Rigorous computation of the endomorphism ring of a Jacobian

Edgar Costa (MIT) Simons Collab. on Arithmetic Geometry, Number Theory, and Computation November 13th, 2019 University of New South Wales

Slides available at edgarcosta.org under Research

$$f(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$$

• Given $f_p(x)$ what can we say about f(x)?

$$f(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$$

- Given $f_p(x)$ what can we say about f(x)?
 - factorization of $f_p(x) \rightsquigarrow$
 - factorization of f(x)
 - e.g.: $f_p(x)$ irreducible $\Rightarrow f(x)$ irreducible
 - factorization of p in $\mathbb{Q}[x]/f(x)$

$$f(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$$

- Given $f_p(x)$ what can we say about f(x)?
 - factorization of $f_p(x) \rightsquigarrow$
 - factorization of f(x)
 - e.g.: $f_{\rho}(x)$ irreducible $\Rightarrow f(x)$ irreducible
 - factorization of p in $\mathbb{Q}[x]/f(x)$
- What can we say about $f_p(x)$ for arbitrary p?

$$f(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$$

- Given $f_p(x)$ what can we say about f(x)?
 - factorization of $f_p(x) \rightsquigarrow$
 - factorization of f(x)
 - e.g.: $f_{\rho}(x)$ irreducible $\Rightarrow f(x)$ irreducible
 - factorization of p in $\mathbb{Q}[x]/f(x)$
- What can we say about $f_p(x)$ for arbitrary p?
 - For $\deg f = 2$, quadratic reciprocity gives us that

 $N_f(p) := \#\{\alpha \in \mathbb{F}_p : f_p(\alpha) = 0\}$

depending only on $p \mod \Delta(f)$.

$$f(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$$

- Given $f_p(x)$ what can we say about f(x)?
 - factorization of $f_p(x) \rightsquigarrow$
 - factorization of f(x)
 - e.g.: $f_{\rho}(x)$ irreducible $\Rightarrow f(x)$ irreducible
 - factorization of p in $\mathbb{Q}[x]/f(x)$
- What can we say about $f_p(x)$ for arbitrary p?
 - For $\deg f = 2$, quadratic reciprocity gives us that

$$N_f(p) := \#\{\alpha \in \mathbb{F}_p : f_p(\alpha) = 0\}$$

depending only on $p \mod \Delta(f)$.

• What about for higher degrees?

$$f(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$$

- Given $f_p(x)$ what can we say about f(x)?
 - factorization of $f_p(x) \rightsquigarrow$
 - factorization of f(x)
 - e.g.: $f_{\rho}(x)$ irreducible $\Rightarrow f(x)$ irreducible
 - factorization of p in $\mathbb{Q}[x]/f(x)$
- What can we say about $f_p(x)$ for arbitrary p?
 - For $\deg f = 2$, quadratic reciprocity gives us that

$$N_f(p) := \#\{\alpha \in \mathbb{F}_p : f_p(\alpha) = 0\}$$

depending only on $p \mod \Delta(f)$.

• What about for higher degrees?

 \rightarrow studying the **statistical** properties $N_f(p)$.

Example: Cubic polynomials

Theorem (Frobenius)

$$\operatorname{Prob}(N_f(p) = i) = \operatorname{Prob}(g \in \operatorname{Gal}(f) : g \text{ fixes } i \text{ roots}),$$

Example: Cubic polynomials

Theorem (Frobenius)

$$\operatorname{Prob}(N_f(p) = i) = \operatorname{Prob}(g \in \operatorname{Gal}(f) : g \text{ fixes } i \text{ roots}),$$

$$f(x) = x^{3} - 2 = \left(x - \sqrt[3]{2}\right) \left(x - \sqrt[3]{2}e^{2\pi i/3}\right) \left(x - \sqrt[3]{2}e^{4\pi i/3}\right)$$
$$\operatorname{Prob}\left(N_{f}(p) = k\right) = \begin{cases} 1/3 & \text{if } k = 0\\ 1/2 & \text{if } k = 1\\ 1/6 & \text{if } k = 3. \end{cases}$$

$$g(x) = x^{3} - x^{2} - 2x + 1 = (x - \alpha_{1})(x - \alpha_{2})(x - \alpha_{3})$$

