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Randomness principle in number theory

Number theoretic dichotomy [Sarnak]
Given a problem, either

1. there is a rigid structure⇝ rigid solution, or
2. the answer is difficult to determine⇝ random behaviour

• Understanding and/or proving the probability law
⇝ deep understanding of the phenomenon

• Real world applications
• pseudo random numbers
• cryptography
• quasi-Monte Carlo methods
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Counting roots of polynomials

f(x) ∈ Z[x] a monic irreducible polynomial of degree d > 0

Question
How many roots does f have?

• What about over R?

For quadratic polynomials, x2 + ax+ b, the answer just
depends on the sign of ∆ := a2 − 4b.
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Counting roots of polynomials over finite fields

f(x) ∈ Z[x] a monic irreducible polynomial of degree d > 0

Question
How many roots does f have?

Nf(p) :=# {x ∈ {0, . . . ,p− 1} : f(x) ≡ 0 mod p}
=# {x ∈ {0, . . . ,p− 1} : p | f(x)}
=# {x ∈ Fp : f(x) = 0} ∈ {0, 1, . . . ,d}

Question
How often does each value occur?
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Quadratic polynomials

f(x) = x2 + ax+ b, ∆ := a2 − 4b

Quadratic formula =⇒ Nf(p) =


0 if ∆ is not a square modulo p
1 if ∆ ≡ 0 mod p
2 if ∆ is a square modulo p

Half of the numbers modulo p are squares.
Hence, if ∆ ∈ Z isn’t a square, then

Prob(∆ is a square modulo p) = 1/2

=⇒ Prob(Nf(p) = 0) = Prob(Nf(p) = 2) = 1
2

It is easy to describe for which primes ∆ is a square modp.
For example, 5 is a square for p ≡ 1, 4 mod 5 and p = 2.
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Cubic polynomials

f(x) = x3 − 2 =
(
x− 3√2

)(
x− 3√2e2πi/3

)(
x− 3√2e4πi/3

)

Prob
(
Nf(p) = k

)
=


1/3 if k = 0
1/2 if k = 1
1/6 if k = 3.

⇒ Gal(f) = S3

g(x) = x3 − x2 − 2x+ 1 = (x− α1) (x− α2) (x− α3)

Prob (Ng(p) = k) =

2/3 if k = 0
1/3 if k = 3.

⇒ Gal(g) = Z/3Z

Theorem (Frobenius)

Prob(Nf(p) = i) = Prob(g ∈ Gal(f) : g fixes i roots),
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Elliptic curves

An elliptic curve is a smooth curve defined by

y2 = x3 + ax+ b

Over R it might look like or

Over C this is a torus

There is a natural group structure!
If P, Q, and R are colinear, then

P+ Q+ R = 0

Applications: • cryptography
• integer factorization
• pseudorandom numbers, …
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Elliptic curves

E : y2 = x3 + ax+ b, a,b ∈ Z

Write Ep := E mod p

• What can we say about #Ep for an arbitrary p?

• Given #Ep for many p, what can we say about E?

⇝ studying the statistical properties #Ep.
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Hasse’s bound

Theorem (Hasse, 1930s)

|p+ 1−#Ep| ≤ 2
√
p.

In other words,

λp :=
p+ 1−#Ep√p ∈ [−2, 2]

What can we say about the error term, λp, as p→ ∞?
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Two types of elliptic curves

λp :=
p+ 1−#Ep√p ∈ [−2, 2]

There are two limiting distributions for λp

ordinary special
End Eal = Z End Eal ̸= Z

-2 -1 1 2 -2 -1 0 1 2

Prob(λp = 0) ?∼ 1/√p Prob(λp = 0) = 1/2

http://math.mit.edu/~drew/g1_D1_a1f.gif
http://math.mit.edu/~drew/g1_D2_a1f.gif


Two types of elliptic curves

λp :=
p+ 1−#Ep√p ∈ [−2, 2]

There are two limiting distributions for λp

ordinary special
End Eal = Z End Eal ̸= Z

-2 -1 1 2 -2 -1 0 1 2

Prob(λp = 0) ?∼ 1/√p Prob(λp = 0) = 1/2

http://math.mit.edu/~drew/g1_D1_a1f.gif
http://math.mit.edu/~drew/g1_D2_a1f.gif


Two types of elliptic curves

λp :=
p+ 1−#Ep√p ∈ [−2, 2]

