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Polynomials

f(x)=anX"+---+ao € Z[X]

Write fp(x) := f(x) mod p

- Given fp(x) what can we say about f(x)?
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Write fp(x) := f(x) mod p

- Given fp(x) what can we say about f(x)?
- factorization of f,(x) ~
- factorization of f(x)
e.g. fp(x) irreducible = f(x) irreducible
- factorization of p in Q[x]/f(x)
- What can we say about f,(x) for arbitrary p?
- For degf = 2, quadratic reciprocity gives us that

Ni(p) == #{a € Fp : fp(a) = 0}

depending only on p mod A(f).
- What about for higher degrees?

~ studying the statistical properties N¢(p). 2/25



Example: Cubic polynomials

Theorem (Frobenius)

Prob(Ns(p) = 1) = Prob(g € Gal(f) : g fixes i roots),
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Example: Cubic polynomials

Theorem (Frobenius)

Prob(Ns(p) = 1) = Prob(g € Gal(f) : g fixes i roots),

f)=x —2= (x _ \aﬁ) (x _ \ﬁezmﬁ,) (x _ \ﬁewﬁ)

1/3 ifk=0
Prob (Nf(p) =R) = ¢1/2 ifk=1
1/6 ifR=3.

gx)=x = x> =2 +1=(x— ) (x — @) (X — a3)
o ifR=0
Prob(Ne(p) = F) = {1/3 if k= 3.
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Prob(Ns(p) = 1) = Prob(g € Gal(f) : g fixes i roots),

f)=x —2= (x _ \aﬁ) (x _ \ﬁezmﬁ,) (x _ \ﬁewﬁ)

1/3 ifk=0
Prob (Nf(p) =R) =<¢1/2 ifk=1 = Gal(f) =S;
1/6 ifk=3.

gx)=x = x> =2 +1=(x— ) (x — @) (X — a3)
Prob (Ng(p) = k) = {2/3 TR=0 _ Gallg) =232

1/3 ifk=3.
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Elliptic curves

An elliptic curve is a smooth curve defined by

y2=x>+ax+b

Over R it might look like Q or

Over C this is a torus @
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Elliptic curves

An elliptic curve is a smooth curve defined by

y2=x>+ax+b

Over R it might look like Q or

Over C this is a torus @

There is a natural group structure!
If P, Q, and R are colinear, then
P+Q+R=0 2
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Elliptic curves

E:y’=x>+ax+b, abeZ
Write Ep, := E mod p, for p a prime of good reduction

- What can we say about #E, for an arbitrary p?
- Given #tE, for many p, what can we say about £?

~» studying the statistical properties #£,.
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Hasse’s bound

Theorem (Hasse, 1930s)

Ip+1—#Ep < 2vP.
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Theorem (Hasse, 1930s)

p+1—#Ep| <2Vp.

In other words,

_ p+1—#E
VP

What can we say about the error term, Ap, as p — oco?

Ap €[-2,2]
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Two types of elliptic curves

_p+1—-#E
VP

There are two limiting distributions for A

Ap €[-2,2]
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Two types of elliptic curves

1—#E
Ap = p+1-#E €[-2,2]
VP
There are two limiting distributions for A
ordinary special
EndF? =7 EndF? +£ 7Z
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Two types of elliptic curves

_ p+1—#E
VP

There are two limiting distributions for A

Ap €[-2,2]

ordinary special
EndF? =7 EndF? +£ 7Z
Prob(\, = 0) < 1//P Prob()\, = 0) = 1/2
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Two types of elliptic curves

Over C an elliptic curve E is a torus

E(C’:(C//\, where A = wiZ + w)Z =
and we have End E2' = End A

8/25


http://math.mit.edu/~drew/g1_D1_a1f.gif
http://math.mit.edu/~drew/g1_D2_a1f.gif

Two types of elliptic curves

Over C an elliptic curve E is a torus

Ec ~C/A, where A=wZ+ wZ =
and we have End E2' = End A

ordinary special
EndA=7Z Z C End(A) € Q(v/—d)
wy /wy € Q(v/—d) for some d > 0
non-Cm M

YR
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How to distinguish between the two types?

non-CM CM
Endg F2' = Q Endg F?' = Q(v/—d)
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non-Cm M
Endg F?' = Endg F?' = Q(v/—d)

Al

It is enough to count points!
© p+1—#Ep =:ap # 0= Endg £ C Q(y/a3 — 4p)

- (M = Q(v/—Jd) z@(,/a% —4p).
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How to distinguish between the two types?

non-CM M
Endg Fal = Endg Fal = Q(v—d)

Al

It is enough to count points!

