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“Dans la seconde partie de mon rapport, il s’agit des variétés kählériennes
dites K3, ainsi nommées en l’honneur de Kummer, Kähler, Kodaira et de la belle
montagne K2 au Cachemire.” —André Weil (Photo credit: Waqas Anees)



What is a K3 surface?

There are several equivalent ways to define K3 surfaces.
Definition
An algebraic K3 surface is a smooth projective simply-connected surface with
trivial canonical class.

They may arise in many ways:

• smooth quartic surface in P3

X : f(x, y, z,w) = 0, deg f = 4

• double cover of P2 branched over a sextic curve P(3, 1, 1, 1)

X : w2 = f(x, y, z), deg f = 6

• Kummer surfaces, Kummer(A) := Ã/±, with A an abelian surface.
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K3 surfaces — the sweet spot for surfacesTM

In the classification of surfaces, they land in the middle.

Neither too simple nor too complicated, next level of difficulty past ruled
surfaces

K3 surfaces share many common features with curves and abelian varieties, and
at the same time provide new challenges!

• Trivial canonical bundle⇒ Calabi–Yau manifold, as for elliptic curves
This provides us some constructions and insights coming from physics

• mirror symmetry
• curve counting heuristics∏

n≥1
(1− qn)−24 = q/∆ =

∑
n≥0

dnqn Yau–Zaslow

where dn should “give” the number of n-nodal rational curves in a K3 surface
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K3 surfaces — the sweet spot for surfacesTM

K3 surfaces also share many common features with curves and abelian varieties,
and at the same time provide new challenges!

• Trivial canonical bundle⇒ Calabi–Yau manifold, as for elliptic curves
This provides us some constructions and insights coming from physics

• mirror symmetry
• curve counting heuristics∏

n≥1
(1− qn)−24 = q/∆ =

∑
n≥0

dnqn Yau–Zaslow

where dn should “give” the number of n-nodal rational curves in a K3 surface
• Torelli theorem: a K3 surface is determined by its Hodge structure

• Kuga–Satake construction: relates a K3 surface X to an abelian variety KS(X)
of dimension ≤ 219, such that H2(X,Z) ⊂ H2(KS(X)2,Z) as Hodge structures.

• a weaker analogue of Honda–Tate theory for abelian varieties.
• categorical description of ordinary K3 surfaces over a finite field
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K3 surfaces — popular problems

• existence of rational points

• Elkies: x4 + y4 + z4 = w4 has infinitely many rational points.
Disproving Euler’s conjectured generalization of Fermat’s last theorem.

• Elsenhans–Jahnel: x4 + 2y4 = z4 + 4w4 found the unique solution ≤ 100 million

(±1 484 801,±1 203 120,±1 169 407,±1 157 520)

Counter example to a conjecture of Swinnerton-Dyer.
• Zariski (potential) density of rational points

• Bogomolov–Tschinkel: if X admits an elliptic fibration or #Aut(X) = ∞, then the
rational points are potentially dense.

• existence of rational curves
• Examples with many lines⇒ curves with many rational points
• Elkies: the record number of lines in quartic surface is 46 lines defined over Q

for a double cover of P2 the record is 53 lines defined over Q
• Bogomolov–Tschinkel: if X admits an elliptic fibration or #Aut(X) = ∞, then X
contains infinitely many rational curves.
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Example: Quartic K3 surface with 42 lines, by Elkies



K3 surfaces — popular problems

• Zariski (potential) density of rational points
• Bogomolov–Tschinkel: if X admits an elliptic fibration or #Aut(X) = ∞, then the
rational points are potentially dense.

• existence of rational curves
• Examples with many lines⇒ curves with many rational points
• Elkies: the record number of lines in quartic surface over Q is 46
• Bogomolov–Tschinkel: if X admits an elliptic fibration or #Aut(X) = ∞, then X
contains infinitely many rational curves.