Prob (N_g(p) = k) =
$$\begin{cases} 2/3 & \text{if } k = 0\\ 1/3 & \text{if } k = 3. \end{cases}$$

Example: Cubic polynomials

Theorem (Frobenius)

$$\operatorname{Prob}(N_f(p) = i) = \operatorname{Prob}(g \in \operatorname{Gal}(f) : g \text{ fixes } i \text{ roots}),$$

$$f(x) = x^{3} - 2 = \left(x - \sqrt[3]{2}\right) \left(x - \sqrt[3]{2}e^{2\pi i/3}\right) \left(x - \sqrt[3]{2}e^{4\pi i/3}\right)$$

Prob $\left(N_{f}(p) = k\right) = \begin{cases} 1/3 & \text{if } k = 0\\ 1/2 & \text{if } k = 1 \Rightarrow \text{Gal}(f) = S_{3}\\ 1/6 & \text{if } k = 3. \end{cases}$

$$g(x) = x^{3} - x^{2} - 2x + 1 = (x - \alpha_{1})(x - \alpha_{2})(x - \alpha_{3})$$

Prob $(N_{g}(p) = k) = \begin{cases} 2/3 & \text{if } k = 0 \\ 1/3 & \text{if } k = 3. \end{cases} \Rightarrow \text{Gal}(g) = \mathbb{Z}/3\mathbb{Z}$

An elliptic curve is a smooth curve defined by

 $y^2 = x^3 + ax + b$ Over \mathbb{R} it might look like $\bigcirc \checkmark$ or \bigcirc

Over $\ensuremath{\mathbb{C}}$ this is a torus

An elliptic curve is a smooth curve defined by

$$y^2 = x^3 + ax + b$$

Over ${\mathbb R}$ it might look like

Over $\ensuremath{\mathbb{C}}$ this is a torus

There is a natural group structure! If P, Q, and R are colinear, then P + Q + R = 0

$$E: y^2 = x^3 + ax + b, \quad a, b \in \mathbb{Z}$$

$$E: y^2 = x^3 + ax + b, \quad a, b \in \mathbb{Z}$$

Write $E_p := E \mod p$, for p a prime of good reduction

• What can we say about $\#E_p$ for an arbitrary p?

$$E: y^2 = x^3 + ax + b, \quad a, b \in \mathbb{Z}$$

Write $E_p := E \mod p$, for p a prime of good reduction

- What can we say about $\#E_p$ for an arbitrary p?
- Given $\#E_p$ for many p, what can we say about E?

$$E: y^2 = x^3 + ax + b, \quad a, b \in \mathbb{Z}$$

Write $E_p := E \mod p$, for p a prime of good reduction

- What can we say about $\#E_p$ for an arbitrary p?
- Given $\#E_p$ for many p, what can we say about E?

 \rightsquigarrow studying the **statistical** properties $\#E_p$.

Theorem (Hasse, 1930s)

$$|p+1-\#E_p|\leq 2\sqrt{p}.$$

Theorem (Hasse, 1930s)

$$|p+1-\#E_p|\leq 2\sqrt{p}.$$

In other words,

$$\lambda_p := \frac{p+1-\#E_p}{\sqrt{p}} \in [-2,2]$$

What can we say about the error term, λ_p , as $p \to \infty$?

$$\lambda_p := \frac{p+1-\#E_p}{\sqrt{p}} \in [-2,2]$$

$$\lambda_p := \frac{p+1-\#E_p}{\sqrt{p}} \in [-2,2]$$

$$\lambda_p := \frac{p+1-\#E_p}{\sqrt{p}} \in [-2,2]$$

$$\lambda_p := \frac{p+1-\#E_p}{\sqrt{p}} \in [-2,2]$$

It is enough to count points!

$$\cdot p + 1 - \#E_p =: a_p \neq 0 \Longrightarrow \operatorname{End}_{\mathbb{Q}} E^{\operatorname{al}} \subset \mathbb{Q}(\sqrt{a_p^2 - 4p})$$

It is enough to count points!

