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“Dans la seconde partie de mon rapport, il s’agit des variétés kahlériennes
dites K3, ainsi nommeées en ['honneur de Kummer, Kahler, Kodaira et de la belle
montagne K2 au Cachemire” —Andre Weil (Photo credit: Wagas Anees)
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There are several equivalent ways to define K3 surfaces.

Definition

An algebraic K3 surface is a smooth projective simply-connected surface with
trivial canonical class.
They may arise in many ways:

. smooth quartic surface in P3
X:f(x,y,z,w) =0, degf==4
« double cover of P? branched over a sextic curve P(3,1,1,1)

« Kummer surfaces, Kummer(A) := m with A an abelian surface.
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K3 surfaces also share many common features with curves and abelian varieties,
and at the same time provide new challenges!

« Trivial canonical bundle = Calabi-Yau manifold, as for elliptic curves
This provides us some constructions and insights coming from physics
- mirror symmetry
- curve counting heuristics

[[0-a")*=q/a=> dig" Yau-Zaslow
n>1 n>0
where d, should “give” the number of n-nodal rational curves in a K3 surface

Torelli theorem: a K3 surface is determined by its Hodge structure
Kuga-Satake construction: relates a K3 surface X to an abelian variety KS(X)
of dimension < 2%, such that H%(X, Z) C H?(KS(X)?,Z) as Hodge structures.
« a weaker analogue of Honda-Tate theory for abelian varieties.
categorical description of ordinary K3 surfaces over a finite field
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« understanding obstructions to Hasse's local-global principle

- The Brauer group usually plays a key role in such obstructions, somehow

analogous to the Tate-Shafarevich group for an elliptic curve.

« classification of automorphism groups

- Mukai: If Aut(X) < oo, then Aut(X) C Mo iff induces a faithful symplectic action
« Compute geometric invariants

- Automorphism group Aut(X)

- Period map

- Brauer group Br(X)

- Picard lattice Pic(X) ~ Z*
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Picard lattice

Over Q' we have
Pic(Xga) = H"'(Xc) N HA(Xc, Z) C H*(Xc, Z) ~ (—Eg)’ @ U =~ Z%
and p(Xga) € {1,2,...,20}.

For a generic K3 surface we have p(Xga) = 1

The degree of “difficulty” is negatively correlated with p(X)
H?(Xc, Q) = Pic(Xga)g & T(X)g

The “new and interesting” Galois representations arise from T(X).
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Picard lattice — over finite fields

o

L #X(F m) m\ _ |
Zx(t) := exp (Z Tpt ) T (1 =t)x()(1 = p?t)

m=1

where x(t) = det(1 — t Frob ]Hgt(XF§|, Qy)) € Z[t] and deg x = 22.

One may deduce Zx(t) by naively computing #X(F,») for m < 11.

From x(t) we may deduce p(XFpn) for any n, via Tate conjecture:
Pic(Xe,)q, = ker(Froby —p - id [He,(Xgy, Qo))

Tate conjecture is a theorem for K3 surfaces over finite fields.

For p > 7 computing Zx(t) by naive point counting is not practical.

Instead, one relies in a infrastructure of methods in crystalline cohomology
[Abbott-Kedlaya-Roe, C, C-Harvey-Kedlaya, Tuitman-Pancratz]
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Computing p(Xga) is in principle, solved.

[Charles, Poonen-Testa-van Luijk, Hassett-Kresch-Tschinkel, Shioda, Lairez-Sertoz]
These algorithms are not practical.

Usually rely on searching for explicit generators for the Picard lattice.

We do not know how to do that efficiently.

To terminate such a search, one makes use of the specialization being injective
Pic(XQal) = PIC(X]F;I) and p(X@al) S p(X]F?Jl)’

for a prime of good reduction.

Various ad hoc methods exist to improve the inequality above.



Improving upper bounds — using two specializations [van Luijk]

PiC(X@aI) — PiC(XFgI) and p(XQaI) < p(XFgI)

If p and g are two primes of good reduction, and
P(X]Fg') = p(Xga) = 2r,
disc Pic(XF;|) # disc Pic(Xp

).

al
q

then
PiC(XQaI) < 2[’

van Luijk, used this technique with r = 1, to provide the first known examples of
K3 surfaces over Q such that p(Xga) =1
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Elsenhans-Jahnel showed that the specialization map

)

Pic(Xge1) < Pic(Xg

al
P
has torsion-free cokernel for p # 2.
Thus, if p(XFg|) = p(Xga) every invertible sheaf lifts.
For example, if ,O(XH;3|) = 2, Elsenhans-Jahnel approach is

1. compute Pic(XFg|)

2. estimate the degree of a hypothetical effective divisor of the lift

3. use Grobner bases to verify that such a divisor does or does not exist

This approach is only practical if one can compute PiC(XIFgI) and if the obtained
estimates are low.
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Improving upper bounds — p-adic obstruction map [C-Sertoz]

