Shimura varieties of abelian type

Shimura varieties not of abelian type 000

General Shimura Varieties

Eran Assaf

Dartmouth College

Shimura Varieties Reading Seminar, June 2020

Shimura varieties of abelian type 0000 Shimura varieties not of abelian type 000

Abelian Motives

Definition (Abelian motive)

An abelian motive over \mathbb{C} is a triple (V, e, m) such that V is a variety over \mathbb{C} whose connected components are abelian varieties, $e \in \operatorname{Corr}^0(V, V)$ is an idempotent, and $m \in \mathbb{Z}$.

Conjecture ([Mil13, Conjecture C], Murre, 1993)

In the ring $\operatorname{End}(hX) = \operatorname{Corr}^{0}(X, X) = A_{\dim X}(X \times X)$, the diagonal Δ_X has a canonical decomposition into a sum of orthogonal idempotents

$$\Delta_X = \pi_0 + \ldots + \pi_{2n}$$

This induces a decomposition

$$hX = h^0 X \oplus h^1 X \oplus \ldots \oplus h^{2n} X$$

which maps to

$$H^{\bullet}(X) = H^{0}(X) \oplus H^{1}(X) \oplus \ldots \oplus H^{2n}(X)$$

Shimura varieties of abelian type 0000

Shimura varieties not of abelian type 000

Category of abelian motives

Example (Projectors)

Let A be an abelian variety. Let $\pi_i \in \operatorname{Corr}^0(X, X)$ be the idempotent from Murre's conjecture. Then it induces a projection $H^{\bullet}(A, \mathbb{Q}) \to H^i(A, \mathbb{Q}) \subseteq H^{\bullet}(A, \mathbb{Q})$ Denote $h^i(A) = (A, \pi_i, 0)$.

Proposition (Properties)

The category of abelian motives, AM, admits biproducts, tensor products and duals, which satisfy

$$(V, e, m) \oplus (V', e', m) = (V \sqcup V', e + e', m)$$

$$(V, e, m) \otimes (V', e', m') = (V \times V', e \cdot e', m + m')$$

$$(V, e, m)^{\vee} = (V, e^t, d - m)$$

Shimura varieties of abelian type 0000 Shimura varieties not of abelian type 000

Polarizable Hodge Structures

Proposition

 $\operatorname{Hod}(\mathbb{Q})$ the category of polarizable rational Hodge structures is abelian, closed under tensor products and duals. Moreover, it is semisimple. \Longrightarrow $\operatorname{Hod}(\mathbb{Q}) \simeq \operatorname{Rep}_{\mathbb{Q}}(G_{\operatorname{Hod}}), h_{\operatorname{Hod}} : \mathbb{S} \to G_{\operatorname{Hod}}.$

Proof.

Let $C = \operatorname{Rep}_{\mathbb{Q}}(\mathbb{S})$ be the category of all rational Hodge structures. As a category of rep., it is abelian with tensor products and duals. $(0, \phi)$ is the zero object. (polarizable condition is empty). Biproducts are polarizable by $\psi_V + \psi_W$, kernels are polarizable by restriction. Have to check cokernels. But polarization induces $f(V)^{\perp} \cong W/f(V)$. This also shows semisimplicity. Tensor products by taking $\psi_V \otimes \psi_W$ on pure weights. Duals since polarization induces $V^{\vee} \simeq V$.

Shimura varieties of abelian type

Shimura varieties not of abelian type 000

Abelian Hodge Structures

Definition

$$(V, e, m)$$
 abelian motive. $H(V, e, m) = eH^{\bullet}(V, \mathbb{Q})(m)$.

Proposition

The functor

$$(V, e, m) \leadsto H(V, e, m) : AM \rightarrow Hod(\mathbb{Q})$$

commutes with $\oplus, \otimes, {}^{\vee}$.

Proof.

If V is connected,

$$H^{\bullet}(V,\mathbb{Q}) \simeq \bigwedge H^{1}(V,\mathbb{Q}) \simeq \operatorname{Hom}_{\mathbb{Q}}\left(\bigwedge H_{1}(V,\mathbb{Q}),\mathbb{Q}\right)$$

inducing a polarizable Hodge structure. The rest is additivity, Künneth and Poincare for cohomology. Shimura varieties of abelian type

Shimura varieties not of abelian type 000

Abelian Hodge Structures

Definition (Abelian Hodge structure)

(W, h) is abelian if it is in the essential image, iso. to H(V, e, m).

Example (Tate)

E elliptic curve, then $\bigwedge^2 H_1(E, \mathbb{Q}) \simeq \mathbb{Q}(1)$, hence $\mathbb{Q}(1)$ is abelian.