• $p + 1 - \#E_p =: a_p \neq 0 \Longrightarrow \operatorname{End}_{\mathbb{Q}} E^{\operatorname{al}} \subset \mathbb{Q}(\sqrt{a_p^2 - 4p})$

•
$$CM \Rightarrow \mathbb{Q}(\sqrt{-d}) \simeq \mathbb{Q}(\sqrt{a_p^2 - 4p}).$$

It is enough to count points!

- $\cdot p + 1 \#E_p \Longrightarrow \mathsf{End}_{\mathbb{Q}} E^{\mathsf{al}} \subset \mathbb{Q}(\sqrt{a_p^2 4p})$
- $\mathsf{CM} \Rightarrow \mathbb{Q}(\sqrt{-d}) \simeq \mathbb{Q}(\sqrt{a_p^2 4p}).$
- non-CM $\Rightarrow \mathbb{Q}\left(\sqrt{a_p^2 4p}\right) \not\simeq \mathbb{Q}\left(\sqrt{a_q^2 4q}\right)$ for $p \neq q$ w/prob 1.

Examples

$$a_p := p + 1 - \#E_p \in [-2\sqrt{p}, 2\sqrt{p}]$$

$$E: y^2 + y = x^3 - x^2 - 10x - 20$$
 (11.a2)

•
$$\operatorname{End}_{\mathbb{Q}} E_2^{\operatorname{al}} \simeq \mathbb{Q}(\sqrt{-1})$$

•
$$\operatorname{End}_{\mathbb{Q}} E_3^{\operatorname{al}} \simeq \mathbb{Q}(\sqrt{-11})$$

$$\boldsymbol{\cdot} \Rightarrow \operatorname{End}_{\mathbb{Q}} E^{\operatorname{al}} = \mathbb{Q}$$

Examples

$$a_p := p + 1 - \#E_p \in [-2\sqrt{p}, 2\sqrt{p}]$$

 $E: y^2 + y = x^3 - x^2 - 10x - 20$ (11.a2)

•
$$\operatorname{End}_{\mathbb{Q}} E_2^{\operatorname{al}} \simeq \mathbb{Q}(\sqrt{-1})$$

•
$$\operatorname{End}_{\mathbb{Q}} E_3^{\operatorname{al}} \simeq \mathbb{Q}(\sqrt{-11})$$

 $\boldsymbol{\cdot} \Rightarrow \mathsf{End}_{\mathbb{Q}} \, \mathit{E}^{\mathsf{al}} = \mathbb{Q}$

 $E: y^2 + y = x^3 - 7$ (27.a2)

- $p = 2 \mod 3 \Rightarrow a_p = 0 \Rightarrow \operatorname{End}_{\mathbb{Q}} E_p^{\operatorname{al}}$ is a Quaternion algebra
- $p = 1 \mod 3 \Rightarrow \operatorname{End}_{\mathbb{Q}} E_p^{\operatorname{al}} \simeq \mathbb{Q}(\sqrt{-3})$
- $\cdot \, \rightsquigarrow \mathsf{End}_{\mathbb{Q}} \, E^{\mathsf{al}} = \mathbb{Q}(\sqrt{-3})$

Group-theoretic interpretation

There is a simple group-theoretic descriptions for these histograms!

There is a simple group-theoretic descriptions for these histograms!

- To E we associate a compact Lie group $\operatorname{ST}_E \subset \operatorname{SU}(2)$
- This group is know as the Sato-Tate group of E.
- You may think of it as the "Galois" group of E.

There is a simple group-theoretic descriptions for these histograms!

- To E we associate a compact Lie group $\operatorname{ST}_{\text{E}} \subset \operatorname{SU}(2)$
- This group is know as the Sato-Tate group of E.
- You may think of it as the "Galois" group of E.

Then, the a_p are distributed as the trace of a matrix chosen at random from ST_E with respect to its Haar measure.