Compute an p-adic approximation of the obstruction map

. PiC(X]Fp) - ngys(X/ZP) - ngys(X/ZD)/F1 ngys(X/ZD)

If 7(C) # 0, then C ¢ Pic(X). (analogous to Pic(Xc) = HM(Xc) N HA(X, Z))

1. compute a p-adic approximation of Frob,
2. compute an approximation of

Pic(Xr, )q, = ker(Frob, —p - id |H3g(X/Qp))
3. compute an approximation of
gy, : Pic(Xr,)g, = Har(X/Qp)/F'Har (X/Qp)

4. dim Pic(X) < dimq, ker mq,



Picard number via Sato-Tate moments

Theorem (C-Fité-Sutherland)
Let X be a K3 surface over a number field k, then we have

dim PIC(X) = M1[CI1] = ESTX[tr]

L Eftr(Froby [H0)())] = fim me(N)™ > W

Nm(p)<N

The Sato-Tate group of X is a compact Lie group G C O(22) containing (as a dense
subset) the image of a representation that maps Frobenius elements to
conjugacy classes.



So far we have been trying to improve the inequality p(Xga) < p(XFS|).
Can we use the inequality to our advantage?



So far we have been trying to improve the inequality p(Xga) < p(X]Fg|).
Can we use the inequality to our advantage?

Theorem [Li-Liedtke]
If there are infinitely many p primes such that
p(XQal) < p(X]FBI) and p(X]FgI) # 22,

then Xgar contains infinitely many rational curves.



So far we have been trying to improve the inequality p(Xga) < p(X]Fg|).
Can we use the inequality to our advantage?

Theorem [Li-Liedtke]
If there are infinitely many p primes such that
p(XQal) < p(X]FBI) aﬂd p(X]FgI) # 22,

then Xgar contains infinitely many rational curves.

Theorem [Bogomolov-Zarhin]
The set {p: p(XFgI) # 22} has positive density (density 1 after finite extension).



So far we have been trying to improve the inequality p(Xga) < p(X]Fg|).
Can we use the inequality to our advantage?

Theorem [Li-Liedtke]
If there are infinitely many p primes such that
p(XQal) < p(X]FBI) al']d p(X]FEI) # 22,

then Xgar contains infinitely many rational curves.

Theorem [Bogomolov-Zarhin]
The set {p: p(XFgI) # 22} has positive density (density 1 after finite extension).

Corollary [Li-Liedtke]
If p(Xga1) is 0dd, then Xga contains infinitely many rational curves.
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Jumping Picard ranks

Theorem [Charles]
We have
p(Xgn) + 1(Xgn) < p(Xey)
for some n(Xga1) > 0. Equality occurs infinitely often (density 1 after some finite
extension).

Consider

rljump( ) {P p(XFaI) > p(XQaI) +77(XQaI)}
Is this set infinite? What is its density?
What about

#1{p <B:p € Mump(X)}
#{p < B}

(X, B) := asB oo ?
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We have
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Moreover
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Jumping Picard ranks for Kummer surfaces

. p(AFB') > 4 = AF? ~ E?, E an elliptic curve

. p(AFg|) =6<— AF?J ~ E?,E a supersingular elliptic curve

« If A~ E2 then p € Myump(A) iff p is supersingular for E
This is related to the Lang-Trotter conjecture
It states that p should be supersingular with probability proportional to 1/,/p
Elkies has shown that there are infinitely many supersingular primes for E/Q.
o If A~ Ey x Ey with Ey £ E3, then p € Myump(A) iff E7 ~ E; over Fp?
Charles has shown that there are also infinitely many such primes.
* If End(Aga) = Z, then p € Mjump(A) iff Agyt ~ E?
What do you think it should happen in this case?

Let's do some numerical experiments for some non Kummer surfaces!
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Could it be related to some integer being a square modulo p?
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We can explain the 1/2

Theorem (C, C-Elsenhans—Jahnel)
If p(Xga1) = minp p(XFS| ), then there is dx € Z such that:

{p>2:pinertin Q(v/dx)} C Mjump(X).
dx represents the quadratic character p — det(Frob, |T(X)(1)) € £1.
Corollary
If dx is not a square:

e liminfg_,oev(X,B) > 1/2
* Xga has infinitely many rational curves.

dX3 = —1-5-151 - 22490817357414371041 - 387308497430149337233666358807996260780875056740850984213276970343278935342068889706146733313789

dx,} = 53 - 2624174618795407 - 512854561846964817139494202072778341 - 1215218370089028769076718102126921744353362873 - 6847124397158950456921300435158

dXS = —1-47 - 3109 - 4969 - 14857095849982608071 - 445410277660928347762586764331874432202584688016149 - 65865270852505269999342419873884248599811



Experimental data for p(Xg.) = 2 (again)

What if we ignore {p > 2: p inertin Q(v/dx)} C Mjump(X)?
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