
Universal Differential Equations for Scientific

Machine Learning

Christopher Rackauckasa,b, Yingbo Mac, Julius Martensend, Collin
Warnera, Kirill Zubove, Rohit Supekara, Dominic Skinnera, Ali

Ramadhana, and Alan Edelmana

aMassachusetts Institute of Technology
bUniversity of Maryland, Baltimore

cJulia Computing
dUniversity of Bremen

eSaint Petersburg State University

August 10, 2020

Abstract

In the context of science, the well-known adage “a picture is worth a
thousand words” might well be “a model is worth a thousand datasets.”
Scientific models, such as Newtonian physics or biological gene regula-
tory networks, are human-driven simplifications of complex phenomena
that serve as surrogates for the countless experiments that validated the
models. Recently, machine learning has been able to overcome the in-
accuracies of approximate modeling by directly learning the entire set of
nonlinear interactions from data. However, without any predetermined
structure from the scientific basis behind the problem, machine learning
approaches are flexible but data-expensive, requiring large databases of
homogeneous labeled training data. A central challenge is reconciling data
that is at odds with simplified models without requiring “big data”.

In this work we develop a new methodology, universal differential equa-
tions (UDEs), which augments scientific models with machine-learnable
structures for scientifically-based learning. We show how UDEs can be
utilized to discover previously unknown governing equations, accurately
extrapolate beyond the original data, and accelerate model simulation,
all in a time and data-efficient manner. This advance is coupled with
open-source software that allows for training UDEs which incorporate
physical constraints, delayed interactions, implicitly-defined events, and
intrinsic stochasticity in the model. Our examples show how a diverse set
of computationally-difficult modeling issues across scientific disciplines,
from automatically discovering biological mechanisms to accelerating the
training of physics-informed neural networks and large-eddy simulations,

1

ar
X

iv
:2

00
1.

04
38

5v
3

 [
cs

.L
G

]
 7

 A
ug

 2
02

0

can all be transformed into UDE training problems that are efficiently
solved by a single software methodology.

Recent advances in machine learning have been dominated by deep learning
which utilizes readily available “big data” to solve previously difficult problems
such as image recognition [1, 2, 3] and natural language processing [4, 5, 6].
While some areas of science have begun to generate the large amounts of data
required to train deep learning models, notably bioinformatics [7, 8, 9, 10, 11],
in many areas the expense of scientific experiments has prohibited the effective-
ness of these ground breaking techniques. In these domains, such as aerospace
engineering, quantitative systems pharmacology, and macroeconomics, mecha-
nistic models which synthesize the knowledge of the scientific literature are still
predominantly deployed due to the inaccuracy of deep learning techniques with
small training datasets. While these mechanistic models are constrained to be
predictive by utilizing prior structural knowledge conglomerated throughout the
scientific literature, the data-driven approach of machine learning can be more
flexible and allows one to drop the simplifying assumptions required to derive
theoretical models. The purpose of this work is to bridge the gap by merging
the best of both methodologies while mitigating the deficiencies.

It has recently been shown to be advantageous to merge differential equa-
tions with machine learning. Physics-Informed Neural Networks (PINNs) utilize
partial differential equations in the cost functions of neural networks to incor-
porate prior scientific knowledge [12]. While this has been shown to be a form
of data-efficient machine learning for some scientific applications, the resulting
model does not have the interpretability of mechanistic models. On the other
end of the spectrum, machine learning practitioners have begun to make use
of scientific structures as a modeling basis for machine learning. For exam-
ple, neural ordinary differential equations are initial value problems of the form
[13, 14, 15, 16]:

u′ = NNθ(u, t), (1)

defined by a neural network NNθ where θ are the weights. As an example, a
neural network with two hidden layers can be written as

NNθ(u, t) = W3σ2(W2σ1(W1[u; t] + b1) + b2) + b3, (2)

where θ = (W1,W2,W3, b1, b2, b3) where Wi are matrices and bi are vectors of
weights, and (σ1, σ2) are the choices of activation functions. Because the embed-
ded function is a universal approximator (UA), it follows that NNθ can learn to
approximate any sufficiently regular differential equation. However, the result-
ing model is defined without direct incorporation of known mechanisms. The
Universal Approximation Theorem (UAT) demonstrates that sufficiently large
neural networks can approximate any nonlinear function with a finite set of
parameters [17, 18, 19]. Our approach extends the previous data-driven neural
ODE approaches to directly utilize mechanistic modeling simultaneously with
UAs in order to allow for arbitrary data-driven model extensions. The objects
of this semi-mechanistic approach, which we denote as Universal Differential

2

Equations (UDEs) for universal approximators in differential equations, are dif-
ferential equation models where part of the differential equation contains an
embedded UA, such as a neural network, Chebyshev expansion, or a random
forest.

As a motivating example, the universal ordinary differential equation (UODE):

u′ = f(u, t, Uθ(u, t)), (3)

denotes a known mechanistic model form f with missing terms defined by some
UA Uθ. Similar generalizations to incorporate process noise, delayed interac-
tions, and physics-based constraints are given by embedding UAs into stochastic,
delay, and differential-algebraic equations respectively. In Section 1 we describe
our methodology and software implementation for efficiently training UDEs of
any of these forms in a way that covers stiffness, nonlinear algebraic constraints,
stochasticity, delays, parallelism, and more. We then demonstrate that the fol-
lowing abilities within the UDE framework:

• In Section 2.1 we recover governing equations from much lesser data than
prior methods and demonstrate the ability to accurately extrapolate from
a short time series.

• In Section 2.2 we demonstrate the ability to utilize arbitrary conservation
laws as prior knowledge in the discovery of dynamical systems.

• In Section 2.3 we discover the differential operator and nonlinear reaction
term of a biological partial differential equation (PDE) from spatiotempo-
ral data, demonstrating the interpretability of trained UDEs.

• In Section 3 We derive an adaptive method for automated solving of a 100-
dimensional nonlinear Hamilton-Jacobi-Bellman PDE, the first adaptive
method for this class of problems that the authors are aware of.

• In Section 4.1 we automate the discovery of fast, accurate, and physically-
consistent surrogates to accelerate a large-eddy simulation commonly used
in the voxels of a climate simulation.

• In Section 4.2 we approximate closure relations in viscoelastic fluids to
accelerate the simulation of a system of 6 differential-algebraic equations
by 2x, showing that this methodology is also applicable to small-scale
problems.

• In Section 4.3 we demonstrate that discrete physics-informed neural net-
works fall into a subclass of universal ODEs and extend previous methods
directly through this formalism.

3

1 Efficient Training of Universal Differential Equa-
tions via Differentiable Programming

Training a UDE amounts to minimizing a cost function C(θ) defined on the
current solution uθ(t), the current solution to the differential equation with
respect to the choice of parameters θ. One choice is the Euclidean distance
C(θ) =

∑
i ‖uθ(ti)− di‖ at discrete data points (ti, di). When optimized with

local derivative-based methods, such as stochastic gradient decent, ADAM [20],
or L-BFGS [21], this requires the calculation of dC

dθ which by the chain rule

amounts to calculating du
dθ . Thus the problem of efficiently training a UDE

reduces to calculating gradients of the differential equation solution with respect
to parameters.

In certain special cases there exist efficient methods for calculating these
gradients called adjoints [22, 23, 24, 25, 26]. The asymptotic computational
cost of these methods does not grow multiplicatively with the number of state
variables and parameters like numerical or forward sensitivity approaches, and
thus it has been shown empirically that adjoint methods are more efficient on
large parameter models [27, 28]. However, given the number of different families
of UDE models we wish to train, we generalize to a differentiable programming
framework with reverse-mode accumulation in order to allow for deriving on-
the-fly approximations for the wide range of possible differential equation types.