An genus 2 curve is a smooth curve defined by

$$y^2 = f(x), \quad \deg f = 5 \text{ or } 6$$

Over \mathbb{R} it might look like \bigcirc

An genus 2 curve is a smooth curve defined by

$$y^2 = f(x), \quad \deg f = 5 \text{ or } 6$$

Over $\mathbb R$ it might look like $\bigcirc \bigcirc$ (

Now pairs of points have a natural group structure

An genus 2 curve is a smooth curve defined by

$$y^2 = f(x)$$
, $\deg f = 5$ or 6

Over $\mathbb R$ it might look like $\bigcirc \bigcirc \left\langle \right\rangle$

Now pairs of points have a natural group structure

Over $\mathbb C$ this group structure realizes as $\mathbb C^2/\Lambda\simeq$

Real endomorphisms algebras in genus 2

There are 6 possibilities for the real endomorphism algebra¹:

Abelian surface	$\operatorname{End}_{\mathbb{R}}\operatorname{A}^{\operatorname{al}}$
square of CM elliptic curve	$M_2(\mathbb{C})$
• QM abelian surface	$M_2(\mathbb{R})$
 square of non-CM elliptic curve 	
• CM abelian surface	$\mathbb{C} \times \mathbb{C}$
 product of CM elliptic curves 	
product of CM and non-CM elliptic curves	$\mathbb{C} imes \mathbb{R}$
• RM abelian surface	$\mathbb{R} imes \mathbb{R}$
 product of non-CM elliptic curves 	
generic abelian surface	\mathbb{R}

Real endomorphisms algebras in genus 2

There are 6 possibilities for the real endomorphism algebra¹:

Abelian surface	$\operatorname{End}_{\mathbb{R}}\operatorname{A}^{\operatorname{al}}$
square of CM elliptic curve	$M_2(\mathbb{C})$
• QM abelian surface	$M_2(\mathbb{R})$
 square of non-CM elliptic curve 	
• CM abelian surface	$\mathbb{C} \times \mathbb{C}$
 product of CM elliptic curves 	
product of CM and non-CM elliptic curves	$\mathbb{C} imes \mathbb{R}$
• RM abelian surface	$\mathbb{R} imes \mathbb{R}$
 product of non-CM elliptic curves 	
generic abelian surface	\mathbb{R}

Can we distinguish between these by looking at A mod p?

¹and 54 possibilites for Sato–Tate groups

Zeta functions and Frobenius polynomials

 C/\mathbb{Q} a nice curve of genus g and p a prime of good reduction

$$Z_{p}(T) := \exp\left(\sum_{r=1}^{\infty} \#C(\mathbb{F}_{p^{r}})T^{r}/r\right) \in \mathbb{Q}(t)$$

where deg $L_p(T)$ and

$$L_p(T) = \det(1 - t \operatorname{Frob}_p | H^1(C)) = \det(1 - t \operatorname{Frob}_p | H^1(A)),$$

where $A := \operatorname{Jac}(C).$

Zeta functions and Frobenius polynomials

 C/\mathbb{Q} a nice curve of genus g and p a prime of good reduction

$$Z_p(T) := \exp\left(\sum_{r=1}^{\infty} \#C(\mathbb{F}_{p^r})T^r/r\right) = \frac{L_p(T)}{(1-T)(1-pT)}$$

where $\deg L_p(T)$ and

 $L_p(T) = \det(1 - t\operatorname{Frob}_p | H^1(C)) = \det(1 - t\operatorname{Frob}_p | H^1(A)),$

where A := Jac(C).