+ p+1— #Ep =1 6, # 0 = Endg F* € Q(,/a3 — 4p)
- CM = Q(v=d) ~ Q(y/a3 — 4p).
- non-CM = Q(M) % Q(W) forp #gq

w/prob 1.
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ap i=p +1—#Ep € [-2V/P, 2]

E:y2+y=x>—x>—10x—-20(11.a2)

+ Endg B3' ~ Q(v/—1)
* Endg B3' ~ Q(v/—11)
- = EndgF*'=Q

10/25
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ap i=p +1—#Ep € [-2V/P, 2]

E:y?+y=x3—x*—10x—20(11.a2)

+ Endg B3' ~ Q(v/—1)
* Endg B3' ~ Q(v/—11)
- = EndgF*'=Q

E:y?+y=x>—-7(27.a2)

* p=2mod 3= a,=0= EndgE3 is a Quaternion algebra
*+ p=1mod 3 = Endg £2' ~ Q(v/-3)
+ ~~ Endg £?' = Q(v/-3)
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Group-theoretic interpretation

There is a simple group-theoretic descriptions for these
histograms!
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Group-theoretic interpretation

There is a simple group-theoretic descriptions for these
histograms!

- To E we associate a compact Lie group ST € SU(2)
- This group is know as the Sato-Tate group of E.
- You may think of it as the “Galois” group of E.

Then, the ap are distributed as the trace of a matrix chosen at
random from ST with respect to its Haar measure.

non-CM CM CM (with the §)
SU(2) u(1) Ngu(2)(U(1))

L 11/25




Genus 2 curves

An genus 2 curve is a smooth curve defined by

y> =f(x), degf=50r6
/

Over R it might look like © \
\A
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Genus 2 curves

An genus 2 curve is a smooth curve defined by

y> =f(x), degf=50r6

/

Over R it might look like © (
\x

Now pairs of points have a natural group structure

Over C this group structure realizes as C?/A :f
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An example, C:y?> = x> — 5% + 4x + 1
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An example, C:y?> = x> — 5% + 4x + 1

_10;
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An example, C:y?> = x> — 5% + 4x + 1

Ds = (=v209=23 —115209-1333 + v/209-23 115/209—1333
3= 32 ) 2048 32 2048
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An example, C:y?> = x> — 5% + 4x + 1
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Real endomorphisms algebras in genus 2

There are 6 possibilities for the real endomorphism algebra™:

Abelian surface \ Endp A2
square of CM elliptic curve ‘ M;,(C)
- QM abelian surface M;(R)
- square of non-CM elliptic curve

- CM abelian surface CxC

- product of CM elliptic curves
product of CM and non-CM elliptic curves | C xR

- RM abelian surface R xR
- product of non-CM elliptic curves
generic abelian surface R

'and 54 possibilites for Sato-Tate groups /23


https://www.lmfdb.org/EllipticCurve/2.0.4.1/1600.2/b/3

Real endomorphisms algebras in genus 2

There are 6 possibilities for the real endomorphism algebra™:

Abelian surface \ Endp A2
square of CM elliptic curve ‘ M;,(C)
- QM abelian surface M;(R)
- square of non-CM elliptic curve

- CM abelian surface CxC

- product of CM elliptic curves
product of CM and non-CM elliptic curves | C xR

- RM abelian surface R xR
- product of non-CM elliptic curves
generic abelian surface R

Can we distinguish between these by looking at A mod p?

'and 54 possibilites for Sato-Tate groups /23


https://www.lmfdb.org/EllipticCurve/2.0.4.1/1600.2/b/3

Zeta functions and Frobenius polynomials

C/Q a nice curve of genus g and p a prime of good reduction

Zp(T) := exp <Z #C(Fpr)ﬂ/r> € Q(t)

r=1

where deg L,(T) and
Lp(T) = det(1 — tFroby, |[H'(C)) = det(1 — t Frob, |H'(A)),

where A := Jac(C).
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Zeta functions and Frobenius polynomials

C/Q a nice curve of genus g and p a prime of good reduction

_ < fe) Lp(T)
Zy(T) i=exp <; #C(Fpr)T /r> = (T—T)D(ﬁ

where deg L,(T) and
Lp(T) = det(1 — tFroby, [H'(C)) = det(1 — t Frob, |H'(A)),
where A := Jac(C).