Given a function f(x) = y, the pullback at x is the function:

Bxf (y) = yT f ′(x), (4)

where f ′(x) is the Jacobian J . We note that Bxf (1) = (∇f)
T

for a function f
producing a scalar output, meaning the pullback of a cost function computes
the gradient. A general computer program can be written as the composition
of discrete steps:

f = fL ◦ fL−1 ◦ . . . ◦ f1, (5)

and thus the vector-Jacobian product can be decomposed:

vTJ = (. . . ((vTJL)JL−1) . . .)J1, (6)

which allows for recursively decomposing a the pullback to a primitively known
set of Bxfi :

Bxf (A) = Bxf1

(
. . .
(
BxL−2

fL−1

(
BxL−1

fL (A)
))

. . .
)
, (7)

where xi =
(
f i ◦ f i−1 ◦ . . . ◦ f1

)
(x). Implementations of code generation for the

backwards pass of an arbitrary program in a dynamic programming language can
vary. For example, building a list of function compositions (a tape) is provided
by libraries such as Tracker.jl [29] and PyTorch [30], while other libraries perform
direct generation of backward pass source code such as Zygote.jl [31], TAF [32],
and Tapenade [33].

4

The open-source differential equation solvers of DifferentialEquations.jl [34]
were developed in a manner such that all steps of the programs have a well-
defined pullback when using a Julia-based backwards pass generation system.
Our software allows for automatic differentiation to be utilized over differen-
tial equation solves without any modification to the user code. This enables
the simulation software already written with DifferentialEquations.jl, including
large software infrastructures such as the MIT-CalTech CLiMA climate mod-
eling system [35] and the QuantumOptics.jl simulation framework [36], to be
compatible with all of the techniques mentioned in the rest of the paper. Thus
while we detail our results in isolation from these larger simulation frameworks,
the UDE methodology can be readily used in full-scale simulation packages
which are already built on top of the Julia SciML ecosystem.

The full set of adjoint options, which includes continuous adjoint methods
and pure reverse-mode AD approaches, is described in Supplement S??. Meth-
ods via solving ODEs in reverse [16] are the common adjoint utilized in neural
ODE software such as torchdiffeq and are O(1) in memory, but are known to
be unstable under certain conditions such as on stiff equations [37]. Check-
pointed interpolation adjoints [25] and continuous quadrature approaches are
available which do not require stable reversibility of the ODEs while retain-
ing a relatively low-memory implementation via checkpointing (in particular
Section 2.2 and 4.1 are noted as a cases which are not stable under the re-
versed adjoint but stable under the checkpointing adjoint approach). These
adjoint methods fall under the continuous optimize-then-discretize approach.
Through the differentiable programming integration, discrete adjoint sensitivity
analysis [38, 39] is implemented through both tape-based reverse-mode [40] and
source-to-source translation [31], with computational trade-offs between the two
approaches. The former can be faster on scalarized heterogeneous differential
equations while the latter is more optimized for homogeneous vectorized func-
tions calls like are demonstrated in neural networks and discretizations of partial
differential equations. Full discretize-then-optimize is implemented using this
package by utilizing the step-wise integrator interface in conjunction with these
discrete adjoints of the steps. Continuous and discrete forward mode sensitivity
analysis approaches are also provided and optimized for equations with smaller
numbers of parameters.

Previous research has shown that the discrete adjoint approach is more stable
than continuous adjoints in some cases [41, 37, 42, 43, 44, 45] while continuous
adjoints have been demonstrated to be more stable in others [46, 43] and can
reduce spurious oscillations [47, 48, 49]. This trade-off between discrete and
continuous adjoint approaches has been demonstrated on some equations as a
trade-off between stability and computational efficiency [50, 51, 52, 53, 54, 55,
56, 57, 58]. Care has to be taken as the stability of an adjoint approach can
be dependent on the chosen discretization method [59, 60, 61, 62, 63], and our
software contribution helps researchers switch between all of these optimization
approaches in combination with hundreds of differential equation solver methods
with a single line of code change.

As described in Supplement S??, these adjoints utilize reverse-mode auto-

5

matic differentiation for vector transposed Jacobian products within the adjoint
definitions to reduce the computational complexity while supporting advanced
features like constraint and conservation equations. In addition, the module
DiffEqFlux.jl handles compatibility with the Flux.jl neural network library so
that these vector Jacobian products are automatically replaced with efficient
pullback implementations for embedded deep neural networks (also known as
backpropogation) wherever neural networks are encountered in the right hand
side of any differential equation definitions. This allows for common deep archi-
tectures, such as convolutional neural networks and recurrent neural networks,
to be efficiently used as the basis for a UDE without any Jacobians being cal-
culated in the full adjoint and without requiring any intervention from users.

Using this approach, the solvers are capable of building efficient gradient
calculations for training ML-embedded UDEs of the classes:

• Universal Ordinary Differential Equations (UODEs)

• Universal Stochastic Differential Equations (USDEs), or universal differ-
ential equations with continuous process noise

• Universal Delay Differential Equations (UDDEs), or universal differential
equations with delayed interactions

• Universal Differential-Algebraic Equations (UDAEs), or universal differ-
ential equations with constraint equations and conservation laws

• Universal Boundary Value Problems (UBVPs), or universal differential
equations with final time point constraints

• Universal Partial Differential Equations (UPDEs)

• Universal Hybrid (Event-Driven) Differential Equations

as well as the combinations, such as stochastic delay differential equations, jump
diffusions, and stochastic partial differential equations. A combination of over
300 solver methods cover the efficient training of stiff and non-stiff versions
of each of these equations, with support for adaptivity, high-order, automatic
stiffness detection, sparse differentiation with automatic sparsity detection and
coloring [64], Newton-Krylov implicit handling, GPU compatibility, and multi-
node parallelism via MPI compatibility. Thus together, semi-mechanistic UDEs
of any form can embed machine learning models and be trained using this open-
source library with the most effective differential equation solvers for that class
of equations.

1.1 Features and Performance

We assessed the viability of alternative differential equation libraries for univer-
sal differential equation workflows by comparing the features and performance
of the given libraries. Table 1 demonstrates that the Julia SciML ecosystem is

6

Feature Stiff DAEs SDEs DDEs Stabilized DtO GPU Dist MT Sparse

SciML X X X X X X X X X X
torchdiffeq 0 0 0 0 0 X X 0 0 0

torchsde 0 0 X 0 0 0 X 0 0 0

tfdiffeq 0 0 0 0 0 0 X 0 0 0

Table 1: Feature comparison of ML-augmented differential equation libraries.
First first column corresponds to support for stiff ODEs, then DAEs, SDEs,
DDEs, stabilized non-reversing adjoints, discretize-then-optimize methods, dis-
tributed computing, and multithreading. Sparse refers to automated sparsity
handling in Jacobian calculations of implicit methods.

the only differential equation solver library with deep learning integration that
supports stiff ODEs, DAEs, DDEs, stabilized adjoints, distributed and multi-
threaded computation. We note the importance of the stabilized adjoints in
Section 4.1 as many PDE discretizations with upwinding exhibit unconditional
instability when reversed, and thus this is a crucial feature when training em-
bedded neural networks in many PDE applications. Table 2 demonstrates that
the SciML ecosystem exhibits more than an order of magnitude performance
when solving ODEs against torchdiffeq of up to systems of 1 million equations.
Because the adjoint calculation itself is a differential equation, this also corre-
sponds to increased training times on scientific models. To reinforce this result,
Supplement S?? demonstrates a 100x performance difference over torchdiffeq
when training the spiral neural ODE from [16, 41]. We note that the author
of the tfdiffeq library has previous concluded “speed is almost the same as the
PyTorch (torchdiffeq) codebase (±2%)”. Additionally, Supplement S?? demon-
strates a 1,600x performance advantage for the SciML ecosystem over torchsde
using the geometric Brownian motion example from the torchsde documentation
[65]. Given the computational burden, the mix of stiffness, and non-reversibility
of the examples which follow in this paper, these results demonstrate that the
SciML ecosystem is the first deep learning integrated differential equation soft-
ware ecosystem that can train all of the equations necessary for the results of
this paper. Note that this does not infer that our solvers will demonstrate
more than an order of magnitude performance difference on all equations, for
example very non-stiff ODEs dominated by large dense matrix multiplications
like in image classification neural ODEs, but it does demonstrate that on the
equations generally derived from scientific models (ODEs derived from PDE dis-
cretizations, heterogeneous differential equation systems, and neural networks
in sufficiently small systems) that an order of magnitude or more performance
difference can exist.