•
$$g = 1 \rightsquigarrow L_p(T) = 1 - a_p T + p T^2$$

• $g = 2 \rightsquigarrow L_p(T) = 1 - a_{p,1} T + a_{p,2} T^2 - a_{p,1} p T^3 + p^2 T^4$

Zeta functions and Frobenius polynomials

 C/\mathbb{Q} a nice curve of genus g and p a prime of good reduction

$$Z_p(T) := \exp\left(\sum_{r=1}^{\infty} \#C(\mathbb{F}_{p^r})T^r/r\right) = \frac{L_p(T)}{(1-T)(1-pT)}$$

where $\deg L_p(T)$ and

 $L_{\rho}(T) = \det(1 - t\operatorname{Frob}_{\rho}|H^{1}(C)) = \det(1 - t\operatorname{Frob}_{\rho}|H^{1}(A)),$

where A := Jac(C).

•
$$g = 1 \rightsquigarrow L_p(T) = 1 - a_p T + p T^2$$

• $g = 2 \rightsquigarrow L_p(T) = 1 - a_{p,1}T + a_{p,2}T^2 - a_{p,1}pT^3 + p^2T^4$

 $L_p(T)$ gives us a lot of information about $A_p := A \mod p$

```
Theorem (Tate)
```

Let A be an abelian variety over \mathbb{F}_q .

Given det(1 – t Frob $|H^1(A))$, we may compute $\operatorname{rk} \operatorname{End}(A_{\mathbb{F}_{a^r}}), \forall_{r \geq 1}$.

Theorem (Tate)

Let A be an abelian variety over \mathbb{F}_q .

Given det(1 – t Frob $|H^1(A))$, we may compute $\operatorname{rk} \operatorname{End}(A_{\mathbb{F}_{a^r}}), \forall_{r \geq 1}$.

Honda–Tate theory \Longrightarrow gives us $End_{\mathbb{Q}}(A_{\mathbb{F}_{q^r}})$ up to isomorphism

Theorem (Tate)

Let A be an abelian variety over \mathbb{F}_q .

Given det(1 – t Frob $|H^1(A)$), we may compute $\operatorname{rk} \operatorname{End}(A_{\mathbb{F}_{a^r}}), \forall_{r \geq 1}$.

Honda–Tate theory \Longrightarrow gives us $End_{\mathbb{Q}}(A_{\mathbb{F}_{q^r}})$ up to isomorphism

Example

If $L_5(T) = 1 - 2T^2 + 25T^4$, then:

- $\cdot\,$ all endomorphisms are defined over $\mathbb{F}_{25}\text{,}$ and
- + $A_{\mathbb{F}_{25}}$ is isogenous to a square of an elliptic curve
- $\operatorname{End}_{\mathbb{Q}} A^{\operatorname{al}} \simeq M_2(\mathbb{Q}(\sqrt{-6}))$

$$A = Jac(y^{2} = x^{5} - x^{4} + 4x^{3} - 8x^{2} + 5x - 1) \quad (262144.d.524288.1)$$

For p = 5, $L_5(T) = 1 - 2T^2 + 25T^4$, and:

- $\cdot\,$ all endomorphisms of A_5 are defined over \mathbb{F}_{25}
- det $(1 T \operatorname{Frob}_{5}^{2} | H^{1}(A)) = (1 2T + 25T^{2})^{2}$
- \cdot A_5 over \mathbb{F}_{25} is isogenous to a square of an elliptic curve
- $\operatorname{End}_{\mathbb{Q}} A_5^{\operatorname{al}} \simeq M_2(\mathbb{Q}(\sqrt{-6}))$

$$A = Jac(y^{2} = x^{5} - x^{4} + 4x^{3} - 8x^{2} + 5x - 1) \quad (262144.d.524288.1)$$

For p = 5, $L_5(T) = 1 - 2T^2 + 25T^4$, and:

- $\cdot\,$ all endomorphisms of A_5 are defined over \mathbb{F}_{25}
- det $(1 T \operatorname{Frob}_{5}^{2} | H^{1}(A)) = (1 2T + 25T^{2})^{2}$
- \cdot A_5 over \mathbb{F}_{25} is isogenous to a square of an elliptic curve
- $\operatorname{End}_{\mathbb{Q}} A_5^{\operatorname{al}} \simeq M_2(\mathbb{Q}(\sqrt{-6}))$

For p = 7, $L_7(T) = 1 + 6T^2 + 49T^4$, and:

- $\cdot\,$ all endomorphisms of A7 are defined over \mathbb{F}_{49}
- det $(1 T \operatorname{Frob}_7^2 | H^1(A)) = (1 + 6T + 49T^2)^2$
- \cdot A_7 over \mathbb{F}_{49} is isogenous to a square of an elliptic curve
- $\operatorname{End}_{\mathbb{Q}} A_7^{\operatorname{al}} \simeq M_2(\mathbb{Q}(\sqrt{-10}))$

$$A = Jac(y^{2} = x^{5} - x^{4} + 4x^{3} - 8x^{2} + 5x - 1) \quad (262144.d.524288.1)$$

For p = 5, $L_5(T) = 1 - 2T^2 + 25T^4$, and:

- $\cdot\,$ all endomorphisms of A_5 are defined over \mathbb{F}_{25}
- det $(1 T \operatorname{Frob}_{5}^{2} | H^{1}(A)) = (1 2T + 25T^{2})^{2}$
- \cdot A_5 over \mathbb{F}_{25} is isogenous to a square of an elliptic curve
- $\operatorname{End}_{\mathbb{Q}} A_5^{\operatorname{al}} \simeq M_2(\mathbb{Q}(\sqrt{-6}))$

For p = 7, $L_7(T) = 1 + 6T^2 + 49T^4$, and:

- $\cdot\,$ all endomorphisms of A7 are defined over \mathbb{F}_{49}
- det $(1 T \operatorname{Frob}_7^2 | H^1(A)) = (1 + 6T + 49T^2)^2$
- \cdot A_7 over \mathbb{F}_{49} is isogenous to a square of an elliptic curve
- $\operatorname{End}_{\mathbb{Q}} A_7^{\operatorname{al}} \simeq M_2(\mathbb{Q}(\sqrt{-10}))$

 $\Rightarrow \operatorname{End}_{\mathbb{R}} A^{\operatorname{al}} \neq M_2(\mathbb{C})$

Upper bounds for the endomorphism ring

Let *K* be a numberfield such that $\operatorname{End} A_K = \operatorname{End} A^{\operatorname{al}}$

Upper bounds for the endomorphism ring

Let *K* be a numberfield such that $\operatorname{End} A_K = \operatorname{End} A^{\operatorname{al}}$, then

- $A_K \sim \prod_{i=1}^t A_i^{n_i}$,
- A_i unique and simple up to isogeny (over K),
- $B_i := \operatorname{End}_{\mathbb{Q}} A_i$ central simple algebra over $L_i := Z(B_i)$,
- dim_{L_i} $B_i = e_i^2$,
- End_Q $A_K = \prod_{i=1}^t M_{n_i}(B_i)$

Upper bounds for the endomorphism ring

Let *K* be a numberfield such that $\operatorname{End} A_{K} = \operatorname{End} A^{\operatorname{al}}$, then

- $A_K \sim \prod_{i=1}^t A_i^{n_i}$,
- A_i unique and simple up to isogeny (over K),
- $B_i := \operatorname{End}_{\mathbb{Q}} A_i$ central simple algebra over $L_i := Z(B_i)$,
- dim_{L_i} $B_i = e_i^2$,
- End_Q $A_K = \prod_{i=1}^t M_{n_i}(B_i)$

Theorem (C-Mascot-Sijsling-Voight, C-Lombardo-Voight)

If Mumford–Tate conjecture holds for A, then we can compute

- t
- $\{(e_i n_i, n_i \dim A_i)\}_{i=1}^t$
- L_i

This is practical and its done by counting points (=computing L_p) $_{18/25}$

Abelian surface	$\operatorname{End}_{\mathbb{R}}\operatorname{A}^{\operatorname{al}}$	tuples	dim L _i
square of CM elliptic crv	$M_2(\mathbb{C})$	{(2,2)}	2
• QM abelian surface	$M_2(\mathbb{R})$	{(2,2)}	1
• square of non-CM elliptic crv			
• CM abelian surface	$\mathbb{C} \times \mathbb{C}$	{(1,2)}	4
• product of CM elliptic crv		{(1,1),(1,1)}	2, 2
CM $ imes$ non-CM elliptic crvs	$\mathbb{C} imes \mathbb{R}$	$\{(1,1),(1,1)\}$	2,1
• RM abelian surface	$\mathbb{R} imes \mathbb{R}$	{(1,2)}	2
• prod. of non-CM elliptic crv		$\{(1,1),(1,1)\}$	1, 1
generic abelian surface	\mathbb{R}	{(1,1)}	1