There are two limiting distributions for λp

ordinary special
End Eal = Z End Eal ̸= Z

-2 -1 1 2 -2 -1 0 1 2

Prob(λp = 0) ?∼ 1/√p Prob(λp = 0) = 1/2

http://math.mit.edu/~drew/g1_D1_a1f.gif
http://math.mit.edu/~drew/g1_D2_a1f.gif


Two types of elliptic curves

λp :=
p+ 1−#Ep√p ∈ [−2, 2]

There are two limiting distributions for λp

ordinary special
End Eal = Z End Eal ̸= Z

-2 -1 1 2 -2 -1 0 1 2

Prob(λp = 0) ?∼ 1/√p Prob(λp = 0) = 1/2

http://math.mit.edu/~drew/g1_D1_a1f.gif
http://math.mit.edu/~drew/g1_D2_a1f.gif


Two types of elliptic curves

Over C an elliptic curve E is a torus

EC ≃ C/Λ, where Λ = Zω1 + Zω2 =

and we have End Eal = EndΛ

ordinary special
EndΛ = Z Z ⊊ End(Λ) ⊂ Q(

√
−d)

ω2/ω1 ∈ Q(
√
−d) for some d > 0

non-CM CM

-2 -1 1 2 -2 -1 0 1 2
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How to distinguish between the two types?

non-CM CM
EndQ Eal = Q EndQ Eal = Q(

√
−d)

-2 -1 1 2 -2 -1 0 1 2

It is enough to count points!

p+ 1−#Ep =: ap ̸= 0 =⇒ EndQ Eal ⊂ Q
(√

a2p − 4p
)

• If E is non-CM, then Q(
√
a2p − 4p) ̸≃ Q(

√
a2q − 4q) for

p ̸= q with prob. 1.
• If E has CM, then Q(

√
−d) ≃ Q

(√
a2p − 4p

)
.
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Group-theoretic interpretation

There is a simple group-theoretic descriptions for these
histograms!

• To E we associate a compact Lie group STE ⊂ SU(2)
• This group is know as the Sato–Tate group of E.
• You may think of it as the “Galois” group of E.

Then, the ap are distributed as the trace of a matrix chosen at
random from STE with respect to its Haar measure.

non-CM CM CM (with the δ)
SU(2) U(1) NSU(2)(U(1))

-2 -1 1 2 -2 -1 1 2 -2 -1 0 1 2
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Higher Genus curves

Let’s now consider curves with higher genus = #handles.

g = 1 g = 2 g = 3 g = 4 · · ·

· · ·

For example, an hyperelliptic curve:

C : y2 = a2g+2x2g+2 + · · ·+ a0

We may the Jacobian to obtain an object with a group structure

A := Jac(C) ≃C Cg/Λ

Question
Can we repeat the same experiment?

Now we will need to count solutions over Fpi for i = 1, · · · ,g.
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Zeta functions and Frobenius polynomials

Question
Can we repeat the same experiment?

Zp(T) := exp

( ∞∑
r=1

#C(Fpr)Tr/r
)

∈ Q(t)

where deg Lp(T) = 2g and

Lp(T) = det(1− tFrobp |H1(C)) = det(1− tFrobp |H1(A))

• g = 1⇝ Lp(T) = 1− apT+ pT2

• g = 2⇝ Lp(T) = 1− ap,1T+ ap,2T2 − ap,1pT3 + p2T4

Sato–Tate conjecture
Lp(T/

√p) are equidistributed according to STA ⊂ USp(2g)
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Possible distributions out there
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#{STA} 3 52 ?∼ 400
?
≥ 1000 · · ·

Question
Given C can we compute STA?

Yes, we can compute EndAal!
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Lower bounds for the endomorphism ring

• C be a nice curve over a number field
• A := Jac(C) ≃C Cg/Λ
• EndAal ≃ EndCg/Λ ≃ EndΛ

Theorem (C–Mascot–Sijsling–Voight)
There exists a deterministic algorithm that, given input
α ∈ Mg(Qal), returnstrue α ∈ EndAal and α is nondegenerate1,

false α /∈ EndAal or α is degenerate.

In practice, we first compute EndCg/Λ numerically.

1i.e., not in the locus of indeterminancy of the Mumford map
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Upper bounds for the endomorphism ring

We may factor EndAal uniquely as

EndAal ≃
t∏
i=1

Mni(Bi),

where Bi are division algebras

with center Li.
Set e2i := dimLi Bi, then

rk End(AK) =
t∑
i=1

e2i n
2
i [Li : Q].