7

of ODEs 3 28 768 3,072 12,288 49,152 196,608 786,432

SciML 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x

SciML DP5 1.0x 1.9x 2.9x 2.9x 2.9x 2.9x 3.4x 2.6x

torchdiffeq dopri5 5,850x 1700x 420x 280x 120x 31x 41x 38x

torchdiffeq adams 7,600x 1100x 710x 490x 170x 44x 47x 43x

Table 2: Relative time to solve for ML-augmented differential equation libraries
(smaller is better). Standard non-stiff solver benchmarks from representative
scientific systems were taken from [66] as described in Supplement S??. SciML
stands for the optimal method choice out of the 300+ from the SciML, which
for the first is DP5, for the second is VCABM, and for the rest is ROCK4.

2 Knowledge-Enhanced Model Reconstruction
of Biological Models

Automatic reconstruction of models from observable data has been extensively
studied. Many methods produce non-symbolic representations by learning func-
tional representations [67, 68] or through dynamic mode decomposition (DMD,
eDMD) [69, 70, 71, 72]. Symbolic reconstruction of equations has utilized sym-
bolic regressions which require a prechosen basis [73, 74], or evolutionary meth-
ods to grow a basis [75, 76]. However, a common thread throughout much of
the literature is that added domain knowledge constrains the problem to allow
for more data-efficient reconstruction [77, 78]. Here we detail how a UA embed-
ded workflow can augment existing symbolic regression frameworks to allow for
reconstruction from partially known models in a more data-efficient manner.

2.1 Automated Identification of Nonlinear Interactions with
Universal Ordinary Differential Equations

The SInDy algorithm [79, 80, 81] finds a sparse basis Ξ over a given candidate

library Θ minimizing the objective function
∥∥∥Ẋ−ΘΞ

∥∥∥
2
+λ ‖Ξ‖1 using data for

Ẋ generated by interpolating the trajectory data X. Here we describe a UDE
approach to extend SInDy in a way that embeds prior structural knowledge.

As a motivating example, take the Lotka-Volterra system:

ẋ = αx− βxy,
ẏ = γxy − δy. (8)

Assume that a scientist has a short time series from this system but knows the
birth rate of the prey x and the death rate of the predator y. With only this
information, a scientist can propose the knowledge-based UODE as:

ẋ = αx+ U1(x, y),

ẏ = −δy + U2(x, y),
(9)

8

0.5 1.0 1.5 2.0 2.5 3.0
10- 3.5

10- 3.0

10- 2.5

10- 2.0

Timeseries of UODE Error

t

x(t)
y(t)

0.3 0.6 0.9 1.2 1.5 0 1 2 3 4
0.3
0.6
0.9
1.2
1.5

Neural Network Fit of U2(t)

x y

0 5 10 15 20
0

2

4

6

8

Extrapolated Fit From Short Training Data

t

x data
y data
True x(t)
True y(t)
Estimated x(t)
Estimated y(t)

Training
Data

Neural Network
True Missing Term

A B

C

Figure 1: Automated Lotka-Volterra equation discovery with UODE-enhanced
SInDy. (A) The error in the trained UODE against x(t) and y(t) in green
and yellow respectively. (B) The measured values of the missing term U2(x, y)
throughout the time series, with the neural network approximate in green and
the true value γxy in yellow. (C) The extrapolation of the knowledge-enhanced
SInDy fit series. The green and yellow dots show the data that was used to fit
the UODE, and the dots show the true solution of the Lotka-Volterra Equations
8 beyond the training data. The blue and purple lines show the extrapolated
solution how the UODE-enhanced SInDy recovered equations.

which is a system of ordinary differential equations that incorporates the known
structure but leaves room for learning unknown interactions between the the
predator and prey populations. Learning the unknown interactions corresponds
training the UA U : R2 → R2 in this UODE.

While the SInDy method normally approximates derivatives using a spline
over the data points or similar numerical techniques, here we have Uθ(x, y) as an
estimator of the derivative for only the missing terms of the model and we can
perform a sparse regression on samples from the trained Uθ(x, y) to reconstruct
only the unknown interaction equations. As described in Supplement S??, we
trained Uθ(x, y) as a neural network against the simulated data for t ∈ [0, 3] and
utilized a sparse regression techniques [79, 82, 83] on the neural network out-
puts to reconstruct the missing dynamical equations. Using a 10-dimensional
polynomial basis extended with trigonometric functions, the sparse regression
yields 0 for all terms except for the missing quadratic terms, directly learning
the original equations in an interpretable form. Even though the original data

9

did not contain a full period of the cyclic solution, the resulting fit is then able
to accurately extrapolate from the short time series data as shown in Figure 1.
Supplement S?? further demonstrates the robustness of the discovery approach
to noise in the data. Likewise, when attempting to learn full ODE with the
original SInDy approach on the same trained data with the analytical deriva-
tive values, we were unable to recover the exact original equations from the
sparse regression, indicating that the knowledge-enhanced approach increases
the robustness equation discovery.

We note that collaborators using the preprint of this manuscript have suc-
cessfully demonstrated the ability to construct UODE models which improve
the prediction of Li-ion battery performance [84] and for automated discovery
of droplet physics directly from imaging data, effectively replicating the theo-
retical results of a one and a half year study with a UODE discovery process
which trains in less than an hour [85].

2.2 Incorporating Prior Knowledge of Conservation Equa-
tions

The extra features of the SciML ecosystem can be utilized to encode more infor-
mation into the model. For example, when attempting to discover a biological
chemical reaction network or a chemical combustion network, one may only have
prior knowledge of the conservation laws between the constituent substrates. As
a demonstration, in the Robertson equation

dy1
dt

= −0.04y1 + 104y2y3 (10)

dy2
dt

= 0.04y1 − 104y2y3 − 3 ∗ 107y22 (11)

1 = y1 + y2 + y3 (12)

one might only have prior knowledge of the conservation equation 1 = y1 +y2 +
y3. In this case, a universal DAE of the form:

d[y1, y2]

dt
= Uθ(y1, y2, y3) (13)

1 = y1 + y2 + y3 (14)

can be utilized to encode this prior knowledge. This can then be trained by
utilizing a singular mass matrix in the form Mu′ = f(u, p, t). Supplement
S??’s derivation of the adjoint method describes a new initialization scheme for
index-1 DAEs in mass matrix form which directly solves a linear system for new
consistent algebraic variables in the adjoint pass without requiring the approx-
imate nonlinear iterations of [86], thus further demonstrating the efficiency and
accuracy of the SciML software’s methods for UDE workflows. Supplement S??
demonstrates the ability to learn this system utilizing the SciML tools through
this universal DAE approach.

10

2.3 Reconstruction of Spatial Dynamics with Universal
Partial Differential Equations

To demonstrate discovery of spatiotemporal equations directly from data, we
consider data generated from the one-dimensional Fisher-KPP
(Kolmogorov–Petrovsky–Piskunov) PDE [87]:

∂ρ

∂t
= rρ(1− ρ) +D

∂2ρ

∂x2
, (15)

with x ∈ [0, 1], t ∈ [0, T], and periodic boundary condition ρ(0, t) = ρ(1, t). Here
ρ represents population density of a species, r is the local growth rate and D
is the diffusion coefficient. Such reaction-diffusion equations appear in diverse
physical, chemical and biological problems [88]. To learn the generated data,
we define the UPDE:

ρt = NNθ(ρ) + D̂CNN(ρ), (16)

where NNθ is a neural network representing the local growth term. The deriva-
tive operator is approximated as a convolutional neural network CNN, a learn-
able arbitrary representation of a stencil while treating the coefficient D̂ as an
unknown. We encode in the loss function extra constraints to ensure the learned
equation is physically realizable, i.e. the derivative stencil must be conserva-
tive (the coefficients sum to zero), as described in Supplement S??. Figure 2
shows the result of training the UPDE against the simulated data, which re-
covers the canonical [1,−2, 1] stencil of the one-dimensional Laplacian and the
diffusion constant while simultaneously finding a neural representation of the
unknown quadratic growth term. We note that the differentiable programming
integration in conjunction with the Flux.jl deep learning framework allows for
the adjoints to automatically utilize efficient backpropogation of the embed-
ded convolutional neural networks and automatically utilizes the fast kernels
provided by cudnn when trained using GPUs.