Proposition ([Mil05, Proposition 9.1])

The category $\operatorname{Hod}^{ab}(\mathbb{Q})$ is the smallest strictly full subcategory of $\operatorname{Hod}(\mathbb{Q})$ containing $H_1(A, \mathbb{Q})$ for each abelian variety A and closed under direct sums, subquotients, duals and tensor products. Moreover, $H : AM \to \operatorname{Hod}^{ab}(\mathbb{Q})$ is an equivalence of categories. $\Longrightarrow \operatorname{Hod}^{ab}(\mathbb{Q}) \simeq \operatorname{Rep}_{\mathbb{Q}}(G_{Mab}), \rho : G_{Hod} \to G_{Mab}.$

Shimura varieties of abelian type 0000 Shimura varieties not of abelian type 000

Hodge Structures of CM-type

Definition (CM-type)

 $(V, h) \in Hod(\mathbb{Q})$ is of CM-type if MT(V, h) is a torus.

Proposition

The category $Hod^{cm}(\mathbb{Q})$ is a Tannakian subcategory of $Hod(\mathbb{Q})$.

Proposition ([Mil94a, Proposition 4.6])

Every Hodge structure of CM-type is abelian.

Corollary

 $\operatorname{Ker} \rho: \operatorname{\mathcal{G}}_{\operatorname{Hod}} \to \operatorname{\mathcal{G}}_{\operatorname{Mab}} \subseteq \operatorname{\mathcal{G}}_{\operatorname{Hod}}^{\operatorname{der}}$

 $\operatorname{Hod}_{\mathbb{O}}^{\operatorname{cm}} \longrightarrow \operatorname{Hod}_{\mathbb{O}}^{\operatorname{ab}} \longrightarrow \operatorname{Hod}_{\mathbb{O}}$

 $S \iff G_{Mab} \ll G_{Hod}$

Shimura varieties of abelian type • 000 Shimura varieties not of abelian type $_{\rm OOO}$

Shimura varieties of abelian type

Definition (abelian type)

- 1. (H, X^+) is of primitive abelian type if H is simple, $\exists (V, \psi)$, $H \hookrightarrow S(\psi)$ mapping X^+ to $X(\psi)$.
- 2. (H, X^+) is of abelian type if $\exists (H_i, X_i^+)$ primitive abelian, isogeny $\prod_i H_i \to H$, mapping $\prod_i X_i^+$ to X^+ .
- 3. (G, X) is of abelian type if (G^{der}, X^+) is of abelian type.

Theorem ([Mil94b, Theorem 1.27])

 $h: \mathbb{S} \to \mathbb{G}_{\mathbb{R}} \ s.t.$

- (SV1) $Ad \circ h$ is of type $\{(1, -1), (0, 0), (-1, 1)\}$.
- (SV2*) ad h(i) is a Cartan involution of $G/w_h(\mathbb{G}_m)$.
- (SV4) $w_h : \mathbb{G}_m \to G_{\mathbb{R}}$ is defined over \mathbb{Q} , and maps to Z(G). G = MT(V, h) for $(V, h) \in \text{Hod}^{ab} \mathbb{Q}$ iff (G, h) is of abelian type.

Shimura varieties of abelian type 0000

Shimura varieties not of abelian type 000

Proof.

Since *h* satisfies (SV2*), (SV4), $\exists ! \rho(h) : G_{Hod} \to G$ s.t. $h = \rho(h)_{\mathbb{R}} \circ h_{Hod}$. $\rho(h)$ factors through G_{Mab} iff $\rho(h)|_{G^{der}}$ factors through G_{Mab}^{der} . If (G, h) abelian, $\exists \alpha : \prod G_i^{der} \to G^{der} : G_i^{der} \hookrightarrow S_i(\psi)$, $\alpha \circ \prod h_i = h$. $\rho(h_i)$ factors through G_{Mab} , so $\rho(h_i)|_{G_i^{der}}$ factors through G_{Mab}^{der} , hence so does $\rho(h)|_{G^{der}} = \alpha \circ \rho(\prod h_i)|_{\prod G_i^{der}}$. Category where G_{Mab} action factors through G is in $\langle h_1(A) \rangle$, so can replace G by MT(A) showing (\Leftarrow) , (\Rightarrow) holds for MT(A).

Proposition ([Mil05, Proposition 9.3])

1. (SV4)
$$w_X : \mathbb{G}_m \to G$$
 is rational.

2. (SV6) $Z(G)^{\circ}$ splits over a CM-field.

3. $\exists \nu : G \to \mathbb{G}_m \text{ s.t. } \nu \circ w_X = -2. \text{ (so } \mathbb{Q}(1) \in \langle (V, h) \rangle \text{)}$

If (G, X) abelian, $(V, \rho \circ h)$ abelian $\forall (V, \rho) \in \text{Rep}(G), h \in X$. If $(V, \rho \circ h)$ abelian, ρ faithful, (G, X) abelian.

Shimura varieties of abelian type 0000

Shimura varieties not of abelian type 000

Proof.

Lift g to $g_1 \in G_1(\mathbb{R})^+$. Then

$$(G',h) \twoheadleftarrow (G_1,\mathsf{ad}(g_1) \circ h_1) \hookrightarrow (G(\psi),X(\psi))$$

Set $G_h = MT(V, h)$, $G_{h,1}$ its preimage in G_1 . So G_h is a quotient of $G_{h,1}$, the *MT* of an abelian variety.