• understanding obstructions to Hasse’s local–global principle
• The Brauer group Br(X) usually plays a key role in such obstructions,
somehow analogous to the Tate–Shafarevich group for an elliptic curve.

• classification of automorphism groups
• Mukai: If Aut(X) < ∞, then Aut(X) ⊊ M23 iff induces a faithful symplectic action
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K3 surfaces — popular problems

• understanding obstructions to Hasse’s local–global principle
• The Brauer group usually plays a key role in such obstructions, somehow
analogous to the Tate–Shafarevich group for an elliptic curve.

• classification of automorphism groups
• Mukai: If Aut(X) < ∞, then Aut(X) ⊊ M23 iff induces a faithful symplectic action

• Compute geometric invariants
• Automorphism group Aut(X)
• Period map
• Brauer group Br(X)
• Picard lattice Pic(X) ' Zρ



Picard lattice

A key geometric invariant for an algebraic K3 surface is its Picard lattice

Pic(X) = NS(X) ' Zρ, ρ(X) := rk Pic(X)

Geometrically it describes the algebraic cycles on X under
linear/algebraic/numerical equivalency.

Plays a similar role as End(A) for an abelian variety A

NS(A)Q ' {φ ∈ End(A)Q : φ† = φ},

where † denotes the Rosati involution.

Over Qal, we have

Pic(XQal) ' H1,1(XC) ∩ H2(XC,Z) ⊊ H2(XC,Z) ' (−E8)2 ⊕ U3 ' Z22

and ρ(XQal) ∈ {1, 2, . . . , 20}.

For a generic K3 surface we have ρ(XQal) = 1
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Picard lattice

Over Qal, we have

Pic(XQal) ' H1,1(XC) ∩ H2(XC,Z) ⊂ H2(XC,Z) ' (−E8)2 ⊕ U3 ' Z22

and ρ(XQal) ∈ {1, 2, . . . , 20}.

For a generic K3 surface we have ρ(XQal) = 1

The degree of “difficulty” is negatively correlated with ρ(X)

H2(XC,Q) ' Pic(XQal)Q ⊕ T(X)Q

The “new and interesting” Galois representations arise from T(X).



Picard lattice – over finite fields

Over Fal
p we have ρ(XFal

p
) ∈ {2, 4, . . . , 22} (Over Qal it was {1, 2, . . . , 20})

The Hasse–Weil zeta function ZX(t) plays a key role for the computation of ρ(XFpn )

ZX(t) := exp

( ∞∑
m=1

#X(Fpm)
m tm

)
=

1
(1− t)χ(t)(1− p2t)

where χ(t) = det(1− tFrob |H2et(XFal
p
,Qℓ)) ∈ Z[t] and degχ = 22.

One may deduce ZX(t) by naively computing #X(Fpm) for m ≤ 11.

From χ(t) we may deduce ρ(XFpn ) for any n, via Tate conjecture:

Pic(XFp)Qℓ
= ker(Frobp−p · id |H2et(XFal

p
,Qℓ))

Tate conjecture is a theorem for K3 surfaces over finite fields.
[Charles, Madapusi, Kim–Madapusi]
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ZX(t) := exp
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m=1

#X(Fpm)
m tm

)
=

1
(1− t)χ(t)(1− p2t)

where χ(t) = det(1− tFrob |H2et(XFal
p
,Qℓ)) ∈ Z[t] and degχ = 22.

One may deduce ZX(t) by naively computing #X(Fpm) for m ≤ 11.

From χ(t) we may deduce ρ(XFpn ) for any n, via Tate conjecture:

Pic(XFp)Qℓ
= ker(Frobp−p · id |H2et(XFal

p
,Qℓ))

Tate conjecture is a theorem for K3 surfaces over finite fields.

For p > 7 computing ZX(t) by naive point counting is not practical.