3 Computationally-Efficient Solving of
High-Dimensional Partial Differential
Equations

It is impractical to solve high dimensional PDEs with mesh-based techniques
since the number of mesh points scales exponentially with the number of dimen-
sions. Given this difficulty, mesh-free methods based on universal approximators
such as neural networks have been constructed to allow for direct solving of high
dimensional PDEs [89, 90]. Recently, methods based on transforming partial
differential equations into alternative forms, such as backwards stochastic differ-
ential equations (BSDEs), which are then approximated by neural networks have
been shown to be highly efficient on important equations such as the nonlinear
Black-Scholes and Hamilton-Jacobi-Bellman (HJB) equations [91, 92, 93, 94].

11

0.0 0.5 1.0
x

0

1

2

3

4

5

t

Data

0.0 0.5 1.0
x

0

1

2

3

4

5

t

Prediction

0

1
ρ

0 1500 3000
Epochs

− 0.4
− 0.3
− 0.2
− 0.1

0.0
0.1

CNN Weights

0.0 0.5 1.0
ρ

0.0

0.1

0.2

0.3
Growth Term

(w1 / w3) - 1
w1+ w2 + w3

NNθ(ρ)
rρ(1-ρ)

A B

C D

Figure 2: Recovery of the UPDE for the Fisher-KPP equation. (A) Training
data and (B) prediction of the UPDE for ρ(x, t). (C) Curves for the weights
of the CNN filter [w1, w2, w3] indicate the recovery of the [1,−2, 1] stencil for
the 1-dimensional Laplacian. (D) Comparison of the learned (blue) and the
true growth term (orange) showcases the learned parabolic form of the missing
nonlinear equation.

12

Here we will showcase how one of these methods, a deep BSDE method for semi-
linear parabolic equations [92], can be reinterpreted as a universal stochastic dif-
ferential equation (USDE) to generalize the method and allow for enhancements
like adaptivity, higher order integration for increased efficiency, and handling of
stiff driving equations through the SciML software.

Consider the class of semilinear parabolic PDEs with a finite time span
t ∈ [0, T] and d-dimensional space x ∈ Rd that have the form:

∂u

∂t
(t, x) +

1

2
Tr
(
σσT (t, x) (Hessx u) (t, x)

)

+∇u(t, x) · µ(t, x)

+ f
(
t, x, u(t, x), σT (t, x)∇u(t, x)

)
= 0,

(17)

with a terminal condition u(T, x) = g(x). Supplement S?? describes how this
PDE can be solved by approximating by approximating the FBSDE:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt,

dUt = f(t,Xt, Ut, U
1
θ1(t,Xt))dt+

[
U1
θ1(t,Xt)

]T
dWt,

(18)

where U1
θ1

and U2
θ2

are UAs and the loss function is given by the requiring that
the terminating condition g(XT) = u(XT ,WT) is satisfied.

3.1 Adaptive Solution of High-Dimensional Hamilton-Jacobi-
Bellman Equations

A fixed time step Euler-Maryumana discretization of this USDE gives rise to
the deep BSDE method [92]. However, this form as a USDE generalizes the
approach in a way that makes all of the methodologies of our USDE training
library readily available, such as higher order methods, adaptivity, and implicit
methods for stiff SDEs. As a motivating example, consider the classical linear-
quadratic Gaussian (LQG) control problem in 100 dimensions:

dXt = 2
√
λctdt+

√
2dWt, (19)

with t ∈ [0, T], X0 = x, and with a cost function C(ct) = E
[∫ T

0
‖ct‖2dt+ g(Xt)

]

where Xt is the state we wish to control, λ is the strength of the control, and
ct is the control process. Minimizing the control corresponds to solving the
100-dimensional HJB equation:

∂u

∂t
+∇2u− λ‖∇u‖2 = 0 (20)

We solve the PDE by training the USDE using an adaptive Euler-Maruyama
method [95] as described in Supplement S??. Supplementary Figure ?? show-
cases that this methodology accurately solves the equations, effectively extend-
ing recent algorithmic advancements to adaptive forms simply be reinterpreting

13

the equation as a USDE. While classical methods would require an amount of
memory that is exponential in the number of dimensions making classical adap-
tively approaches infeasible, this approach is the first the authors are aware
of to generalize the high order, adaptive, highly stable software tooling to the
high-dimensional PDE setting.

4 Accelerated Scientific Simulation with Auto-
matically Constructed Closure Relations

4.1 Automated Discovery of Large-Eddy Model Parame-
terizations

As an example of directly accelerating existing scientific workflows, we focus
on the Boussinesq equations [96]. The Boussinesq equations are a system of
3+1-dimensional partial differential equations acquired through simplifying as-
sumptions on the incompressible Navier-Stokes equations, represented by the
system:

∇ · u = 0,

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u + bẑ,

∂T

∂t
+ u · ∇T = κ∇2T,

(21)

where u = (u, v, w) is the fluid velocity, p is the kinematic pressure, ν is the
kinematic viscosity, κ is the thermal diffusivity, T is the temperature, and b is
the fluid buoyancy. We assume that density and temperature are related by a
linear equation of state so that the buoyancy b is only a function b = αgT where
α is the thermal expansion coefficient and g is the acceleration due to gravity.

This system is commonly used in climate modeling, especially as the voxels
for modeling the ocean [97, 98, 99, 96] in a multi-scale model that approx-
imates these equations by averaging out the horizontal dynamics T (z, t) =∫∫
T (x, y, z, t) dx dy in individual boxes. The resulting approximation is a lo-

cal advection-diffusion equation describing the evolution of the horizontally-
averaged temperature T :

∂T

∂t
+
∂wT

∂z
= κ

∂2T

∂z2
. (22)

This one-dimensional approximating system is not closed since wT is unknown.
Common practice closes the system by manually determining an approximating
wT from ad-hoc models, physical reasoning, and scaling laws. However, we can
utilize a UDE-automated approach to learn such an approximation from data.
Let

wT = Uθ

(
P, T ,

∂T

∂z

)
(23)

14

where P are the physical parameters of the Boussinesq equation at different
regimes of the ocean, such as the amount of surface heating or the strength
of the surface winds [100]. We can accurately capture the non-locality of the
convection in this term by making the UDE a high-dimensional neural network.
Using data from horizontal average temperatures T with known physical param-
eters P , we can directly reconstruct a nonlinear P -dependent parameterization
by training a universal diffusion-advection partial differential equation. Sup-
plementary Figure ?? demonstrates the accuracy of the approach using a deep
UPDE with high order stabilized-explicit Runge-Kutta (ROCK) methods where
the fitting is described in Supplement S??. To contrast the trained UPDE, we
directly simulated the 3D Boussinesq equations under similar physical condi-
tions and demonstrated that the neural parameterization results in around a
15,000x acceleration. This demonstrates that physical-dependent parameteri-
zations for acceleration can be directly learned from data utilizing the previous
knowledge of the averaging approximation and mixed with a data-driven dis-
covery approach.

4.2 Data-Driven Nonlinear Closure Relations for Model
Reduction in Non-Newtonian Viscoelastic Fluids

All continuum materials satisfy conservation equations for mass and momentum.
The difference between an elastic solid and a viscous fluid comes down to the
constitutive law relating the stresses and strains. In a one-dimensional system,
an elastic solid satisfies σ = Gγ, with stress σ, strain γ, and elastic modulus
G, whereas a viscous fluid satisfies σ = ηγ̇, with viscosity η and strain rate γ̇.
Non-Newtonian fluids have more complex constitutive laws, for instance when
stress depends on the history of deformation,

σ(t) =

∫ t

−∞
G(t− s)F (γ̇(s)) ds, (24)

alternatively expressed in the instantaneous form [101]:

σ(t) = φ1(t),

dφ1
dt

= G(0)F (γ̇) + φ2,

dφ2
dt

=
dG(0)

dt
F (γ̇) + φ3,

...

(25)

where the history is stored in φi. To become computationally feasible, the
expansion is truncated, often in an ad-hoc manner, e.g. φn = φn+1 = · · · = 0,
for some n. Only with a simple choice of G(t) does an exact closure condition
exist, e.g. the Oldroyd-B model. For a fully nonlinear approximation, we train
a UODE according to the details in Supplement S?? to learn a closure relation:

15

σ(t) = U0(γ̇, φ1, . . . , φN), (26)

dφi
dt

= Ui(γ̇, φ1, . . . , φN), for i = 1 to N (27)

from the numerical solution of the FENE-P equations, a fully non-linear consti-
tutive law requiring a truncation condition [102]. Figure 3 compares the neural
network approach to a linear, Oldroyd-B like, model for σ and showcases that
the nonlinear approximation improves the accuracy by more than 50x. We
note that the neural network approximation accelerates the solution by 2x over
the original 6-state DAE, demonstrating that the universal differential equation
approach to model acceleration is not just applicable to large-scale dynamical
systems like PDEs but also can be effectively employed to accelerate small scale
systems.