Shimura varieties of abelian type $000 \bullet$

Shimura varieties not of abelian type 000

Moduli Space

Theorem ([Mil05, Theorem 9.4])

 $\begin{array}{l} (G,X) \text{ abelian s.t. (SV4), (SV6), } \exists \nu : G \to \mathbb{G}_m \text{ with} \\ \nu \circ w_X = -2. \ \rho : G \hookrightarrow GL(V), \ \exists \psi : V \times V \to \mathbb{Q} \text{ s.t.} \\ g\psi = \nu(g)^m \psi, \ \psi \text{ is a polarization of } (V,\rho \circ h). \\ Fix \ t_i : V \times \ldots \times V \to \mathbb{Q}(r_i), 1 \leqslant i \leqslant n \text{ s.t.} \end{array}$

$$G = \{g \text{ inGL}(V) \mid g\psi = \nu(g)^m \psi, gt_i = t_i\}$$

 $\mathsf{Sh}_{\mathcal{K}}(G,X)$ classifies $(A,(s_i)_{i=0}^n,\eta\mathcal{K})/\sim s.t.$

- A is an abelian motive.
- $\pm s_0$ is a polarization for H(A).
- s_1, \ldots, s_n are Hodge tensors for A.
- ηK is a K-orbit of \mathbb{A}_{f} -linear isom. $V(\mathbb{A}_{f}) \rightarrow V_{f}(A)$, sending ψ to an \mathbb{A}_{f}^{\times} multiple of s_{0} , and t_{i} to s_{i} .
- $\exists a : H(A) \rightarrow V$ sending s_0 to a \mathbb{Q}^{\times} -multiple of ψ , each s_i to t_i , and h onto an element of X.

Shimura varieties of abelian type

Shimura varieties not of abelian type $_{\odot \odot \odot}$

Classification

Theorem (Deligne, 1979)

 (G, X^+) connected, G simple. If G^{ad} of type A, B, C, then (G, X^+) abelian. If G^{ad} of type E_6, E_7 , then (G, X^+) not abelian. G^{ad} of type D, can have both. (no $G \rightarrow S(\psi)$ or none injective.)

Conjecture (Deligne, 1979)

If (G, X) satisfies (SV4), $Sh_{K}(G, X)$ classifies isom. classes of motives with additional structure.

Shimura varieties of abelian type 0000

Shimura varieties not of abelian type $\circ \bullet \circ$

Shimura Varieties of Type A_1

Example (Hilbert Modular Variety)

B quat. over *F* tot.real.
$$G = B^{\times}$$
.
 $G(\mathbb{R}) \approx \prod_{v \in I_c} \mathbb{H}^{\times} \times \prod_{v \in I_{nc}} GL_2(\mathbb{R})$

• $B = M_2(F)$, then (G, X) is of PEL-type (Type (C)):

$$W = F^2, \phi = 1, \alpha^* = \alpha^T, V_0 = F^2, \psi_0 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

End_B($W \otimes V_0$) = End_F(V_0) = B, so $G = B^{\times}$. Classifies (A, i, t, ηK), A abelian variety of dim. $d = [F : \mathbb{Q}]$, $i : F \to \text{End}_{\mathbb{Q}}(A)$ is RM.

Shimura varieties of abelian type 0000 Shimura varieties not of abelian type $\circ \circ \bullet$

Example

- *B* division algebra, $I_c = \emptyset$ (split at all infinite places). again PEL-type - if *L* is the splitting field then $V = V(M_2(L))$. Classifies $(A, i, t, \eta K)$, *A* abelian variety of dim. $d = 2[F : \mathbb{Q}]$, $i : B \to \operatorname{End}_{\mathbb{Q}}(A)$ is QM.
- *B* division algebra, $I_c \neq \emptyset$. Then (G, X) abelian, not (SV4).

$$X_{\mathbb{R}}: \mathbb{R} \to (F \otimes \mathbb{R})^{\times} \cong \prod_{v: F \to \mathbb{R}} \mathbb{R}$$

 $a \mapsto (\dots, a_i, \dots)_{i \in I}, \quad a_i = \begin{cases} 1 & i \in I_c \\ a & i \in I_{nc} \end{cases}$

 $T = \operatorname{Res}_{F/\mathbb{Q}} \mathbb{G}_m$, so $w_X : \mathbb{G}_m \to T_{\mathbb{R}}$ is defined over $\overline{\mathbb{Q}}^{G_{l_c}}$. Then $\operatorname{Sh}_K(G, X)$ classifies Hodge structures, but not motivic.

• When $|I_{nc}| = 1$, Shimura curves.

w

JS Milne.

Motives over finite fields.

In Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI, pages 401–459, 1994.

JS Milne.

Shimura varieties and motives.

In Proc. Symp. Pure Math, volume 55, pages 447-523, 1994.

James S Milne.

Introduction to shimura varieties.

Harmonic analysis, the trace formula, and Shimura varieties, 4:265–378, 2005.

James S Milne.

Motives—grothendieck's dream.

Open problems and surveys of contemporary mathematics, 6:325–342, 2013.