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Motivation for a database and desired features

• Number theory has long been, in part, an experimental science.
• Data is often the source of conjectures that lead to theorems.
• Exhaustive enumeration allows one to prove theorems and exposes holes
(both in theory and in implementations) by finding all the special cases.

• The database should be easily accessible and comprehensible to as broad
an audience as possible, serving both novices and experts.

• All data should have a clear and citable provenance: how it was computed,
by whom, to what precision, and under what assumptions, if any.

• Search and aggregation tools are needed to maximize the utility of the data.
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Riemann zeta function: the prototypical L-function

ζ(s = x+ iy) = 1+ 1
2s +

1
3s +

1
4s +

1
5s + · · · =

+∞∑
n=1

1
ns

=

(
1− 1

2s

)−1(
1− 1

3s

)−1
· · · =

∏
p is prime

1
1− p−s

Originally introduced by Euler for s ∈ R
Used by Chebyshev to study distribution of primes.
Riemann was the first to consider it as a complex function.

The formula above work for x > 1, e.g., ζ(2) =
∑

n≥1
1
n2 = π2/6.

Riemann showed it has meromorphic continuation to C.
Furthermore, ζ(s) has only one simple pole at s = 1 with residue 1.

Riemann also shown the existence of a functional equation.
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Riemann zeta function

ζ(s = x+ iy) =
+∞∑
n=1

1
ns =

∏
p is prime

1
1− p−s , Re(s) > 1

Functional equation relates s↔ 1− s

ζ(s) = 2sπs−1 sin(πs/2)Γ(1− s)ζ(1− s)

Easy to compute ζ(s) for Re(s) < 0.

For example:
ζ(−n) = (−1)nBn+1/(n+ 1)

⇒

ζ(−1) = −1/12 = “1+ 2+ 3 · · · ”
ζ(−2n) = 0 know as the trivial zeros
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Zeros of the Riemann zeta function

ζ(s = x+ iy) =
+∞∑
n=1

1
ns =

∏
p is prime

1
1− p−s , Re(s) > 1

Riemann showed

ζ(s) = 0⇔

s = −2n n ∈ N

0 < Re(s) < 1

conjectured that all nontrivial zeros lie in
the critical line Re(s) = 1/2.
One of the Millennium Prize Problems.
https://www.lmfdb.org/zeros/zeta/

Riemann also gave a formula how the roots
ζ(s) describe the primes distribution.
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How primes are distributed

π(x) := #{p ≤ x : p is prime}

• Gauss (1791) conjectured π(x) ∼ x
log x x→ ∞

• Chebyshev (1848, 1850) ∃ A,B > 0 such that Ax
log(x) < π(x) < BX

log x for x ≥ 3.
Furthermore, if π(x) ∼ Cx

log x , then C = 1.
• Riemann (1859), using the zeros of ζ(s), sketched an explicit formula for a
normalized prime-counting function π0(x) = 1

2 limh→0 π(x+ h) + π(x− h).
• Hadamard and de la Vallée Poussin (1896) independently showed

π(x) ∼ x
log x x→ ∞



ζ(s) zeros and π(x)

Hadamard and de la Vallée Poussin (1896) actually established

π(x) = li(x) + O
(
xe−C

√
log x
)

where li(x) :=
∫ x
2

1
log t dt ∼

x
log x .

Riemann gives an explicit formula

R0(x) := 1+
∑
n≥1

1
nζ(1+ n)

log(x)n
n!

and describes the error term π(x)− R0(x) in terms of∑
ρ

li(xρ),

where one sums of the roots ρ in the critical strip. Thus it is not surprising that

Re(ρ) =
1
2 ⇔ π(x) = li(x) + O

(
x1/2+ϵ

)



Comparison by Zagier (1977)

x/(log x− 1.08366) vs li(x) vs R0(x)





















































Riemann zeta function is an arithmetic L-function

Arithmetic L-functions have certain properties

• Euler products L(s) =
∏
p Fp(p−s)−1 with Fp(t) ∈ 1+ tC[t] and deg Fp(t) ≤ d

⇒ L(s) =
∑

n≥1 ann−s, and anm = anam if gcd(n,m) = 1

• By adding some factors
• Ns/2 and
• ΓL(s) :=

∏
j ΓR(s+ µj)

∏
k ΓC(s+ νk),

where ΓR and ΓC are defined in terms of Γ-function.
we obtain Λ(s) := Ns/2ΓL(s) · L(s) = εΛ((1+ w)− s).
for some w ∈ N and ε ∈ C of norm one.