cg=1~Ly(T)=1-apT+pT?
cg=2~Lp(T)=1—ap1T+ ap2T? — ap1pT° + p2T*
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Zeta functions and Frobenius polynomials

C/Q a nice curve of genus g and p a prime of good reduction

_ < fe) Lp(T)
Zy(T) i=exp <; #C(Fpr)T /r> = (T—T)D(ﬁ

where deg L,(T) and
Lp(T) = det(1 — tFroby, [H'(C)) = det(1 — t Frob, |H'(A)),
where A := Jac(C).

cg=1~Ly(T)=1-apT+pT?
cg=2~Lp(T)=1—ap1T+ ap2T? — ap1pT° + p2T*

Lp(T) gives us a lot of information about A, := A mod p
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Endomorphism algebras over finite fields

Theorem (Tate)
Let A be an abelian variety over F.

Given det(1— tFrob|H'(A)), we may compute rk End(Ar,, ), Vr>1.
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Endomorphism algebras over finite fields

Theorem (Tate)
Let A be an abelian variety over F.

Given det(1— tFrob|H'(A)), we may compute rk End(Ar,, ), Vr>1.
Honda-Tate theory = gives us EndQ(AFq,) up to isomorphism

Example
If Ls(T) =1 — 2T 4+ 25T%, then:
- all endomorphisms are defined over F,s, and
- Ap,, is isogenous to a square of an elliptic curve

° EndQAal >~ Mz(@(\/j6))
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Example continued

A=Jac(y’ = x> —x* + ¢ — 8 +5x — 1) (262144.d.5242881)

For p =5, Ls(T) = 1—2T? + 25T% and:
- all endomorphisms of As are defined over FFys
- det(1 — TFrob2 |H'(A)) = (1 — 2T 4 25T?)?
- As over [Fy5 is isogenous to a square of an elliptic curve

+ Endg A2 ~ My(Q(v/=6))

17/25
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For p =5, Ls(T) = 1—2T? + 25T% and:
- all endomorphisms of As are defined over FFys
- det(1 — TFrob2 |H'(A)) = (1 — 2T 4 25T?)?
- As over [Fy5 is isogenous to a square of an elliptic curve

+ Endg A2 ~ My(Q(v/=6))

Forp =7, Ly(T) = 1+ 6T? + 49T*, and:
- all endomorphisms of A; are defined over Fg
- det(1 — TFrob3 |[H'(A)) = (1+ 6T + 497%)?
- A; over g is isogenous to a square of an elliptic curve
* Endg A2 ~ My(Q(v/—10))
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Example continued

A=Jac(y’ = x> —x* + ¢ — 8 +5x — 1) (262144.d.5242881)

For p =5, Ls(T) = 1—2T? + 25T% and:
- all endomorphisms of As are defined over FFys
- det(1 — TFrob2 |H'(A)) = (1 — 2T 4 25T?)?
- As over [Fy5 is isogenous to a square of an elliptic curve

+ Endg A2 ~ My(Q(v/=6))

Forp =7, Ly(T) = 1+ 6T? + 49T*, and:
- all endomorphisms of A; are defined over Fg
- det(1 — TFrob3 |[H'(A)) = (1+ 6T + 497%)?
- A; over g is isogenous to a square of an elliptic curve

* Endg A2' ~ My(Q(+/—10))

= Endg A?' £ M,(C) 17/25
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Upper bounds for the endomorphism ring

Let K be a numberfield such that End Ax = End A?'
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Upper bounds for the endomorphism ring

Let K be a numberfield such that End Ax = End A?', then
- Ax H/t:1 A;qi'
- A: unique and simple up to isogeny (over K),
- Bj := EndgA; central simple algebra over L; := Z(B;),
. dimL/ B,‘ = 81-2,
+ Endg Ay = [T, M (B)
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Upper bounds for the endomorphism ring

Let K be a numberfield such that End Ax = End A%', then
© Ax ~ H;t:1 Al

- A unique aéld simple up to isogeny (over K),
- Bj := EndgA; central simple algebra over L; := Z(B;),
« dim, B; = €7,
- Endg Ax = [T My, ()
Theorem (C-Mascot-Sijsling-Voight, C-Lombardo-Voight)
If Mumford-Tate conjecture holds for A, then we can compute
o
- {(einj, nidim A},
. L/.