Example continued

$$A = Jac(y^{2} = x^{5} - x^{4} + 4x^{3} - 8x^{2} + 5x - 1) \quad (262144.d.524288.1)$$

- $\operatorname{End}_{\mathbb{Q}} A_3^{\operatorname{al}} \simeq M_2(\mathbb{Q}(\sqrt{-3}))$
- $\operatorname{End}_{\mathbb{Q}} A_5^{\operatorname{al}} \simeq M_2(\mathbb{Q}(\sqrt{-6}))$
- $\boldsymbol{\cdot} \Rightarrow \operatorname{End}_{\mathbb{R}} A^{\operatorname{al}} \neq M_2(\mathbb{C})$

Question

Write $B := End_Q A^{al}$ and assume that B is a quaternion algr. Can we guess disc B?

Example continued

$$A = Jac(y^{2} = x^{5} - x^{4} + 4x^{3} - 8x^{2} + 5x - 1) \quad (262144.d.524288.1)$$

- $\operatorname{End}_{\mathbb{Q}} A_3^{\operatorname{al}} \simeq M_2(\mathbb{Q}(\sqrt{-3}))$
- $\operatorname{End}_{\mathbb{Q}} A_5^{\operatorname{al}} \simeq M_2(\mathbb{Q}(\sqrt{-6}))$
- $\boldsymbol{\cdot} \Rightarrow \operatorname{End}_{\mathbb{R}} A^{\operatorname{al}} \neq M_2(\mathbb{C})$

Question

Write $B := \text{End}_Q A^{al}$ and assume that *B* is a quaternion algr. Can we guess disc *B*?

If ℓ is ramified in $B \Rightarrow \ell$ cannot split in $\mathbb{Q}(\mathsf{Frob}_p)$

- 5, 13, 17 \nmid disc *B*, as they split in $\mathbb{Q}(\sqrt{-3})$
- 7,11 \nmid disc *B*, as they split in $\mathbb{Q}(\sqrt{-6})$

We can rule out all the primes except 2 and 3 (up to some bnd).

Example continued

$$A = Jac(y^{2} = x^{5} - x^{4} + 4x^{3} - 8x^{2} + 5x - 1) \quad (262144.d.524288.1)$$

- $\operatorname{End}_{\mathbb{Q}} A_3^{\operatorname{al}} \simeq M_2(\mathbb{Q}(\sqrt{-3}))$
- $\operatorname{End}_{\mathbb{Q}} A_5^{\operatorname{al}} \simeq M_2(\mathbb{Q}(\sqrt{-6}))$
- $\boldsymbol{\cdot} \Rightarrow \operatorname{End}_{\mathbb{R}} A^{\operatorname{al}} \neq M_2(\mathbb{C})$

Question

Write $B := \text{End}_Q A^{al}$ and assume that *B* is a quaternion algr. Can we guess disc *B*?

If ℓ is ramified in $B \Rightarrow \ell$ cannot split in $\mathbb{Q}(\mathsf{Frob}_p)$

- 5, 13, 17 \nmid disc *B*, as they split in $\mathbb{Q}(\sqrt{-3})$
- 7,11 \nmid disc *B*, as they split in $\mathbb{Q}(\sqrt{-6})$

We can rule out all the primes except 2 and 3 (up to some bnd). Indeed, disc B = 6.