4.3 Efficient Discrete Physics-Informed Neural Networks
as Universal ODEs

To further demonstrate the breadth of computational problems covered by the
UODE framework, we note that the discrete physics-informed neural networks
can be cast into the framework of UODEs. A physics-informed neural network
is the representation of a PDE’s solution via a neural network, allowing machine
learning training techniques to solve the equation [12]. These works note that
the continuous PDE can be discretized in a single dimension to give rise to the
discrete physics-informed neural network, simplified as:

un+ci = un −∆t

q∑

j=1

aijN [un+cj] (28)

un+1 = un −∆t

q∑

j=1

bjN [un+cj] (29)

These results have demonstrated that the discrete form can enhance the com-
putational efficiency of training physics-informed neural networks. However, we
note that this directly corresponds to training the universal ODE u′ = N (u) us-
ing an explicit or implicit Runge-Kutta method in the SciML ecosystem. This
directly gives rise to the further work on multistep discrete physics-informed
neural networks [68, 78] by training the UODE via a multistep method, but
also immediately gives the generalization to Runge-Kutta-Chebyshev, Rosen-
brock, exponential integrator, and more formalizations which all are available
via the SciML tools.

5 Discussion

While many attribute the success of deep learning to its blackbox nature, the
key advances in deep learning applications have come by developing new archi-
tectures which directly model the structures that are attempting to be learned.

16

100 101 102 103

100

101

102

103

104

Training steps

Er
ro

r

Training error, Neural net
Testing error, Neural net
Training error, linear model
Testing error, linear model

0 1 2 3 4 5 6 7

- 5.0

- 2.5

0.0

2.5

5.0

t

st
re

ss

Linear model
NN solution
True solution

B

A

Figure 3: Convergence of neural closure relations for a non-Newtonian Fluid.
(A) Error between the approximated σ using the linear approximation Equation
7 and the neural network closure relation Equation 26 against the full FENE-
P solution. The error is measured for the strain rates γ̇ = 12 cosωt for ω =
1, 1.2, . . . , 2 and tested with the strain rate γ̇ = 12 cos 1.5t. (B) Predictions of
stress for testing strain rate for the linear approximation and UODE solution
against the exact FENE-P stress.

17

For example, deep convolutional neural networks for image processing directly
utilized the local spatial structure of images by modeling convolution stencil op-
erations. Similarly, recurrent neural networks encode a forward time progression
into a deep learning model and have excelled in natural language processing and
time series prediction. Here we present a software that allows for combining ex-
isting scientific simulation libraries with neural networks to train and augment
known models with data-driven components. Our results show that by build-
ing these hybrid mechanistic models with machine learning, we can arrive at
similar efficiency advancements by utilizing all known prior knowledge of the
underlying problem’s structure. While we demonstrate the utility of UDEs in
equation discovery, we have also demonstrated that these methods are capable
of solving many other problems, and many methods of recent interest, such as
discrete physics-informed neural networks, fall into the class of UDE methods
and can thus be analyzed and efficiently computed as part of this formalization.

Our software implementation is the first deep learning integrated differen-
tial equation library to include the full spectrum of adjoint sensitivity analysis
methods that is required to both efficiently and accurately handle the range
of training problems that can arise from universal differential equations. We
have demonstrated orders of magnitude performance advantages over previous
machine learning enhanced adjoint sensitivity ODE software in a variety of sci-
entific models and demonstrated generalizations to stiff equations, DAEs, SDEs,
and more. While the results of this paper span many scientific disciplines and
incorporate many different modeling approaches, together all of the examples
shown in this manuscript can be implemented using the SciML software ecosys-
tem in just hundreds of lines of code each, with none of the examples taking
more than half an hour to train on a standard laptop. This both demonstrates
the efficiency of the software and its methodologies, along with the potential to
scale to much larger applications.

The code for reproducing the computational experiments can be found at:

https://github.com/ChrisRackauckas/universal_differential_equations

6 Acknowledgements

We thank Jesse Bettencourt, Mike Innes, and Lyndon White for being instru-
mental in the early development of the DiffEqFlux.jl library, Tim Besard and
Valentin Churavy for the help with the GPU tooling, and David Widmann and
Kanav Gupta for their fundamental work across DifferentialEquations.jl. Spe-
cial thanks to Viral Shah and Steven Johnson who have been helpful in the
refinement of these ideas. We thank Charlie Strauss, Steven Johnson, Nathan
Urban, and Adam Gerlach for enlightening discussions and remarks on our
manuscript and software. We thank Stuart Rogers for his careful read and cor-
rections. We thank David Duvenaud for extended discussions on this work. We
thank the author of the torchsde library, Xuechen Li, for optimizing the SDE
benchmark code.

18

References

[1] Boukaye Boubacar Traore, Bernard Kamsu-Foguem, and Fana Tangara.
Deep convolution neural network for image recognition. Ecological infor-
matics, 48:257–268, 2018.

[2] M. T. Islam, B. M. N. Karim Siddique, S. Rahman, and T. Jabid. Image
recognition with deep learning. In 2018 International Conference on Intel-
ligent Informatics and Biomedical Sciences (ICIIBMS), volume 3, pages
106–110, Oct 2018.

[3] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and
Jonathan K Su. This looks like that: deep learning for interpretable image
recognition. In Advances in Neural Information Processing Systems, pages
8928–8939, 2019.

[4] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria.
Recent trends in deep learning based natural language processing. ieee
Computational intelligenCe magazine, 13(3):55–75, 2018.

[5] Daniel W Otter, Julian R Medina, and Jugal K Kalita. A survey of the
usages of deep learning in natural language processing. arXiv preprint
arXiv:1807.10854, 2018.

[6] Y Tsuruoka. Deep learning and natural language processing. Brain and
nerve= Shinkei kenkyu no shinpo, 71(1):45, 2019.

[7] Yu Li, Chao Huang, Lizhong Ding, Zhongxiao Li, Yijie Pan, and Xin Gao.
Deep learning in bioinformatics: Introduction, application, and perspec-
tive in the big data era. Methods, 2019.

[8] Binhua Tang, Zixiang Pan, Kang Yin, and Asif Khateeb. Recent advances
of deep learning in bioinformatics and computational biology. Frontiers
in Genetics, 10, 2019.

[9] James Zou, Mikael Huss, Abubakar Abid, Pejman Mohammadi, Ali Torka-
mani, and Amalio Telenti. A primer on deep learning in genomics. Nature
genetics, 51(1):12–18, 2019.

[10] Christof Angermueller, Tanel Pärnamaa, Leopold Parts, and Oliver Stegle.
Deep learning for computational biology. Molecular systems biology, 12(7),
2016.

[11] Davide Bacciu, Paulo JG Lisboa, José D Mart́ın, Ruxandra Stoean, and
Alfredo Vellido. Bioinformatics and medicine in the era of deep learning.
arXiv preprint arXiv:1802.09791, 2018.

[12] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-
informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics, 378:686–707, 2019.

19

[13] Mauricio Alvarez, David Luengo, and Neil D Lawrence. Latent force
models. In Artificial Intelligence and Statistics, pages 9–16, 2009.

[14] Yueqin Hu, Steve Boker, Michael Neale, and Kelly L Klump. Coupled
latent differential equation with moderators: Simulation and application.
Psychological Methods, 19(1):56, 2014.

[15] Mauricio Alvarez, Jan R Peters, Neil D Lawrence, and Bernhard
Schölkopf. Switched latent force models for movement segmentation. In
Advances in neural information processing systems, pages 55–63, 2010.

[16] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Du-
venaud. Neural ordinary differential equations. In Advances in neural
information processing systems, pages 6571–6583, 2018.

[17] Hongzhou Lin and Stefanie Jegelka. Resnet with one-neuron hidden layers
is a universal approximator. In Advances in Neural Information Processing
Systems, pages 6169–6178, 2018.

