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Randomness principle in number theory

Number theoretic dichotomy [Sarnak]
Given a problem, either

1. there is a rigid structure ~ rigid solution, or

2. the answer is difficult to determine ~~ random behaviour

- Understanding and/or proving the probability law
~ deep understanding of the phenomenon
- Real world applications
- pseudo random numbers

- cryptography
- quasi-Monte Carlo methods
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Counting roots of polynomials

f(x) € Z|x] a monic irreducible polynomial of degree d > 0

Question
How many roots does f have?

- Over C or Q2" we know that it has d roots.
- What about over R?

For quadratic polynomials, x> + ax + b, the answer just
depends on the sign of A := a® — 4b.
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Counting roots of polynomials over finite fields

f(x) € Z[x] a monic irreducible polynomial of degree d > 0

Question
How many roots does f have?

Ni(p) :==#{x€{0,...,p =1} : f(x) = 0 mod p}
=# {xe{0,....p =1} ¢ p[f0X)}
=#{xeF, : f(x) =0} €{0,1,...,d}

Question
How often does each value occur?
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Quadratic polynomials

f)=x>+ax+b, A:=a®>—4b
0 if Aisnotasquare modulop
Quadratic formula = Ngp) =1 ifA=0modp
2 if Aisasquare modulop

Half of the numbers modulo p are squares.
Hence, if A € Z isn't a square, then

Prob(A is a square modulo p) =1/2

— Prob(N(p) = 0) = Prob(N(p) = 2) = %

It is easy to describe for which primes A is a square modp.
For example, 5 is a square for p = 1,4 mod 5 and p = 2.



Cubic polynomials

f0 = =2 = (x= V2) (x = V26717 (x — /2e*711%)

13 ifk=0
Prob (Nf(p) = k) = 1/2 ifk="1
1/6 ifk=3.

gx)=x =2 —2x+1= (X — a1) (X — a2) (X — a3)

2/3 ifk=0

Prob (Ng(p) = k) = {1/3 e



Cubic polynomials

f)=xX-2= (x - Sﬁ) (x _ eﬁezmﬁ) (X _ g@eW)

1/3 ifk=0
Prob (Nf(p) =R) =41/2 ifk=1
1/6 ifk=3.

gx)=x3 - X2 =2+ 1= (x—a1) (X — @) (X — 3)

2/3 ifk=0

Prob (No(p) = k) = {1/3 ifh=3
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Cubic polynomials

f)=xX-2= (x - Sﬁ) (x _ eﬁezmﬁ) (X _ g@eW)

1/3 ifrR=0
Prob (NH(p) =R) =<91/2 ifk=1 = Gal(f) =S3
16 ifk=3.

gx)=x3 - X2 =2+ 1= (x—a1) (X — @) (X — 3)

if k=
Prob (Ng(p) = k) = {fg’ ;f . 2 — Gal(g) = Z/3Z

Theorem (Frobenius)

Prob(N¢(p) = i) = Prob(g € Gal(f) : g fixes i roots),
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Elliptic curves

An elliptic curve is a smooth curve defined by

y2=x>+ax+b

Over R it might look like O or

Over C this is a torus @

There is a natural group structure!
If P, Q, and R are colinear, then
P+Q+R=0 2

Applications: - cryptography
- integer factorization
- pseudorandom numbers, ...
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Elliptic curves

E:y’=x>+ax+b, abeZ
Write £y := E mod p

- What can we say about #E, for an arbitrary p?
- Given #E, for many p, what can we say about £?

~ studying the statistical properties #Ep.
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Theorem (Hasse, 1930s)

Ip+1—#Ep| <2Vp.

In other words,

_ p+1—#E
VP

What can we say about the error term, Ap, as p — oo?

Ap €[-2,2]



Two types of elliptic curves

_pH1—#E
VP

There are two limiting distributions for A,

Ap € [-2,2]
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Two types of elliptic curves

VP

There are two limiting distributions for A,

Ap €[-2,2]

ordinary special
EndE2' =7 EndEa' £7Z

Prob(Ap = 0) < 1//P Prob(\, = 0) = 1/2


http://math.mit.edu/~drew/g1_D1_a1f.gif
http://math.mit.edu/~drew/g1_D2_a1f.gif

Two types of elliptic curves

Over C an elliptic curve E is a torus

E(C’:(C//\, where A = Zwq + Zw, =
and we have End E2' = End A
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Two types of elliptic curves

Over C an elliptic curve E is a torus

~ C/N, where A =Zwi + Zw, =
and we have End E2' = End A

ordinary special
EndA=7Z Z C End(A) € Q(v/—d)
wy /wy € Q(v/—d) for some d > 0
non-Cm M

Y
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non-CM CM
Endg F2' = Q Endg F?' = Q(v/—d)

It is enough to count points!
p+1—#Ep =:ap #0 = Endg E* C Q(y/a} — 4p)

- If Eis non-CM, then Q(y/aj — 4p) % Q(4/ag — 4q) for

p # g with prob. 1.



