] )
Every Hodge structure of CM-type is abelian.

Corollary Hodg"™ Hod? Hodg
Ker p : GHod — Gmab & Gﬁ,f,'d

S GMab GHod
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Shimura varieties of abelian type
Definition (abelian type)
1. (H,X™) is of primitive abelian type if H is simple, 3(V 1)),
H — S(¢) mapping Xt to X(v).
2. (H,XT) is of abelian type if 3(H;, X;") primitive abelian,
isogeny [ [; Hi — H, mapping [ [; X;" to X™.
3. (G, X) is of abelian type if (G, X*) is of abelian type.

Theorem ( [Mil94b, Theorem 1.27] )

h:S — Gg s.t.

* (5V1) Adoh is of type {(1,—1),(0,0),(—1,1)}.

® (SV2*) ad h(i) is a Cartan involution of G/wh(Gp).

* (SV4) wy, : G, — G is defined over Q, and maps to Z(G).
G = MT(V, h) for (V,h) € Hod?* Q iff (G, h) is of abelian type.
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Proof.

Since h satisfies (SV2%*), (SV4), 3lp(h) : GHod — G s.t.

h = p(h)R o hHod-

p(h) factors through Guap iff p(h)|geer factors through GEer, .

If (G, h) abelian, Jav : [] G — G : GUer — S;(v)),

ao][hj = h. p(h;j) factors through Gpap, so p(hi)|geer factors
through GZ7,, hence so does p(h)|ger = a0 p(]] hi) |17 geer-
Category where Gp,p action factors through G is in (hi(A)), so

can replace G by MT(A) showing (<), (=) holds for MT(A). [

Proposition ( [Mil05, Proposition 9.3] )

1. (5V4) wx : G, — G is rational.
2. (5V6) Z(G)° splits over a CM-field.
3. :G—> Gy st. vowyx =—2. (soQ(1) e{(V,h)))

(G, X) abelian, (V,po h) abelian ¥(V,p) € Rep(G), h e X.
(V,po h) abelian, p faithful, (G, X) abelian.

/

f‘
If
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Proof.
G' = (X). (SV3) = {adoh| he X} generates G*¢, hence
G'/G' N Z(G) = G, so [G" : G'%"] < 0.
Both connected = GYe" = G’der,
By Prop. 5.9, (V,poh)isa VHS, so G’ = MT(V, po hy).
By the theorem, (V, po hy) € Hod®(Q) iff (G’, hg) abelian iff
(G, X) abelian. Can eliminate p.
h= adgo ho, g€ G/(R)+, (V, ho) € <h1(A)> (Gl, hl) = MT(A)
(G', ho) « (G1, h1) = (G(), X ()
Lift g to g1 € Gi(R)*. Then
(G', h) « (G1,ad(g1) o h1) — (G(¥), X (9)))
Set G, = MT(V, h), Gp1 its preimage in G1. So Gy is a quotient
of Gp1, the MT of an abelian variety. []
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Moduli Space
Theorem ( [Mil05, Theorem 9.4] )
(G, X) abelian s.t. (SV4), (SV6), v : G — G, with
vowx =-2.p:G—GL(V), I :VxV —->Qs.t
g = v(g)™, 1 is a polarization of (V,po h).
Fixti:Vx...xV —>Q(r),l<i<ns.t
G ={g inGL(V) | g¢ = v(g)™¢, gti = ti}

Shk (G, X) classifies (A, (s;)7_q,nK)/ ~ s.t.

® A is an abelian motive.

* +sy is a polarization for H(A).

® s1,...,S, are Hodge tensors for A.

* nK is a K-orbit of A¢-linear isom. V(Af) — V¢(A), sending

1 to an A? multiple of sy, and t; to s;.

® Ja: H(A) — V sending sy to a Q*-multiple of 1, each s; to
t;, and h onto an element of X.
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Classification

Theorem (Deligne, 1979)

(G,X™) connected, G simple.

If G of type A, B, C, then (G, X™") abelian.

If G of type Eg, E7, then (G, X™) not abelian.

G of type D, can have both. (no G — S(v) or none injective.)

Conjecture (Deligne, 1979)

If (G, X) satisfies (SV4), Shk (G, X) classifies isom. classes of
motives with additional structure.
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Shimura Varieties of Type A,

Example (Hilbert Modular Variety)
B quat. over F tot.real. G = B*.

GR)~ [[H* x [] GLa(R)

vele VEIne
* B = M,(F), then (G, X) is of PEL-type (Type (C)):

W:F27¢:17Q*ZOZT7V0:F27¢0:<i) _01>

EndB(W® Vg) = End,:(Vo) = B, so G = B*.
Classifies (A, i, t,nK), A abelian variety of dim. d = [F : Q],
i : F — Endg(A) is RM.
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Example
* B division algebra, I. = J (split at all infinite places). again
PEL-type - if L is the splitting field then V = V(Ma(L)).
Classifies (A, i, t,nK), A abelian variety of dim. d = 2[F : Q],
i : B — Endg(A) is QM.
* B division algebra, I # . Then (G, X) abelian, not (SV4).

wxr R— (FRR)*~ [] R
v:F—>R

a'—>(...,a,-,...),-el, a,'Z{

T = Resg/g Gm, so wx : Gy — Tg is defined over Q.
Then Shk (G, X) classifies Hodge structures, but not motivic.

1 iel

a i€l

® When |/lpc| = 1, Shimura curves.
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