[18] David A Winkler and Tu C Le. Performance of deep and shallow neural
networks, the universal approximation theorem, activity cliffs, and qsar.
Molecular informatics, 36(1-2):1600118, 2017.

[19] Alexander N Gorban and Donald C Wunsch. The general approximation
theorem. In 1998 IEEE International Joint Conference on Neural Net-
works Proceedings. IEEE World Congress on Computational Intelligence
(Cat. No. 98CH36227), volume 2, pages 1271–1274. IEEE, 1998.

[20] Diederik P Kingma and Jimmy Ba. Adam A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[21] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method
for large scale optimization. Mathematical programming, 45(1-3):503–528,
1989.

[22] Ronald M Errico. What is an adjoint model? Bulletin of the American
Meteorological Society, 78(11):2577–2592, 1997.

[23] Grégoire Allaire. A review of adjoint methods for sensitivity analysis, un-
certainty quantification and optimization in numerical codes. Ingenieurs
de l’Automobile, 836:33–36, July 2015.

[24] Gilbert Strang. Computational science and engineering, volume 791.
Wellesley-Cambridge Press Wellesley, 2007.

[25] Alan C Hindmarsh, Peter N Brown, Keith E Grant, Steven L Lee, Radu
Serban, Dan E Shumaker, and Carol S Woodward. SUNDIALS: Suite of
nonlinear and differential/algebraic equation solvers. ACM Transactions
on Mathematical Software (TOMS), 31(3):363–396, 2005.

20

[26] Steven G Johnson. Notes on adjoint methods for 18.335.

[27] Biswa Sengupta, Karl J Friston, and William D Penny. Efficient gradient
computation for dynamical models. NeuroImage, 98:521–527, 2014.

[28] Christopher Rackauckas, Yingbo Ma, Vaibhav Dixit, Xingjian Guo, Mike
Innes, Jarrett Revels, Joakim Nyberg, and Vijay Ivaturi. A comparison
of automatic differentiation and continuous sensitivity analysis for deriva-
tives of differential equation solutions. arXiv preprint arXiv:1812.01892,
2018.

[29] Michael Innes, Elliot Saba, Keno Fischer, Dhairya Gandhi, Marco Con-
cetto Rudilosso, Neethu Mariya Joy, Tejan Karmali, Avik Pal, and Viral
Shah. Fashionable modelling with flux. CoRR, abs/1811.01457, 2018.

[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

[31] Mike Innes, Alan Edelman, Keno Fischer, Chris Rackauckus, Elliot Saba,
Viral B Shah, and Will Tebbutt. Zygote: A differentiable programming
system to bridge machine learning and scientific computing. arXiv preprint
arXiv:1907.07587, 2019.

[32] Ralf Giering, Thomas Kaminski, and Thomas Slawig. Generating efficient
derivative code with taf: adjoint and tangent linear euler flow around an
airfoil. Future generation computer systems, 21(8):1345–1355, 2005.

[33] Laurent Hascoet and Valérie Pascual. The tapenade automatic differen-
tiation tool: Principles, model, and specification. ACM Transactions on
Mathematical Software (TOMS), 39(3):20, 2013.

[34] Christopher Rackauckas and Qing Nie. Differentialequations.jl – a per-
formant and feature-rich ecosystem for solving differential equations in
julia. The Journal of Open Research Software, 5(1), 2017. Exported from
https://app.dimensions.ai on 2019/05/05.

[35] Tapio Schneider, Shiwei Lan, Andrew Stuart, and Joao Teixeira. Earth
system modeling 2.0: A blueprint for models that learn from observations
and targeted high-resolution simulations. Geophysical Research Letters,
44(24):12–396, 2017.

21

[36] Sebastian Krämer, David Plankensteiner, Laurin Ostermann, and Helmut
Ritsch. Quantumoptics.jl: A julia framework for simulating open quantum
systems. Computer Physics Communications, 227:109 – 116, 2018.

[37] Amir Gholami, Kurt Keutzer, and George Biros. Anode: Uncondition-
ally accurate memory-efficient gradients for neural odes. arXiv preprint
arXiv:1902.10298, 2019.

[38] Hong Zhang, Shrirang Abhyankar, Emil Constantinescu, and Mihai An-
itescu. Discrete adjoint sensitivity analysis of hybrid dynamical systems
with switching. IEEE Transactions on Circuits and Systems I: Regular
Papers, 64(5):1247–1259, 2017.

[39] Thomas Lauß, Stefan Oberpeilsteiner, Wolfgang Steiner, and Karin Nach-
bagauer. The discrete adjoint method for parameter identification in
multibody system dynamics. Multibody system dynamics, 42(4):397–410,
2018.

[40] J. Revels, M. Lubin, and T. Papamarkou. Forward-mode automatic dif-
ferentiation in julia. arXiv:1607.07892 [cs.MS], 2016.

[41] Derek Onken and Lars Ruthotto. Discretize-optimize vs. optimize-
discretize for time-series regression and continuous normalizing flows.
arXiv preprint arXiv:2005.13420, 2020.

[42] Feby Abraham, Marek Behr, and Matthias Heinkenschloss. The effect of
stabilization in finite element methods for the optimal boundary control
of the oseen equations. Finite Elements in Analysis and Design, 41(3):229
– 251, 2004.

[43] John T Betts and Stephen L Campbell. Discretize then optimize. Math-
ematics for industry: challenges and frontiers, pages 140–157, 2005.

[44] Geng Liu, Martin Geier, Zhenyu Liu, Manfred Krafczyk, and Tao Chen.
Discrete adjoint sensitivity analysis for fluid flow topology optimization
based on the generalized lattice boltzmann method. Computers & Math-
ematics with Applications, 68(10):1374 – 1392, 2014.

[45] Alfonso Callejo, Valentin Sonneville, and Olivier A Bauchau. Discrete
adjoint method for the sensitivity analysis of flexible multibody systems.
Journal of Computational and Nonlinear Dynamics, 14(2), 2019.

[46] S Scott Collis and Matthias Heinkenschloss. Analysis of the streamline
upwind/petrov galerkin method applied to the solution of optimal control
problems. 2002.

[47] Jun Liu and Zhu Wang. Non-commutative discretize-then-optimize algo-
rithms for elliptic pde-constrained optimal control problems. Journal of
Computational and Applied Mathematics, 362:596–613, 2019.

22

[48] E Huntley. A note on the application of the matrix riccati equation to the
optimal control of distributed parameter systems. IEEE Transactions on
Automatic Control, 24(3):487–489, 1979.

[49] Ziv Sirkes and Eli Tziperman. Finite difference of adjoint or adjoint of
finite difference? Monthly weather review, 125(12):3373–3378, 1997.

[50] Guojun Hu and Tomasz Kozlowski. Assessment of continuous and dis-
crete adjoint method for sensitivity analysis in two-phase flow simulations.
arXiv preprint arXiv:1805.08083, 2018.

[51] JOHANNES Kepler. Sensitivity analysis: The direct and adjoint method.

[52] F Van Keulen, RT Haftka, and NH Kim. Review of options for structural
design sensitivity analysis. part 1: Linear systems. Computer methods in
applied mechanics and engineering, 194(30-33):3213–3243, 2005.

[53] M Kouhi, G Houzeaux, F Cucchietti, M Vázquez, and F Rodriguez. Im-
plementation of discrete adjoint method for parameter sensitivity analysis
in chemically reacting flows.

[54] Siva Nadarajah and Antony Jameson. A comparison of the continuous
and discrete adjoint approach to automatic aerodynamic optimization. In
38th Aerospace Sciences Meeting and Exhibit, page 667.

[55] Tianyi Gou and Adrian Sandu. Continuous versus discrete advection ad-
joints in chemical data assimilation with cmaq. Atmospheric environment,
45(28):4868–4881, 2011.

[56] Nicolas R Gauger, Michael Giles, Max Gunzburger, and Uwe Nau-
mann. Adjoint methods in computational science, engineering, and fi-
nance (dagstuhl seminar 14371). In Dagstuhl Reports, volume 4. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[57] G. Hu and T. Kozlowski. Development and assessment of adjoint sen-
sitivity analysis method for transient two-phase flow simulations. pages
2246–2259, January 2019. 18th International Topical Meeting on Nuclear
Reactor Thermal Hydraulics, NURETH 2019 ; Conference date: 18-08-
2019 Through 23-08-2019.