How to distinguish between the two types?

non-CM M
Endg Fal = Endg Fal = Q(v—d)

Al

It is enough to count points!
p+1—#E, = ap # 0 = Endg F*' C Q(4/a3 — 4p)

- If Eis non-CM, then Q(y/aj — 4p) % Q(4/ag — 4q) for

p # g with prob. 1.

- If E has CM, then Q(v/—d) ~ Q(4/a2 — 4p).
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Group-theoretic interpretation

There is a simple group-theoretic descriptions for these
histograms!

- To E we associate a compact Lie group ST € SU(2)
- This group is know as the Sato-Tate group of E.
- You may think of it as the “Galois” group of E.

Then, the ap are distributed as the trace of a matrix chosen at
random from ST with respect to its Haar measure.

non-CM CM CM (with the §)
SU(2) u(1) Ngu(2)(U(1))
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Higher Genus curves

Let’s now consider curves with higher genus = #handles

g=4

S|

For example, an hyperelliptic curve:

C:y? = 42X 9T + -+ +ag

We may the Jacobian to obtain an object with a group structure

A := Jac(C) ~¢ CI/A

Question
Can we repeat the same experiment?

Now we will need to count solutions over Fpi fori=1,---,q.
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Question
Can we repeat the same experiment?

Zp(T) := exp <Z #C(Fpr)Tr/r> € Q(t)
r=1
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Zeta functions and Frobenius polynomials

Question
Can we repeat the same experiment?

(e N\ L
2,(7) = exp (Z #CE)T /f) = @=n0-pn

where deg Lp(T) = 2g and
Lp(T) = det(1 — t Froby [H'(C)) = det(1 — t Froby |H'(A))
cg=1~Lp(T)=1—apT +pT
"g=2~ LD(T) =1- Op,1T+ CI;),2T2 - Gp71/3T3 + DZT4

Sato-Tate conjecture
Lp(T/+/P) are equidistributed according to ST4 C USp(29g)
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- re\ Lp(T)
exp (Z #C(Fpr)T /r> = m

r=1

Sato-Tate conjecture
Lp(T/+/P) are equidistributed according to ST4 C USp(29g)

@f@%%

#{STs} 3 2 400 < 1000

Question
Given C can we compute ST, or End A2'?



Possible distributions out there
exp i#C(F T/r| = LM
2 (EDErD)

Sato-Tate conjecture
Lp(T/+/P) are equidistributed according to ST4 C USp(29g)

@f@%%

#{STs} 3 2 400 < 1000

Question
Given C can we compute ST, or End A2'?

Yes, we can compute End A2"l



Lower bounds for the endomorphism ring

- C be a nice curve over a number field

-+ A= Jac(C) ~¢c CI/A

+ End A% ~ End C9/A ~ End A
Theorem (C-Mascot-Sijsling-Voight)
There exists a deterministic algorithm that, given input
a € Mg(Q*), returns

true a € EndA? and « is nondegenerate’,

false o ¢ EndA? orais degenerate.

'i.e, not in the locus of indeterminancy of the Mumford map



Lower bounds for the endomorphism ring

- C be a nice curve over a number field

-+ A= Jac(C) ~¢c CI/A

+ End A% ~ End C9/A ~ End A
Theorem (C-Mascot-Sijsling-Voight)
There exists a deterministic algorithm that, given input
a € Mg(Q*), returns

true a € EndA? and « is nondegenerate’,

false o ¢ EndA? orais degenerate.

In practice, we first compute End CI9/A numerically.

'i.e, not in the locus of indeterminancy of the Mumford map
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Upper bounds for the endomorphism ring

We may factor End A uniquely as

t
End A% ~ [ [ My,(B)
i=1
where B; are division algebras with center L;.
Set e? :=dimy, B;, then

rk End(Ax) = Ze 2[L; - Q]

Theorem (C—Mascot—Sljsllng—V0|ght)
We can effectively compute

t, {einitizi &, and {Li}iz,..ts
If the Mumford-Tate conjecture holds for A.

This is done by just counting points.