We say
• d is the degree of L(s)
• N is the conductor of L(s), and
• w is the (motivic) weight of L(s).
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What other L-functions are out there?

ζ(s) =
∏
p
(1− p−s)−1

What happens if we swap some signs? Not every combination works, but some do:

L
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If ζ(s) is associated with Q, then ζ(s)L
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Dedekind zeta function

For d ≡ 0, 1 mod 4, consider the zero dimensional variety

X : x2 − dx+ d(d− 1)/4

We have X(C) = X(Q(
√
d)) = {(1±

√
d)/2}. Modulo p we have

#X(Fp) =


2, d ∈ (F2p)× ⇔

(
d
p

)
= 1

0, d /∈ (F2p)× ⇔
(
d
p

)
= −1

1, d ≡ 0 mod p⇔
(
d
p

)
= 0

Lp(t) := exp

∑
n≥1

#X(Fpn)tn
n

 =


(1− t)−2, d ∈ (F2p)× ⇔

(
d
p

)
= 1;

(1− t2)−1, d /∈ (F2p)× ⇔
(
d
p

)
= −1;

(1− t)−1, d ≡ 0 mod p⇔
(
d
p

)
= 0.
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=: ζQ(

√
d)(s)

Analogously one can defined ζK for any number field K.
The residue of ζK(s) at s = 1 constains arithmetic information about K.
This is known as the class number formula.

https://www.lmfdb.org/NumberField/

https://beta.lmfdb.org/knowledge/show/nf.class_number_formula
https://www.lmfdb.org/NumberField/
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Dirichlet L-functions

Given a Dirichlet character χ : Z → C we can associate to it an L-function

L (s, χ) =
∏
p

(
1− χ(p)p−s

)−1
https://www.lmfdb.org/Character/Dirichlet/

L (s, χ) were introduced by Dirichlet (1837) to prove Dirichlet’s theorem

L (s, χ) also played a crucial role in the proof of Goldbach’s weak conjecture

Every odd integer (> 7) can be written as the sum of three odd primes.

Proved recently by Helfgott (2015) where he combined:

• Verification of the Riemann hypothesis L(s, χ) for a large range of χ (Platt)
• Verification of Goldbach’s weak conjecture up to 8.8 · 1030 (Helfgott-Platt)
• Advancements on understanding zero free regions on the critical strip
• Improvement of Hardy–Littlewood circle method.

https://www.lmfdb.org/Character/Dirichlet/
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Ramanujan τ function

Ramanujan in 1916 also introduced another look alike L-function∑
n≥1

τ(n)qn = q
∏
n≥1

(1− qn)24

He conjectured

1. τ(mn) = τ(m)τ(n), if gcd(m,n) = 1
2. τ(pn+1) = τ(p)τ(pn)− p11τ(pn−1) for p prime and n > 0

In other words, we have L(s) =
∑

n≥1 τ(n)n−s =
∏
p(1− τ(p)t+ p11t2)−1.

In the LMFDB this L-function is known by the label 2-1-1.1-c11-0-0.

https://beta.lmfdb.org/L/2-1-1.1-c11-0-0


Ramanujan τ function

Ramanujan τ function also defines a modular form

∆(z) :=
∑
n≥1

τ(n)qn = q
∏
n≥1

(1− qn)24, q = e2πiz

Then ∆ is a modular form of weight 12 on SL(2,Z).

A (classical) modular form f of weight k on Γ ⊂ SL(2,Z), is a holomorphic function
defined on the the upper half plane H := {z : Im(z) > 0} which satisfies the
transformation property

f(γz) := f
(
az+ b
cz+ d

)
= (cz+ d)kf(z)

for all z ∈ H and γ =

(
a b
c d

)
∈ Γ and at all the cusps of Γ (= points at infinity).

One can think of f(z)(dz)k as a differential form on the curve H/Γ.

https://www.lmfdb.org/knowledge/show/cmf


Modular forms

A (classical) modular form f of weight k on Γ ⊂ SL(2,Z), is a holomorphic function
defined on the the upper half plane H := {z : Im(z) > 0} which satisfies the
transformation property

f(γz) := f
(
az+ b
cz+ d

)
= (cz+ d)kf(z)

for all z ∈ H and γ =

(
a b
c d

)
∈ Γ and at all the cusps of Γ (= points at infinity).

