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Motivation for a database and desired features

« Number theory has long been, in part, an experimental science.
» Data is often the source of conjectures that lead to theorems.

« Exhaustive enumeration allows one to prove theorems and exposes holes
(both in theory and in implementations) by finding all the special cases.

« The database should be easily accessible and comprehensible to as broad
an audience as possible, serving both novices and experts.

« All data should have a clear and citable provenance: how it was computed,
by whom, to what precision, and under what assumptions, if any.

« Search and aggregation tools are needed to maximize the utility of the data.
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Riemann zeta function: the prototypical L-function
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Originally introduced by Euler fors € R

Used by Chebyshev to study distribution of primes.

Riemann was the first to consider it as a complex function.

The formula above work for x > 1, e.g, ((2) = >_ 5, % = m?/6.
Riemann showed it has meromorphic continuation to C.
Furthermore, ¢(s) has only one simple pole at s = 1 with residue 1.
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p is prime

Originally introduced by Euler fors € R
Used by Chebyshev to study distribution of primes.
Riemann was the first to consider it as a complex function.

The formula above work for x > 1, e.g, ((2) = >_ 5, % = m?/6.
Riemann showed it has meromorphic continuation to C.
Furthermore, ¢(s) has only one simple pole at s = 1 with residue 1.

Riemann also shown the existence of a functional equation.
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+o00 1

(s=x+1iy) = %: 11

n=1 p is prime

T’ Re(s) > 1

Functional equation relates s <+ 1—5s
¢(s) = 2°7° 'sin(ws /2)F (1 = $)¢(1 = )

Easy to compute ((s) for Re(s) < 0.
For example:

¢(=n)=(=1)"Bn1/(n+1)
((=N=-1/12 ="1+2+3..."
¢(=2n)=0 know as the trivial zeros




Zeros of the Riemann zeta function
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Riemann showed
s=-2nneN
((s)=0%
0 < Re(s) <1

conjectured that all nontrivial zeros lie in
the critical line Re(s) = 1/2.

One of the Millennium Prize Problems.
https://www.lmfdb.org/zeros/zeta/
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Zeros of the Riemann zeta function

o= 1
(s=x+in=> = Il 5=

n=1 p is prime

, Re(s) > 1

Riemann showed
s=-2nneN
((s)=0%
0 < Re(s) <1

conjectured that all nontrivial zeros lie in
the critical line Re(s) = 1/2.

One of the Millennium Prize Problems.
https://www.lmfdb.org/zeros/zeta/
Riemann also gave a formula how the roots
¢(s) describe the primes distribution.
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How primes are distributed

w(X) = #{p < x:pis prime}

« Gauss (1791) conjectured m(x) ~ osx X oo

« Chebyshev (1848, 1850) 3 A,B > 0 such that 2 < m(x) < oo for x > 3.
Furthermore, if m(x) ~ then C=1.

« Riemann (1859), using the zeros of ((s), sketched an explicit formula for a
normalized prime-counting function mo(x) = 5 limp_o 7(X + h) + 7(x — h).

« Hadamard and de la Vallée Poussin (1896) independently showed

IogX’

X
W(X)Nﬁ X — OO
og



¢(s) zeros and 7(x)

Hadamard and de la Vallée Poussin (1896) actually established
7(x) = li(x) + 0 (xe‘c*/"’gx)

where li(x f2 Iogtdt IogX

Riemann gives an explicit formula

T log(x)"
Ro(X) := 1+ 2 D Ogn(f)

and describes the error term m(x) — Ro(x) in terms of
> li(x?),
P
where one sums of the roots p in the critical strip. Thus it is not surprising that

Re(p) = % & 7(x) =li(x) + O <X1/2+e>
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Riemann zeta function is an arithmetic L-function

Arithmetic L-functions have certain properties

« Euler products L(s) =[], Fp(p=°)~" with Fp(t) € 1+ tC[t] and deg Fp(t) < d
= L(s) = Zn21 anpn—2,and apm = apan if gcd(n,m) =1



Riemann zeta function is an arithmetic L-function

Arithmetic L-functions have certain properties

« Euler products L(s) =[], Fp(p=°)~" with Fp(t) € 1+ tC[t] and deg Fp(t) < d
= L(S) =>_,>1ann~°,and apm = anam if gcd(n,m) =1
. By adding some factors
- N°/2 and

* Tu(s) =TI Tr(s + 1) ITe Tc(s + ve),
where I'g and ¢ are defined in terms of I'-function.

we obtain A(s) := N¥2T () - L(s) = eA((1 + w) — s).
forsome w € N and € € C of norm one.
We say

« d is the degree of L(s)
N is the conductor of L(s), and
« wis the (motivic) weight of L(s).