Theorem (C–Mascot–Sijsling–Voight)
We can effectively compute

t, {eini}i=1,...,t, and {Li}i=1,...,t,

if the Mumford–Tate conjecture holds for A.

This is done by just counting points.
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Upshot

We can efficiently compute EndAal as a Galois module.

Remark
For g ≤ 3 this is sufficient to determine STA.

g = 1 g = 2 g = 3 g = 4 · · ·

#{STA} 3 52 ?∼ 400
?
≥ 1000 · · ·

Publicly available for you to try out

github.com/edgarcosta/endomorphisms/

Already used on more than 250000 curves, coming soon to

LMFDB.org

github.com/edgarcosta/endomorphisms/
LMFDB.org
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K3 surfaces

These provide another natural generalization of elliptic curves

They may arise in many ways:

• smooth quartic surfaces in P3

X : f(x, y, z,w) = 0, deg f = 4

• double cover of P2 branched over a sextic curve

X : w2 = f(x, y, z), deg f = 6

Can we play similar game as before?

In this case, instead of studying #Xp or ap := Tr Frobp we study

p 7−→ rkNS Xpal ∈ {2, 4, . . . , 22}
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K3 Surfaces

X/Q a K3 surface

p 7−→ rkNS Xpal ∈ {2, 4, . . . , 22}

This is analogous to studying:

p 7−→ rk End Epal ∈ {2, 4}

As we have

• rk End Epal = 4⇐⇒ ap = 0

• Prob(ap = 0) =


?∼ 1√p if E is non-CM (Lang–Trotter)

1/2 if E has CM by Q(
√
−d)

In the later case,

{p : ap = 0} = {p : p is ramified or inert in Q(
√
−d)}
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Néron–Severi group

• NS • = Néron–Severi group of • ≃ {curves on •}/ ∼
• ρ(•) = rkNS •
• Xp := X mod p

X //

��

NS Xal� _

��

// ρ(Xal)
OO

???

��

∈ {1, 2, . . . , 20}

Xp // NS Xpal // ρ(Xpal) ∈ {2, 4, . . . 22}

Theorem (Charles)
For infinitely many p we have ρ(Xpal) = minq ρ(Xqal).
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The Problem

X //

��

NS Xal� _

��

// ρ(Xal)
OO

???

��

∈ {1, 2, . . . , 20}

Xp // NS Xpal // ρ(Xpal) ∈ {2, 4, . . . 22}

Theorem (Charles)
For infinitely many p we have ρ(Xpal) = minq ρ(Xqal).

What can we say about the following:

• Πjump(X) :=
{
p : ρ(Xpal) > minq ρ(Xqal)

}

• γ(X,B) := # {p ≤ B : p ∈ Πjump(X)}
# {p ≤ B} as B→ ∞

Let’s do some numerical experiments!
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Two generic K3 surfaces, ρ(Xal) = 1

γ(X,B) ?∼ cX√
B
, B→ ∞

=⇒ Prob(p ∈ Πjump(X))
?∼ 1/

√
p

∼ 1 CPU year per example
github.com/edgarcosta/controlled-reduction/

github.com/edgarcosta/controlled-reduction/
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Three K3 surfaces with ρ(Xal) = 2

Do you see a trend?

Could it be related to some integer being a square modulo p?
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We can explain the 1/2

Theorem (C, C–Elsenhans–Jahnel)
If ρ(Xal) = minq ρ(Xpal), then there is a dX ∈ Z such that:{

p > 2 : p inert in Q(
√
dX)
}
⊂ Πjump(X).

In general, dX is not a square.

Corollary
If dX is not a square:

• lim infB→∞ γ(X,B) ≥ 1/2
• Xal has infinitely many rational curves.

d3 =− 1 · 5 · 151 · 22490817357414371041 · 387308497430149337233666358807996260780875056740850984213276970343278935342068889706146733313789
d4 =53 · 2624174618795407 · 512854561846964817139494202072778341 · 1215218370089028769076718102126921744353362873 · 6847124397158950456921300435158115445627072734996149041990563857503
d5 =− 1 · 47 · 3109 · 4969 · 14857095849982608071 · 445410277660928347762586764331874432202584688016149 · 658652708525052699993424198738842485998115218667979560362214198830101650254490711
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Experimental data for ρ(Xal) = 2 (again)

What if we ignore
{
p > 2 : p inert in Q(

√
dX)
}
⊂ Πjump(X)?
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Prob(p ∈ Πjump(X)) =

1 if dX is not a square modulo p
?∼ 1√p otherwise
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