If
(
1 1
0 1

)
∈ Γ, then f(z) = f(z+ 1) and f has a fourier expansion

f(z) =
∑
n≥0

anqn, q = e2πiz.

If a0 = 0 and a1 = 1 these are known as cusps forms.
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/

https://www.lmfdb.org/knowledge/show/cmf
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/


L-functions associated with modular forms

Let n be a positive integer, then Hecke defined a linear operator Tn acting on the
vector space of modular forms Mk(Γ ⊃ Γ(N) := {γ : γ ≡ id mod N})

T(n)

∑
m≥0

amqm
 :=

∑
m

 ∑
d|gcd(m,n)

dk−1amn/d2

qm gcd(n,N) = 1

and he showed that

1. T(mn) = T(m)T(n) if gcd(m,n) = 1
2. T(pn+1) = T(p)T(pn)− pk−1T(pn−1)χ(p) for p prime and n > 0
where χ(p) = 0 if p|N, and 1 otherwise.

Moreover, if f is an eigenform for all T(n), i.e., T(n) = λnf, then λn = a1an.
If one normalizes a1 = 1 an L-function can be constructed:

Lf(s) :=
∏
p

(
1− app−s + χ(p)pk−1p−2s

)−1



Elliptic curves

An elliptic curve E is a smooth curve defined by
E : y2 = x3 + ax+ b

Over R it might look like or

Over C is a torus ≃

There is a natural group structure!
If P, Q, and R are colinear, then

P+ Q+ R = 0
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Elliptic curves

For p such that 4a3 + 27b2 ̸= 0 mod p one might consider

exp

∑
n≥1

#E(Fpn)
tn
n

 =
1− apt+ pt2
(1− t)(1− pt) , tp := p+ 1−#E(Fp)

Thus if one considers LE(s) :=
∏
p LE,p(p−s)−1 where

LE,p(t) :=


1− apt+ pt2, good reduction,ap = p+ 1−#Ep(Fp);
1± t, non-split/split multiplicative reduction;
1 additive reduction.

we obtain another look alike L-function.



Modular forms and elliptic curves

Comparing the local factors

LE,p(t) :=


1− apt+ pt2, good reduction,ap = p+ 1−#Ep(Fp);
1± t, non-split/split multiplicative reduction;
1 additive reduction.

Lf,p(t) := 1− apt+ χ(p)pk−1t2

There is a striking similarity when k = 2.

Given a cusp eigenform f of weight 2 can one construct an elliptic curve E such
that

LE(s) = Lf(s)?

Yes! This is known as the Eichler–Shimura construction.

Elliptic curves arising this way are called modular.
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Modular elliptic curves

Given a cusp eigenform f of weight 2 can one construct an elliptic curve E such
that

LE(s) = Lf(s)?
Yes! This is known as the Eichler–Shimura construction.

Elliptic curves arising this way are called modular.
Modularity Theorem, formerly the Shimura–Taniyama–Weil conjecture (Wiles)
Every elliptic curve E over Q is modular.

Fermat’s last theorem (Wiles)
an + bn = cn has no solutins for a,b, c ∈ N and n > 2
If there was such a solution the elliptic curve

y2 = x(x− an)(x− bn)

known as Frey curve could not be modular.



Birch and Swinnerton-Dyer conjecture

Another Millennium Prize Problem listed by the Clay Mathematics Institute.

It shows us how can recover arithmetic information about E from LE(s).

Recall that E(Q) is an abelian group. In particular,

E(Q) = Zr ⊕ E(Q)torsion

BSD predicts that the order of vanishing of LE(s) at the central point s = 1 is r.

Furthermore,
1
r!L

(r)
E (1) =

Sha(E/Q) · ΩE · Reg(E/Q) ·
∏
p cp

#E(Q)2torsion
This formula also allows one to speed up the Eichler–Shimura construction.

BSD has generalized to other settings.
Bloch–Kato conjectures try to unify these generalizations.
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There is much more

https://www.lmfdb.org/ or https://beta.lmfdb.org/

https://www.lmfdb.org/universe
https://www.lmfdb.org/
https://beta.lmfdb.org/

