
Rigorous computation of the endomorphism
ring of a Jacobian

Edgar Costa (MIT)
Simons Collab. on Arithmetic Geometry, Number Theory, and Computation

November 13th, 2019
University of New South Wales

Slides available at edgarcosta.org under Research

1/25

edgarcosta.org


Polynomials

f(x) = anxn + · · ·+ a0 ∈ Z[x]

Write fp(x) := f(x) mod p

• Given fp(x) what can we say about f(x)?

• factorization of fp(x)⇝
• factorization of f(x)
e.g.: fp(x) irreducible⇒ f(x) irreducible

• factorization of p in Q[x]/f(x)
• What can we say about fp(x) for arbitrary p?

• For deg f = 2, quadratic reciprocity gives us that

Nf(p) := #{α ∈ Fp : fp(α) = 0}

depending only on p mod ∆(f).
• What about for higher degrees?

⇝ studying the statistical properties Nf(p).
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Example: Cubic polynomials

Theorem (Frobenius)

Prob(Nf(p) = i) = Prob(g ∈ Gal(f) : g fixes i roots),

f(x) = x3 − 2 =
(
x− 3√2

)(
x− 3√2e2πi/3

)(
x− 3√2e4πi/3

)

Prob
(
Nf(p) = k

)
=


1/3 if k = 0
1/2 if k = 1
1/6 if k = 3.

⇒ Gal(f) = S3

g(x) = x3 − x2 − 2x+ 1 = (x− α1) (x− α2) (x− α3)

Prob (Ng(p) = k) =

2/3 if k = 0
1/3 if k = 3.

⇒ Gal(g) = Z/3Z
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Elliptic curves

An elliptic curve is a smooth curve defined by

y2 = x3 + ax+ b

Over R it might look like or

Over C this is a torus

There is a natural group structure!
If P, Q, and R are colinear, then

P+ Q+ R = 0
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Elliptic curves

E : y2 = x3 + ax+ b, a,b ∈ Z

Write Ep := E mod p, for p a prime of good reduction

• What can we say about #Ep for an arbitrary p?
• Given #Ep for many p, what can we say about E?

⇝ studying the statistical properties #Ep.
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Hasse’s bound

Theorem (Hasse, 1930s)

|p+ 1−#Ep| ≤ 2
√
p.

In other words,

λp :=
p+ 1−#Ep√p ∈ [−2, 2]

What can we say about the error term, λp, as p→ ∞?
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Two types of elliptic curves

λp :=
p+ 1−#Ep√p ∈ [−2, 2]

There are two limiting distributions for λp

ordinary special
End Eal = Z End Eal ̸= Z

-2 -1 1 2 -2 -1 0 1 2

Prob(λp = 0) ?∼ 1/√p Prob(λp = 0) = 1/2

7/25
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Two types of elliptic curves

Over C an elliptic curve E is a torus

EC ≃ C/Λ, where Λ = ω1Z+ ω2Z =

and we have End Eal = EndΛ

ordinary special
EndΛ = Z Z ⊊ End(Λ) ⊂ Q(

√
−d)

ω2/ω1 ∈ Q(
√
−d) for some d > 0

non-CM CM

-2 -1 1 2 -2 -1 0 1 2
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How to distinguish between the two types?

non-CM CM
EndQ Eal = Q EndQ Eal = Q(

√
−d)

-2 -1 1 2 -2 -1 0 1 2

It is enough to count points!

• p+ 1−#Ep =: ap ̸= 0 =⇒ EndQ Eal ⊂ Q
(√

a2p − 4p
)

• CM⇒ Q(
√
−d) ≃ Q

(√
a2p − 4p

)
.

• non-CM⇒ Q
(√

a2p − 4p
)
̸≃ Q

(√
a2q − 4q

)
for p ̸= q

w/prob 1.
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Examples

ap := p+ 1−#Ep ∈ [−2
√
p, 2

√
p]

E : y2 + y = x3 − x2 − 10x− 20 (11.a2)

• EndQ Eal2 ≃ Q(
√
−1)

• EndQ Eal3 ≃ Q(
√
−11)

• ⇒ EndQ Eal = Q

E : y2 + y = x3 − 7 (27.a2)

• p = 2 mod 3⇒ ap = 0⇒ EndQ Ealp is a Quaternion algebra
• p = 1 mod 3⇒ EndQ Ealp ≃ Q(

√
−3)

• ⇝ EndQ Eal = Q(
√
−3)

10/25
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Group-theoretic interpretation

There is a simple group-theoretic descriptions for these
histograms!