Instead, one relies in a infrastructure of methods in crystalline cohomology
[Abbott–Kedlaya–Roe, C, C–Harvey–Kedlaya, Tuitman–Pancratz]



Computing Picard lattice over Qal

Computing ρ(XQal) is in principle, solved.
[Charles, Poonen–Testa–van Luijk, Hassett–Kresch–Tschinkel, Shioda, Lairez–Sertöz]

These algorithms are not practical.
Usually rely on searching for explicit generators for the Picard lattice.
We do not know how to do that efficiently.

To terminate such a search, one makes use of the specialization being injective

Pic(XQal) ↪→ Pic(XFal
p
) and ρ(XQal) ≤ ρ(XFal

p
),

for a prime of good reduction.

Various ad hoc methods exist to improve the inequality above.
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Improving upper bounds — using two specializations [van Luijk]

Pic(XQal) ↪→ Pic(XFal
p
) and ρ(XQal) ≤ ρ(XFal

p
)

If p and q are two primes of good reduction, and

ρ(XFal
p
) = ρ(XFal

q
) = 2r,

disc Pic(XFal
p
) 6= disc Pic(XFal

q
).

then
Pic(XQal) < 2r.

van Luijk, used this technique with r = 1, to provide the first known examples of
K3 surfaces over Q such that ρ(XQal) = 1



Improving upper bounds — torsion-free cokernel [Elsenhans–Jahnel]

Elsenhans–Jahnel showed that the specialization map

Pic(XQal) ↪→ Pic(XFal
p
)

has torsion-free cokernel for p 6= 2.

Thus, if ρ(XFal
p
) = ρ(XQal) every invertible sheaf lifts.

For example, if ρ(XFal
p
) = 2, Elsenhans–Jahnel approach is

1. compute Pic(XFal
p
)

2. estimate the degree of a hypothetical effective divisor of the lift
3. use Gröbner bases to verify that such a divisor does or does not exist

This approach is only practical if one can compute Pic(XFal
p
) and if the obtained

estimates are low.
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Improving upper bounds — p-adic obstruction map [C–Sertöz]

Compute an p-adic approximation of the obstruction map

π : Pic(XFp) ⊂ H2crys(X/Zp) → H2crys(X/Zp)/F1H2crys(X/Zp)

If π(C) 6= 0, then C /∈ Pic(X). (analogous to Pic(XC) = H1,1(XC) ∩ H2(X,Z))

1. compute a p-adic approximation of Frobp
2. compute an approximation of

Pic(XFp)Qp = ker(Frobp−p · id |H2dR(X/Qp))

3. compute an approximation of

πQp : Pic(XFp)Qp → H2dR(X/Qp)/F1H2dR(X/Qp)

4. dimPic(X) ≤ dimQp ker πQp
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Picard number via Sato–Tate moments

Theorem (C–Fité–Sutherland)
Let X be a K3 surface over a number field k, then we have

dimPic(X) = M1[a1] = ESTX [tr]

?
= E[tr(Frobp |H2(X)(1))] = lim

N→∞
πk(N)−1

∑
Nm(p)≤N

tr(Frobp)

Nm(p)

The Sato–Tate group of X is a compact Lie group G ⊂ O(22) containing (as a dense
subset) the image of a representation that maps Frobenius elements to
conjugacy classes.



K3 surfaces

So far we have been trying to improve the inequality ρ(XQal) ≤ ρ(XFal
p
).

Can we use the inequality to our advantage?

Theorem [Li–Liedtke]
If there are infinitely many p primes such that

ρ(XQal) < ρ(XFal
p
) and ρ(XFal

p
) 6= 22,

then XQal contains infinitely many rational curves.

Theorem [Bogomolov–Zarhin]
The set {p : ρ(XFal

p
) 6= 22} has positive density (density 1 after finite extension).

Corollary [Li–Liedtke]
If ρ(XQal) is odd, then XQal contains infinitely many rational curves.
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Jumping Picard ranks

Theorem [Charles]
We have

ρ(XQal) + η(XQal) ≤ ρ(XFal
p
)

for some η(XQal) ≥ 0. Equality occurs infinitely often (density 1 after some finite
extension).