[58] Dacian N. Daescu, Adrian Sandu, and Gregory R. Carmichael. Direct
and adjoint sensitivity analysis of chemical kinetic systems with kpp:
Ii—numerical validation and applications. Atmospheric Environment,
37(36):5097 – 5114, 2003.

[59] A Schwartz and E Polak. Runge-kutta discretization of optimal control
problems. IFAC Proceedings Volumes, 29(8):123–128, 1996.

[60] Kimia Ghobadi, Nedialko S Nedialkov, and Tamas Terlaky. On the dis-
cretize then optimize approach. Preprint for Industrial and Systems En-
gineering, 2009.

23

[61] Alain Sei and William W Symes. A note on consistency and adjointness
for numerical schemes. 1995.

[62] William W Hager. Runge-kutta methods in optimal control and the trans-
formed adjoint system. Numerische Mathematik, 87(2):247–282, 2000.

[63] Adrian Sandu, Dacian N Daescu, Gregory R Carmichael, and Tianfeng
Chai. Adjoint sensitivity analysis of regional air quality models. Journal
of Computational Physics, 204(1):222–252, 2005.

[64] Shashi Gowda, Yingbo Ma, Valentin Churavy, Alan Edelman, and
Christopher Rackauckas. Sparsity programming: Automated sparsity-
aware optimizations in differentiable programming. 2019.

[65] Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David
Duvenaud. Scalable gradients for stochastic differential equations. Inter-
national Conference on Artificial Intelligence and Statistics, 2020.

[66] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differen-
tial Equations I (2nd Revised. Ed.): Nonstiff Problems. Springer-Verlag,
Berlin, Heidelberg, 1993.

[67] Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning
pdes from data. arXiv preprint arXiv:1710.09668, 2017.

[68] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Multistep
neural networks for data-driven discovery of nonlinear dynamical systems.
arXiv preprint arXiv:1801.01236, 2018.

[69] Peter J Schmid. Dynamic mode decomposition of numerical and experi-
mental data. Journal of fluid mechanics, 656:5–28, 2010.

[70] Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley.
A data–driven approximation of the koopman operator: Extending dy-
namic mode decomposition. Journal of Nonlinear Science, 25(6):1307–
1346, 2015.

[71] Qianxiao Li, Felix Dietrich, Erik M Bollt, and Ioannis G Kevrekidis. Ex-
tended dynamic mode decomposition with dictionary learning: A data-
driven adaptive spectral decomposition of the koopman operator. Chaos:
An Interdisciplinary Journal of Nonlinear Science, 27(10):103111, 2017.

[72] Naoya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi. Learning koop-
man invariant subspaces for dynamic mode decomposition. In Advances
in Neural Information Processing Systems, pages 1130–1140, 2017.

[73] Hayden Schaeffer. Learning partial differential equations via data discov-
ery and sparse optimization. Proceedings of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences, 473(2197):20160446, 2017.

24

[74] Markus Quade, Markus Abel, Kamran Shafi, Robert K Niven, and
Bernd R Noack. Prediction of dynamical systems by symbolic regression.
Physical Review E, 94(1):012214, 2016.

[75] Hongqing Cao, Lishan Kang, Yuping Chen, and Jingxian Yu. Evolution-
ary modeling of systems of ordinary differential equations with genetic
programming. Genetic Programming and Evolvable Machines, 1(4):309–
337, 2000.

[76] Khalid Raza and Rafat Parveen. Evolutionary algorithms in genetic reg-
ulatory networks model. CoRR, abs/1205.1986, 2012.

[77] Hayden Schaeffer, Giang Tran, and Rachel Ward. Extracting sparse high-
dimensional dynamics from limited data. SIAM Journal on Applied Math-
ematics, 78(6):3279–3295, 2018.

[78] Ramakrishna Tipireddy, Paris Perdikaris, Panos Stinis, and Alexandre M.
Tartakovsky. A comparative study of physics-informed neural network
models for learning unknown dynamics and constitutive relations. CoRR,
abs/1904.04058, 2019.

[79] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering gov-
erning equations from data by sparse identification of nonlinear dynamical
systems. Proceedings of the National Academy of Sciences, 113(15):3932–
3937, 2016.

[80] Niall M Mangan, Steven L Brunton, Joshua L Proctor, and J Nathan
Kutz. Inferring biological networks by sparse identification of nonlinear
dynamics. IEEE Transactions on Molecular, Biological and Multi-Scale
Communications, 2(1):52–63, 2016.

[81] Niall M Mangan, J Nathan Kutz, Steven L Brunton, and Joshua L Proc-
tor. Model selection for dynamical systems via sparse regression and in-
formation criteria. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 473(2204):20170009, 2017.

[82] Peng Zheng, Travis Askham, Steven L. Brunton, J. Nathan Kutz, and
Aleksandr Y. Aravkin. A unified framework for sparse relaxed regularized
regression: SR3. 7:1404–1423. Conference Name: IEEE Access.

[83] Kathleen Champion, Peng Zheng, Aleksandr Y. Aravkin, Steven L. Brun-
ton, and J. Nathan Kutz. A unified sparse optimization framework to
learn parsimonious physics-informed models from data.

[84] Alexander Bills, Shashank Sripad, William Leif Fredericks, Matthew
Guttenberg, Devin Charles, Evan Frank, and Venkatasubramanian
Viswanathan. Universal Battery Performance and Degradation Model
for Electric Aircraft. 7 2020.

25

[85] Raj Dandekar and Lydia Bourouiba. Splash upon impact on a deep pool.
In preparation.

[86] Yang Cao, Shengtai Li, Linda Petzold, and Radu Serban. Adjoint sen-
sitivity analysis for differential-algebraic equations: The adjoint dae sys-
tem and its numerical solution. SIAM journal on scientific computing,
24(3):1076–1089, 2003.

[87] R. A. Fisher. The wave of advance of advantageous genes. Annals of
Eugenics, 7(4):355–369, 1937.

[88] P. Grindrod. The Theory and Applications of Reaction-diffusion Equa-
tions: Patterns and Waves. Oxford applied mathematics and computing
science series. Clarendon Press, 1996.

[89] Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning
algorithm for solving partial differential equations. Journal of Computa-
tional Physics, 375:1339–1364, Dec 2018.

[90] Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural
networks for solving ordinary and partial differential equations. IEEE
transactions on neural networks, 9(5):987–1000, 1998.

[91] E Weinan, Jiequn Han, and Arnulf Jentzen. Deep learning-based numer-
ical methods for high-dimensional parabolic partial differential equations
and backward stochastic differential equations. Communications in Math-
ematics and Statistics, 5(4):349–380, 2017.

[92] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional par-
tial differential equations using deep learning. Proceedings of the National
Academy of Sciences, 115(34):8505–8510, 2018.

[93] Yaohua Zang, Gang Bao, Xiaojing Ye, and Haomin Zhou. Weak adver-
sarial networks for high-dimensional partial differential equations. arXiv
preprint arXiv:1907.08272, 2019.

[94] Côme Huré, Huyên Pham, and Xavier Warin. Some machine learn-
ing schemes for high-dimensional nonlinear pdes. arXiv preprint
arXiv:1902.01599, 2019.

[95] H Lamba. An adaptive timestepping algorithm for stochastic differential
equations. Journal of computational and applied mathematics, 161(2):417–
430, 2003.

[96] Benoit Cushman-Roisin and Jean-Marie Beckers. Chapter 4 - equations
governing geophysical flows. In Benoit Cushman-Roisin and Jean-Marie
Beckers, editors, Introduction to Geophysical Fluid Dynamics, volume 101
of International Geophysics, pages 99 – 129. Academic Press, 2011.

26

[97] Zhihua Zhang and John C. Moore. Chapter 11 - atmospheric dynamics.
In Zhihua Zhang and John C. Moore, editors, Mathematical and Physical
Fundamentals of Climate Change, pages 347 – 405. Elsevier, Boston, 2015.

[98] Section 1.3 - governing equations. In Lakshmi H. Kantha and Carol Anne
Clayson, editors, Numerical Models of Oceans and Oceanic Processes, vol-
ume 66 of International Geophysics, pages 28–46. Academic Press, 2000.

[99] Stephen M Griffies and Alistair J Adcroft. Formulating the equations of
ocean models. 2008.