• To E we associate a compact Lie group STE ⊂ SU(2)
• This group is know as the Sato–Tate group of E.
• You may think of it as the “Galois” group of E.

Then, the ap are distributed as the trace of a matrix chosen at
random from STE with respect to its Haar measure.

non-CM CM CM (with the δ)
SU(2) U(1) NSU(2)(U(1))

-2 -1 1 2 -2 -1 1 2 -2 -1 0 1 2
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Genus 2 curves

An genus 2 curve is a smooth curve defined by

y2 = f(x), deg f = 5 or 6

Over R it might look like

Now pairs of points have a natural group structure

Over C this group structure realizes as C2/Λ ≃

12/25
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An example, C : y2 = x5 − 5x3 + 4x+ 1

-3 -2 -1 1 2 3

-10

-5

5

10

(•+ •) + (•+ •) + (•+ •) = 0
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An example, C : y2 = x5 − 5x3 + 4x+ 1

-3 -2 -1 1 2 3

-10

-5

5

10

D1 := (−2, 1) + (0, 1) D2 := (2, 1) + (3,−11)

(•+ •) + (•+ •) + (•+ •) = 0
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−
√
209−23
32 , −115

√
209−1333
2048

)
+
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Real endomorphisms algebras in genus 2

There are 6 possibilities for the real endomorphism algebra1:

Abelian surface EndR Aal

square of CM elliptic curve M2(C)

• QM abelian surface M2(R)
• square of non-CM elliptic curve
• CM abelian surface C× C
• product of CM elliptic curves
product of CM and non-CM elliptic curves C× R
• RM abelian surface R× R
• product of non-CM elliptic curves
generic abelian surface R

Can we distinguish between these by looking at A mod p?

1and 54 possibilites for Sato–Tate groups 14/25

https://www.lmfdb.org/EllipticCurve/2.0.4.1/1600.2/b/3
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Zeta functions and Frobenius polynomials

C/Q a nice curve of genus g and p a prime of good reduction

Zp(T) := exp

( ∞∑
r=1

#C(Fpr)Tr/r
)

∈ Q(t)

where deg Lp(T) and

Lp(T) = det(1− tFrobp |H1(C)) = det(1− tFrobp |H1(A)),

where A := Jac(C).

• g = 1⇝ Lp(T) = 1− apT+ pT2

• g = 2⇝ Lp(T) = 1− ap,1T+ ap,2T2 − ap,1pT3 + p2T4

Lp(T) gives us a lot of information about Ap := A mod p

15/25
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Endomorphism algebras over finite fields

Theorem (Tate)
Let A be an abelian variety over Fq.

Given det(1− tFrob |H1(A)), we may compute rk End(AFqr ),∀r≥1.

Honda–Tate theory =⇒ gives us EndQ(AFqr ) up to isomorphism

Example
If L5(T) = 1− 2T2 + 25T4, then:
• all endomorphisms are defined over F25, and
• AF25 is isogenous to a square of an elliptic curve
• EndQ Aal ≃ M2(Q(

√
−6))

16/25
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Example continued

A = Jac(y2 = x5 − x4 + 4x3 − 8x2 + 5x− 1) (262144.d.524288.1)

For p = 5, L5(T) = 1− 2T2 + 25T4, and:
• all endomorphisms of A5 are defined over F25
• det(1− TFrob25 |H1(A)) = (1− 2T+ 25T2)2

• A5 over F25 is isogenous to a square of an elliptic curve
• EndQ Aal5 ≃ M2(Q(

√
−6))

For p = 7, L7(T) = 1+ 6T2 + 49T4, and:
• all endomorphisms of A7 are defined over F49
• det(1− TFrob27 |H1(A)) = (1+ 6T+ 49T2)2

• A7 over F49 is isogenous to a square of an elliptic curve
• EndQ Aal7 ≃ M2(Q(

√
−10))

⇒ EndR Aal ̸= M2(C)

17/25
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• A5 over F25 is isogenous to a square of an elliptic curve
• EndQ Aal5 ≃ M2(Q(

√
−6))

For p = 7, L7(T) = 1+ 6T2 + 49T4, and:
• all endomorphisms of A7 are defined over F49
• det(1− TFrob27 |H1(A)) = (1+ 6T+ 49T2)2

• A7 over F49 is isogenous to a square of an elliptic curve
• EndQ Aal7 ≃ M2(Q(

√
−10))

⇒ EndR Aal ̸= M2(C)

17/25
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Upper bounds for the endomorphism ring