Consider
Πjump(X) :=

{
p : ρ(XFal

p
) > ρ(XQal) + η(XQal)

}
Is this set infinite? What is its density?

What about

γ(X,B) := # {p ≤ B : p ∈ Πjump(X)}
# {p ≤ B} as B→ ∞ ?
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Jumping Picard ranks for Kummer surfaces

Let X ' Kummer(A) := Ã/± be a Kummer surface, where A is an abelian surface.

We have

• ρ(XQal) = ρ(AQal) + 16
• ρ(XFal

p
) = ρ(AFal

p
) + 16

• η(XQal) = η(AQal) = (ρ(AQal) mod 2)

Thus, Πjump(X) = Πjump(A)

Moreover

Pic(Ak)/Pic0(Ak) ' NS(Ak)Q ' {φ ∈ End(Ak)Q : φ† = φ},

where † denotes the Rosati involution and

• ρ(AFal
p
) ≥ 4⇐⇒ AFal

p
∼ E2, E an elliptic curve

• ρ(AFal
p
) = 6⇐⇒ AFal

p
∼ E2, E a supersingular elliptic curve
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Jumping Picard ranks for Kummer surfaces

• ρ(AFal
p
) ≥ 4⇐⇒ AFal

p
∼ E2, E an elliptic curve

• ρ(AFal
p
) = 6⇐⇒ AFal

p
∼ E2, E a supersingular elliptic curve

• If A ∼ E2, then p ∈ Πjump(A) iff p is supersingular for E

This is related to the Lang–Trotter conjecture
It states that p should be supersingular with probability proportional to 1/√p
Elkies has shown that there are infinitely many supersingular primes for E/Q.

• If A ∼ E1 × E2 with E1 6∼ E2, then p ∈ Πjump(A) iff E1 ∼ E2 over Fpal

Charles has shown that there are also infinitely many such primes.
• If End(AQal) = Z, then p ∈ Πjump(A) iff AFal

p
∼ E2

What do you think it should happen in this case?

Let’s do some numerical experiments for some non Kummer surfaces!
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Two generic K3 surfaces with ρ(XQal) = 1

γ(X,B) ?∼ cX√
B
, B→ ∞

=⇒ Prob(p ∈ Πjump(X))
?∼ 1/

√
p

Why?
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Three K3 surfaces with ρ(XQal) = 2

No obvious trend…

Could it be related to some integer being a square modulo p?
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Three K3 surfaces with ρ(XQal) = 2

No obvious trend…

Could it be related to some integer being a square modulo p?



We can explain the 1/2

Theorem (C, C–Elsenhans–Jahnel)
If ρ(XQal) = minp ρ(XFal

p
), then there is dX ∈ Z such that:{
p > 2 : p inert in Q(

√
dX)
}
⊂ Πjump(X).

dX represents the quadratic character p 7→ det(Frobp |T(X)(1)) ∈ ±1.

Corollary
If dX is not a square:

• lim infB→∞ γ(X,B) ≥ 1/2
• XQal has infinitely many rational curves.

dX3 = −1 · 5 · 151 · 22490817357414371041 · 387308497430149337233666358807996260780875056740850984213276970343278935342068889706146733313789

dX4 = 53 · 2624174618795407 · 512854561846964817139494202072778341 · 1215218370089028769076718102126921744353362873 · 6847124397158950456921300435158115445627072734996149041990563857503

dX5 = −1 · 47 · 3109 · 4969 · 14857095849982608071 · 445410277660928347762586764331874432202584688016149 · 658652708525052699993424198738842485998115218667979560362214198830101650254490711
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Experimental data for ρ(XQal) = 2 (again)

What if we ignore
{
p > 2 : p inert in Q(

√
dX)
}
⊂ Πjump(X)?

γ

(
X
Q
(√

dX
),B) ?∼ c√

B
, B→ ∞

Prob(p ∈ Πjump(X)) =

1 if dX is not a square modulo p
?∼ 1√p otherwise
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