What other L-functions are out there?

¢s)y=TJ0-p)"

p
What happens if we swap some signs? Not every combination works, but some do:
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p=1mod 4 p=3 mod 4

5 1 1 5 !
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What other L-functions are out there?

¢s)y=TJ0-p)"

p
What happens if we swap some signs? Not every combination works, but some do:

(G () I e I T ()

p=1mod 4 p=3 mod 4

()= L, L e 0 ()

p mod 5€{2,3}

If {(s) Is associated with Q, then ¢(s)L (s, (d)> are associated with Q(v/d).



Dedekind zeta function

For d = 0,1 mod 4, consider the zero dimensional variety
X:x? —dx+d(d—1)/4
We have X(C) = X(Q(v/d)) = {(1+ v/d)/2}. Modulo p we have
2, de(F)* & (g) 1
#X(Fp) =0, d¢(F2)* & (g) = 1

(5)=0
(

1, d=0modp <

Tl

(1-1972 de ()< o (g):1
o0 = (T EEI) -, ae gy o (5) <~
= (-1, d=o0 odp@(%)zo



Dedekind zeta function

For d = 0,1 mod 4, consider the zero dimensional variety
X:x* —dx+d(d—1)/4
(1-1)2, de(@)* o (g)
) =30-2)7", d¢ ()< (2)
(1—t)", dEOmodp<:><

Lap(t) :=exp (Z #XEp )T —1;

n
n>1 d

N——

[Teosr™) = o)]] (- (5)7) = ((2)) = ewat®

p
Analogously one can defined (x for any number field K.

The residue of {k(s) at s = 1 constains arithmetic information about K.
This is known as the class number formula.
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Dirichlet L-functions

Given a Dirichlet character x : Z — C we can associate to it an L-function

L(s,x) =] (01— xtp)p=)~"

p

https://www.lmfdb.org/Character/Dirichlet/
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p
L (s, x) were introduced by Dirichlet (1837) to prove Dirichlet’s theorem

There are infinitely many primes of the shape a + kRd with gcd(a, d) = 1.
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Every odd integer (> 7) can be written as the sum of three odd primes.



Dirichlet L-functions

Given a Dirichlet character x : Z — C we can associate to it an L-function

L(s,x) =] (01— xtp)p=)~"

p
L (s, x) were introduced by Dirichlet (1837) to prove Dirichlet’s theorem

L (s, x) also played a crucial role in the proof of Goldbach’s weak conjecture
Every odd integer (> 7) can be written as the sum of three odd primes.

Proved recently by Helfgott (2015) where he combined:

« Verification of the Riemann hypothesis L(s, x) for a large range of x (Platt)
« Verification of Goldbach’s weak conjecture up to 8.8 - 103° (Helfgott-Platt)
« Advancements on understanding zero free regions on the critical strip

« Improvement of Hardy-Littlewood circle method.



Ramanujan 7 function

Ramanujan in 1916 also introduced another look alike L-function

Y rma"=q]J(1-q")*

n>1 n>1
He conjectured
T(mn) = 7(m)7(n), ifgcd(m n) =1
2. 7(p™") = 7(p)r(p") — p"r(p"") for p prime and n > 0

In other words, we have L(s) = 3,5, 7(n)n~° = [[,(1 — 7(p)t + p"'t?)~".
In the LMFDB this L-function is known by the label 2-1-11-c11-0-0.
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Ramanujan 7 function

Ramanujan 7 function also defines a modular form

A@2):=) m(mg"=q[J(1-q"*, q=e""

n>1 n>1
Then A is a modular form of weight 12 on SL(2, Z).

A (classical) modular form f of weight k on ' C SL(2,Z), is a holomorphic function
defined on the the upper half plane H := {z: Im(z) > 0} which satisfies the
transformation property

floz) = (S5 ) = (2 + 92

forallze H and v = (‘Z

Z) € I and at all the cusps of I (= points at infinity).

One can think of f(z)(dz) as a differential form on the curve H/T.
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Modular forms

A (classical) modular form f of weight k on I C SL(2,Z), is a holomorphic function
defined on the the upper half plane H := {z: Im(z) > 0} which satisfies the
transformation property
__faz+b
flod) = (St

) =@+ a2
forallze Hand vy = ((c] Z) € I and at all the cusps of I (= points at infinity).