Let K be a numberfield such that EndAK = EndAal

, then

• AK ∼
∏t
i=1 A

ni
i ,

• Ai unique and simple up to isogeny (over K),
• Bi := EndQ Ai central simple algebra over Li := Z(Bi),
• dimLi Bi = e2i ,
• EndQ AK =

∏t
i=1Mni(Bi)

Theorem (C–Mascot–Sijsling–Voight, C–Lombardo–Voight)
If Mumford–Tate conjecture holds for A, then we can compute
• t
• {(eini,ni dimAi)}ti=1
• Li

This is practical and its done by counting points (=computing Lp)

18/25
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Real endomorphisms algebras, {eini,ni dimAi}ti=1, and dim Li

Abelian surface EndR Aal tuples dim Li
square of CM elliptic crv M2(C) {(2, 2)} 2
• QM abelian surface M2(R) {(2, 2)} 1
• square of non-CM elliptic crv
• CM abelian surface C× C {(1, 2)} 4
• product of CM elliptic crv {(1, 1), (1, 1)} 2, 2
CM × non-CM elliptic crvs C× R {(1, 1), (1, 1)} 2, 1
• RM abelian surface R× R {(1, 2)} 2
• prod. of non-CM elliptic crv {(1, 1), (1, 1)} 1, 1
generic abelian surface R {(1, 1)} 1
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Example continued

A = Jac(y2 = x5 − x4 + 4x3 − 8x2 + 5x− 1) (262144.d.524288.1)

• EndQ Aal3 ≃ M2(Q(
√
−3))

• EndQ Aal5 ≃ M2(Q(
√
−6))

• ⇒ EndR Aal ̸= M2(C)

Question
Write B := EndQ Aal and assume that B is a quaternion algr.
Can we guess discB?

If ℓ is ramified in B⇒ ℓ cannot split in Q(Frobp)

• 5, 13, 17 ∤ discB, as they split in Q(
√
−3)

• 7, 11 ∤ discB, as they split in Q(
√
−6)

We can rule out all the primes except 2 and 3 (up to some bnd).
Indeed, discB = 6.

20/25
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Lower bounds for the endomorphism ring

• C be a nice curve of genus g over a number field
• Jac(C) ≃C Cg/Λ

• End Jac(C)al ≃ EndCg/Λ ≃ EndΛ

Question
Can we compute End Jac(C)al?

21/25



Numerical approach

Question
Can we compute End Jac(C)al?

End Jac(C)al ≃ EndCg/Λ ≃ EndΛ

Let the columns of Π ∈ Mg,2g(C) be a basis for Λ.

The isomorphism above is realized by

MΠ = ΠR,

where M ∈ Mg(Qal) and R ∈ M2g(Z).

Thus by computing Π, we may compute EndΛ numerically.
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Numerical endomorphism ring (Example continued)

C : y2 = x5 − x4 + 4x3 − 8x2 + 5x− 1 (262144.d.524288.1)

Given Π (with 600 digits)

Π ≈

(
1.851− 0.1795i 3.111+ 2.027i −1.517+ 0.08976i 1.851
0.8358− 2.866i 0.3626+ 0.1269i −1.727+ 1.433i 0.8358

)
we can verify Jac(C) has numerical quaternionic multiplication.
For example, we have α

?
∈ End(Jac(C)C) where

Mα =

(
0

√
2√

2 0

)
and Rα =


0 −3 0 −1
−2 0 1 0
0 −4 0 −2
4 0 −3 0

 ,

which satisfies α2 = 2.
23/25
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Lower bounds for the endomorphism ring

• C be a nice curve of genus g over a number field
• Jac(C) ≃C Cg/Λ
• End Jac(C)al ≃ EndCg/Λ ≃ EndΛ

Theorem (C–Mascot–Sijsling–Voight)
There exists a deterministic algorithm that, given input
α ∈ Mg(Qal), returnstrue α ∈ End Jac(C)al and α is nondegenerate2,

false α /∈ End Jac(C)al or α is degenerate.

2i.e., not in the locus of indeterminancy of the Mumford map
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Lower bounds for the endomorphism ring

Theorem (C–Mascot–Sijsling–Voight)
There exists a deterministic algorithm that, given input
α ∈ Mg(Qal), returnstrue α ∈ End Jac(C)al and α is nondegenerate3,

false α /∈ End Jac(C)al or α is degenerate.

Idea:

• α represents an action on the tangent space
• locally this corresponds to system of differential eqns
• solve it locally and match it with a divisor of C× C

3i.e., not in the locus of indeterminancy of the Mumford map
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