We can efficiently compute End A?' as a Galois module.
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We can efficiently compute End A?' as a Galois module.
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For g < 3 this is sufficient to determine ST,.

g=1 g=2 g=3 g=¢4
?
#{STA} 3 52 £400 > 1000


github.com/edgarcosta/endomorphisms/
LMFDB.org

We can efficiently compute End A?' as a Galois module.

Remark
For g < 3 this is sufficient to determine ST,.

g=1 g=2 g=3 g=¢4
#{ST,} 3 52 2400 %1000
Publicly available for you to try out
github.com/edgarcosta/endomorphisms/
Already used on more than 250000 curves, coming soon to

LMFDB.org


github.com/edgarcosta/endomorphisms/
LMFDB.org
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- smooth quartic surfaces in P3
X:f(x,y,z,w) =0, degf=4
- double cover of P? branched over a sextic curve
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These provide another natural generalization of elliptic curves
They may arise in many ways:
- smooth quartic surfaces in P3
X:f(x,y,z,w) =0, degf=4
- double cover of P? branched over a sextic curve
X:w? =f(x,y,2), degf=6
Can we play similar game as before?
In this case, instead of studying #Xp or a, := Tr Frobp we study

p— rkNS X, € {2,4,...,22}
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K3 Surfaces

X/Q a K3 surface
p— rkNSXp? € {2,4,...,22}

This is analogous to studying:
p+— rkEnd £ € {2,4}
As we have
: rkEndEpal =t =@y =0
- Prob(ay — 0) = {l 7 ifE is non-CM (Lang-Trotter)
1/2  if E has CM by Q(v/—d)

In the later case,

{p:ap =0} ={p:pisramified orinertin Q(v/ —d)}
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Néron-Severi group

- NS e = Neron-Severi group of e ~ {curves on e}/ ~

- p(e) =rkNSe
* Xp :=Xmod p
X NS x?! p(X®)  €{1,2,...,20}

T

Xp ——=NSXp? ——p(X,?)  €{2,4,...22}

Theorem (Charles)
For infinitely many p we have p(X,®) = ming p(X4").
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A

T
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Theorem (Charles)
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A

T

Xp ——=NSXp? ——=p(Xp)  €{2,4,...22}

Theorem (Charles)
For infinitely many p we have p(X,®') = ming p(X4").

What can we say about the following:

= {p ; p(Xpal) > ming p(anl)}
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The Problem

X NS x3! o) €{1,2,...,20}
A

T

Xp ——=NSXp? ——=p(Xp)  €{2,4,...22}

Theorem (Charles)
For infinitely many p we have p(X,®') = ming p(X4").

What can we say about the following:

= {p ; p(Xpal) > ming p(anl)}
: _ #{p<B:p e Mump(X)}
v(X, B) := 20 <B P as B — oo

Let's do some numerical experiments!




Two generic K3 surfaces, p(X?) =1
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Two generic K3 surfaces, p(X?) =1

1007~ _ 1.00(~ _
N X, B N X, B
0.50F As_ B 0.50 s Y B
SN —--298p704%2 S 23457047
020} S 0.20 S
~ .
0.10} M 0.10} Ay
™, S

0.05} S 0.05} o
002} N 002} o

L L L L \' ] L L L L ™~ ]

10 100 1000 104 10° 10 100 1000 104 10°

7 Cx
v(X,B) ~ —=, B— 0

75

— Prob(p € Mjump(X)) L 1/v/p

~ 1 CPU year per example
github.com/edgarcosta/controlled-reduction/
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058 Example 4
0.56 —— Example 5
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Three K3 surfaces with p(X?') =2

0.62 Example 3

0.60

058 —— Example 4

0.56 —— Example 5

0.54

0.52 e,
0.50

0 10000 20000 30000 40000 50000 60000

Do you see a trend?

Could it be related to some integer being a square modulo p?



We can explain the 1/2
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In general, dx is not a square.
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We can explain the 1/2

Theorem (C, C-Elsenhans—Jahnel)
If p(X®') = ming p(X,"), then there is a dx € Z such that:

{p > 2:pinertin Q(\/CTX)} e
In general, dx is not a square.

Corollary
If dx is not a square:
- liminfg_ee (X, B) > 1/2

- X2 has infinitely many rational curves.

d3 =—1-5-151-22490817357414371041 - 3873084974301493372336663"
d, =53 - 2624174618795407 - 512854561846964817139494202072778341 -
ds =—1-47-3109 - 4969 - 14857095849982608071 - 4454102776609283



Experimental data for p(X*') = 2 (again)

What if we ignore {p > 2: p inertin Q(v/dx)} C Mjump(X)?
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1 If dy Is not a square modulo p

Prob(p € Mjump(X)) = 5 .
~ otherwise
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