If <; 1) €T, then f(z) = f(z+ 1) and f has a fourier expansion

f(Z) _ Zanqn’ q= eZ7r[Z.

n>0
If ag = 0 and a; = 1these are known as cusps forms.
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/
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L-functions associated with modular forms

Let n be a positive integer, then Hecke defined a linear operator T, acting on the
vector space of modular forms Mp(I' D I(N) := {vy : v = id mod N})

T(n) (Z amqm) =Y ( > dk1amn/dz> g™ ged(n,N) =1

m>0 m d|gcd(m,n)
and he showed that
1. T(mn) = T(m)T(n) if ged(m, n) =1
2. T(p"t") = T(p)T(p™) — p*~"T(p"~")x(p) for p prime and n > 0
where x(p) = 0 if p|N, and 1 otherwise.
Moreover, if fis an eigenform for all T(n), i.e., T(n) = Apf, then A\, = a1a,.
If one normalizes a; = 1 an L-function can be constructed:

(s) =T (1= ap™ + x(p)p"'p~%) B
P



Elliptic curves

An elliptic curve E is a smooth curve defined by
E:y’=x+ax+b

Over R it might look like Q or

Over C is a torus @ ~ -
0 wy f



Elliptic curves

An elliptic curve E is a smooth curve defined by
E:y’=x+ax+b

Over R it might look like Q or

OverCisatorus@: /
0 wy f R
There is a natural group structure! /\g/

If P, Q, and R are colinear, then

P+Q+R=0 /P<//\




Elliptic curves

For p such that 4a® + 27b? # 0 mod p one might consider

t" 1— apt + pt?
exp (Z #E(Fp”)n) = %7 tp == p+1—#E(Fp)
n>1

Thus if one considers Le(s) := [, Lep(p~°)~" where

1—apt+ pt?, good reduction,a, = p +1— #E,(Fp);
Lep(t) == 1+t non-split/split multiplicative reduction;

1 additive reduction.

we obtain another look alike L-function.



Modular forms and elliptic curves

Comparing the local factors
1—apt+ pt?, good reduction,ap, = p +1— #E,(Fp);
Lep(t) :== ¢ 1+t non-split/split multiplicative reduction;
1 additive reduction.
Lep(t) :=1— apt + x(p)p*~'t?
There is a striking similarity when k = 2.

Given a cusp eigenform f of weight 2 can one construct an elliptic curve E such
that

LE(S) = Lf(5)7



Modular forms and elliptic curves

Comparing the local factors
1—apt+ pt?, good reduction,ap, = p +1— #E,(Fp);
Lep(t) :== ¢ 1+t non-split/split multiplicative reduction;
1 additive reduction.
Lep(t) :=1— apt + x(p)p*~'t?
There is a striking similarity when k = 2.

Given a cusp eigenform f of weight 2 can one construct an elliptic curve E such
that

LE(S) = Lf(5)7
Yes! This is known as the Eichler-Shimura construction.

Elliptic curves arising this way are called modular.



Modular elliptic curves

Given a cusp eigenform f of weight 2 can one construct an elliptic curve E such
that

LE(S) = Lf(S)?
Yes! This is known as the Eichler-Shimura construction.
Elliptic curves arising this way are called modular.

Modularity Theorem, formerly the Shimura-Taniyama-Weil conjecture (Wiles)
Every elliptic curve E over Q is modular.

Fermat’s last theorem (Wiles)
a" + b" = c" has no solutins fora,b,ce Nand n > 2
If there was such a solution the elliptic curve

y2 =x(x —a")(x — b")

known as Frey curve could not be modular.



Birch and Swinnerton-Dyer conjecture

Another Millennium Prize Problem listed by the Clay Mathematics Institute.
It shows us how can recover arithmetic information about E from Lg(S).
Recall that E(Q) is an abelian group. In particular,

E(Q) =7 S E(Q)torsion

BSD predicts that the order of vanishing of Lg(s) at the central points=1isr.
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Birch and Swinnerton-Dyer conjecture

Another Millennium Prize Problem listed by the Clay Mathematics Institute.
It shows us how can recover arithmetic information about E from Lg(S).
Recall that E(Q) is an abelian group. In particular,

E(Q) =7 S E(Q)torsion

BSD predicts that the order of vanishing of Lg(s) at the central points=1isr.

Furthermore,
1 L(r)(T) = Sha(E/Q) - Q& - Reg(E/Q) - I, cp

ﬁ g #E(Q)izgorsion

This formula also allows one to speed up the Eichler-Shimura construction.

BSD has generalized to other settings.
Bloch-Kato conjectures try to unify these generalizations.
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