Lower bounds for the endomorphism ring

- C be a nice curve of genus g over a number field
- $\mathsf{Jac}(C) \simeq_{\mathbb{C}} \mathbb{C}^g / \Lambda$
- * End $\mathsf{Jac}(\mathit{C})^{\mathsf{al}} \simeq \mathsf{End}\, \mathbb{C}^{\mathit{g}} / \Lambda \simeq \mathsf{End}\, \Lambda$

Question

Can we compute End $Jac(C)^{al}$?

Numerical approach

Question

Can we compute $End Jac(C)^{al}$?

$$\operatorname{End} \operatorname{Jac}(C)^{\operatorname{al}} \simeq \operatorname{End} \mathbb{C}^g / \Lambda \simeq \operatorname{End} \Lambda$$

Let the columns of $\Pi \in M_{g,2g}(\mathbb{C})$ be a basis for Λ . The isomorphism above is realized by

 $M\Pi = \Pi R$,

where $M \in M_g(\mathbb{Q}^{al})$ and $R \in M_{2g}(\mathbb{Z})$.

Thus by computing $\Pi,$ we may compute $\operatorname{\mathsf{End}}\nolimits\Lambda$ numerically.

$$C: y^2 = x^5 - x^4 + 4x^3 - 8x^2 + 5x - 1 \quad (262144.d.524288.1)$$

Given Π (with 600 digits)

 $\Pi \approx \begin{pmatrix} 1.851 - 0.1795i & 3.111 + 2.027i & -1.517 + 0.08976i & 1.851 \\ 0.8358 - 2.866i & 0.3626 + 0.1269i & -1.727 + 1.433i & 0.8358 \end{pmatrix}$

we can verify Jac(C) has numerical quaternionic multiplication. For example, we have $\alpha \stackrel{?}{\in} End(Jac(C)_{\mathbb{C}})$ where

$$M_{\alpha} = \begin{pmatrix} 0 & \sqrt{2} \\ \sqrt{2} & 0 \end{pmatrix} \text{ and } R_{\alpha} = \begin{pmatrix} 0 & -3 & 0 & -1 \\ -2 & 0 & 1 & 0 \\ 0 & -4 & 0 & -2 \\ 4 & 0 & -3 & 0 \end{pmatrix},$$

which satisfies $\alpha^2 = 2$.

Lower bounds for the endomorphism ring

- C be a nice curve of genus g over a number field
- $\mathsf{Jac}(C) \simeq_{\mathbb{C}} \mathbb{C}^g / \Lambda$
- $\boldsymbol{\cdot} \ \mathsf{End} \ \mathsf{Jac}(\mathit{C})^{\mathsf{al}} \simeq \mathsf{End} \ \mathbb{C}^{\mathit{g}} / \Lambda \simeq \mathsf{End} \ \Lambda$

```
Theorem (C-Mascot-Sijsling-Voight)
```

```
There exists a deterministic algorithm that, given input \alpha \in M_g(\mathbb{Q}^{al}), returns
```

```
\begin{cases} \texttt{true} \quad \alpha \in \texttt{End Jac}(C)^{\texttt{al}} \text{ and } \alpha \text{ is nondegenerate}^2, \\ \texttt{false} \quad \alpha \notin \texttt{End Jac}(C)^{\texttt{al}} \text{ or } \alpha \text{ is degenerate}. \end{cases}
```

²i.e., not in the locus of indeterminancy of the Mumford map

Lower bounds for the endomorphism ring

```
Theorem (C-Mascot-Sijsling-Voight)
```

There exists a deterministic algorithm that, given input $\alpha \in M_g(\mathbb{Q}^{al})$, returns

```
\begin{cases} \texttt{true} \quad \alpha \in \texttt{End Jac}(C)^{\texttt{al}} \text{ and } \alpha \text{ is nondegenerate}^3, \\ \texttt{false} \quad \alpha \notin \texttt{End Jac}(C)^{\texttt{al}} \text{ or } \alpha \text{ is degenerate}. \end{cases}
```

Idea:

- + α represents an action on the tangent space
- \cdot locally this corresponds to system of differential eqns
- $\cdot\,$ solve it locally and match it with a divisor of $C\times C$

³i.e., not in the locus of indeterminancy of the Mumford map