This is practical and its done by counting points (=computing Lp) 15/



Real endomorphisms algebras, {ejn;, n;dimA;}!_,, and dim L;

Abelian surface H Endg A% \ tuples \ dimL;
square of CM elliptic crv M,(C) {(2,2)} 2

- QM abelian surface M;(R) {(2,2)} 1

- square of non-CM elliptic crv

- CM abelian surface CxC {(1,2)} 4

- product of CM elliptic crv {(,1D, (1,1} | 2,2
CM x non-CM elliptic crvs CxR | {(1,D),,D} | 2,1
- RM abelian surface RxR {(1,2)} 2

- prod. of non-CM elliptic crv {0,M,(1,D} | 1,1
generic abelian surface R {(1, 1)} 1
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Example continued

A=Jac(y? = x> —x" +4x> —8x% +5x — 1) (262144.d.5242881)

* Endg A3 ~ My(Q(v/=3))

+ Endg A2' ~ My(Q(v/-6))

+ = Endg A?' # M,(C)
Question

Write B := Endq A% and assume that B is a quaternion algr.
Can we guess disc B?

20/25
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Example continued

A=Jac(y? = x> —x" +4x> —8x% +5x — 1) (262144.d.5242881)

* Endg A3 ~ My(Q(v/=3))

- Endg A2 ~ My(Q(v/~6))

- = Endg A% # M,(C)
Question

Write B := Endq A% and assume that B is a quaternion algr.
Can we guess disc B?

If ¢ is ramified in B = ¢ cannot split in Q(Frobp)
- 5,13,171disc B, as they split in Q(v/—3)
- 7,11¢disc B, as they split in Q(v/—6)

We can rule out all the primes except 2 and 3 (up to some bnd).
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Example continued

A=Jac(y? = x> —x" +4x> —8x% +5x — 1) (262144.d.5242881)

* Endg A3 ~ My(Q(v/=3))

- Endg A2 ~ My(Q(v/~6))

- = Endg A% # M,(C)
Question

Write B := Endq A% and assume that B is a quaternion algr.
Can we guess disc B?

If ¢ is ramified in B = ¢ cannot split in Q(Frobp)
- 5,13,171disc B, as they split in Q(v/—3)
- 7,11¢disc B, as they split in Q(v/—6)

We can rule out all the primes except 2 and 3 (up to some bnd).

Indeed, disc B = 6. 20/25
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Lower bounds for the endomorphism ring

- C be a nice curve of genus g over a number field
- Jac(C) ~¢ CI/A
- End Jac(C)?' ~ End C9/A ~ End A

Question
Can we compute End Jac(C)?'?

21/25



Numerical approach

Question
Can we compute End Jac(C)?'?

End Jac(C)®' ~ End C9/A ~ End A

Let the columns of T € Mg 54(C) be a basis for A.

The isomorphism above is realized by
MM = MR,

where M € Mg(Q?') and R € Myy(Z).

Thus by computing I, we may compute End A numerically.

22/25



Numerical endomorphism ring (Example continued)

C:y?=x° —x*+4F —8x> +5x—1 (262144.d.5242881)
Given N (with 600 digits)

1.851 — 0.1795] 3111 +2.0270  —1.517+ 0.089761  1.851
0.8358 — 2.866i 0.3626 + 0.1269/  —1.727 4+ 1.433/  0.8358

~
~

we can verify Jac(C) has numerical quaternionic multiplication.
?
For example, we have a € End(Jac(C)c) where
0 -3 0 -1

0 2 -2 0 1 0
M, = V2 and R, = ,
V2 0 0

4 0 -3 O

which satisfies o? = 2.
23/25
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Lower bounds for the endomorphism ring

- C be a nice curve of genus g over a number field
- Jac(C) ~¢c CI/A
- End Jac(C)®' ~ End C9/A ~ End A

Theorem (C-Mascot-Sijsling-Voight)
There exists a deterministic algorithm that, given input
o € Mg(Q?), returns

true « <€ EndJac(C)? and a is nondegenerate?,

false «a ¢ EndJac(C)? or a is degenerate.

2i.e., not in the locus of indeterminancy of the Mumford map
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Lower bounds for the endomorphism ring

Theorem (C-Mascot-Sijsling-Voight)
There exists a deterministic algorithm that, given input
o € Mg(Q"), returns

true o € EndJac(C)? and a is nondegenerate?,

false « ¢ EndJac(C)* or a is degenerate.

ldea:

- « represents an action on the tangent space
- locally this corresponds to system of differential eqns
- solve it locally and match it with a divisor of C x C

3i.e, not in the locus of indeterminancy of the Mumford map
25/25