[100] Stephen M. Griffies, Michael Levy, Alistair J. Adcroft, Gokhan Danaba-
soglu, Robert W. Hallberg, Doug Jacobsen, William Large, , and Todd
Ringler. Theory and Numerics of the Community Ocean Vertical Mixing
(CVMix) Project. Technical report, 2015. Draft from March 9, 2015. 98
+ v pages.

[101] F.A. Morrison and A.P.C.E.F.A. Morrison. Understanding Rheology. Ray-
mond F. Boyer Library Collection. Oxford University Press, 2001.

[102] P.J. Oliveira. Alternative derivation of differential constitutive equa-
tions of the oldroyd-b type. Journal of Non-Newtonian Fluid Mechanics,
160(1):40 – 46, 2009. Complex flows of complex fluids.

27

Universal Differential Equations for Scientific

Machine Learning: Supplemental Information

Christopher Rackauckasa,b, Yingbo Mac, Julius Martensend, Collin
Warnera, Kirill Zubove, Rohit Supekara, Dominic Skinnera, Ali

Ramadhana, and Alan Edelmana

aMassachusetts Institute of Technology
bUniversity of Maryland, Baltimore

cJulia Computing
dUniversity of Bremen

eSaint Petersburg State University

August 10, 2020

1 DiffEqFlux.jl Pullback Construction

The DiffEqFlux.jl pullback construction is not based on just one method but
instead has a dispatch-based mechanism for choosing between different adjoint
implementations. At a high level, the library defines the pullback on the differ-
ential equation solve function, and thus using a differential equation inside of
a larger program leads to this chunk as being a single differentiable primitive
that is inserted into the back pass of Flux.jl when encountered by overloading
the Zygote.jl [1] and ChainRules.jl rule sets. For any ChainRules.jl-compliant
reverse-mode AD package in the Julia language, when a differential equation
solve is encountered in any Julia library during the backwards pass, the adjoint
method is automatically swapped in to be used for the backpropogation of the
solver. The choice of the adjoint is chosen by the type of the sensealg keyword
argument which are fully described below.

1.1 Backpropagation-Accelerated DAE Adjoints for Index-
1 DAEs with Constraint Equations

Before describing the modes, we first describe the adjoint of the differential
equation with constraints. The constrained ordinary differential equation:

u′ = f̃(u, p, t), (1)

0 = c(u, p, t), (2)

1

ar
X

iv
:2

00
1.

04
38

5v
3

 [
cs

.L
G

]
 7

 A
ug

 2
02

0

can be rewritten in mass matrix form:

Mu′ = f(u, p, t). (3)

We wish to solve for some cost function G(u, p) evaluated throughout the dif-
ferential equation, i.e.:

G(u, p) =

∫ T

t0

g(u, p, t)dt, (4)

To derive this adjoint, introduce the Lagrange multiplier λ to form:

I(p) = G(p)−
∫ T

t0

λ∗(Mu′ − f(u, p, t))dt, (5)

Since u′ = f(u, p, t), we have that:

dG

dp
=
dI

dp
=

∫ T

t0

(gp + gus)dt−
∫ T

t0

λ∗(Ms′ − fus− fp)dt, (6)

for si being the sensitivity of the ith variable. After applying integration by
parts to λ∗Ms′, we require that:

M∗λ′ = − df
du

∗
λ−

(
dg

du

)∗
, (7)

λ(T) = 0, (8)

to zero out a term and get:

dG

dp
= λ∗(t0)M

du

dp
(t0) +

∫ T

t0

(gp + λ∗fp) dt. (9)

If G is discrete, then it can be represented via the Dirac delta:

G(u, p) =

∫ T

t0

N∑

i=1

‖di − u(ti, p)‖2δ(ti − t)dt, (10)

in which case
gu(ti) = 2(di − u(ti, p)), (11)

at the data points (ti, di). Therefore, the derivative of an ODE solution with
respect to a cost function is given by solving for λ∗ using an ODE for λT in
reverse time, and then using that to calculate dG

dp . At each time point where

discrete data is found, λ is then changed using a callback (discrete event han-
dling) by the amount gu to represent the Dirac delta portion of the integral.
Lastly, we note that dG

du0
= −λ(0) in this formulation.

2

We have to take care of consistent initialization in the case of semi-explicit
index-1 DAEs. We need to satisfy the system of equations

M∗∆λd = h∗udλ
a + g∗ud (12)

0 = h∗uaλa + g∗ua , (13)

where d and a denote differential and algebraic variables, and f and g denote
differential and algebraic equations respectively. Combining the above two equa-
tions, we know that we need to increment the differential part of λ by

− h∗ud (h∗ua)
−1
g∗ua + g∗ud (14)

at each callback. Additionally, the ODEs

µ′ = −λ∗ ∂f
∂p

(15)

with µ(T) = 0 can be appended to the system of equations to perform the
quadrature for dG

dp .

1.2 Current Adjoint Calculation Methods

From this setup we have the following 8 possible modes for calculating the
adjoint, with their pros and cons.

1. QuadratueAdjoint: a quadrature-based approach. This utilizes interpola-
tion of the forward solution provided by DifferentialEquations.jl to calcu-
late u(t) at arbitrary time points for doing the calculations with respect
to df

du in the reverse ODE of λ. From this a continuous interpolatable

λ(t) is generated, and the integral formula for dG
dp is calculated using the

QuadGK.jl implementation of Gauss-Kronrod quadrature. While this ap-
proach is memory heavy due to requiring the interpolation of the forward
and reverse passes, it can be the fastest version for cases where the num-
ber of ODE/DAE states is small and the number of parameters is large
since the QuadGK quadrature can converge faster than ODE/DAE-based
versions of quadrature. This method requires an ODE or a DAE.

2. InterpolatingAdjoint: a checkpointed interpolation approach. This ap-
proach solves the λ(t) ODE in reverse using an interpolation of u(t), but
appends the equations for µ(t) and thus does not require saving the time-
series trajectory of λ(t). For checkpointing, a scheme similar to that found
in SUNDIALS [2] is used. Points (uk, tk) from the forward solution are
chosen as the interval points. Whenever the backwards pass enters a new
interval, the ODE is re-solved on t ∈ [tk−1, tk] with a continuous inter-
polation provided by DifferentialEquations.jl. For the reverse pass, the
tstops argument is set for each tk, ensuring that no backwards integration
step lies in two checkpointing intervals. This requires at most a total of

3

two forward solutions of the ODE and the memory required to hold the
interpolation of the solution between two consecutive checkpoints. Note
that making the checkpoints at the start and end of the integration in-
terval makes this equivalent to a non-checkpointed interpolated approach
which replaces the quadrature with an ODE/SDE/DAE solve for memory
efficiency. This method tends to be both stable and require a minimal
amount of memory, and is thus the default. This method requires an
ODE, SDE, or a DAE.

3. BacksolveAdjoint: a checkpointed backwards solution approach. Follow-
ing [3], after a forward solution, this approach solves the u(t) equation in
reverse along with the λ(t) and µ(t) ODEs. Thus, since no interpolations
are required, it requires O(1) memory. Unfortunately, many theoretical
results show that backwards solution of ODEs is not guaranteed to be sta-
ble, and testing this adjoint on the universal partial differential equations
like the diffusion-advection example of this paper showcases that it can be
divergent and is thus not universally applicable, especially in cases of stiff-
ness. Thus for stability we modify this approach by allowing checkpoints
(uk, tk) at which the reverse integration is reset, i.e. u(tk) = uk, and the
backsolve is then continued. The tstops argument is set in the integrator
to require that each checkpoint is hit exactly for this resetting to occur.
By doing so, the resulting method utilizes O(1) memory + the number
of checkpoints required for stability, making it take the least memory ap-
proach. However, the potential divergence does lead to small errors in the
gradient, and thus for highly stiff equations we have found that this is
only applicable to a certain degree of tolerance like 10−6 given reasonable
numbers of checkpoints. When applicable this can be the most efficient
method for large memory problems. This method requires an ODE, SDE,
or a DAE.

4. ForwardSensitivity: a forward sensitivity approach. From u′ = f(u, p, t),
the chain rule gives d

dt
du
dp = df

du
du
dp + df

dp which can be appended to the

original equations to give du
dp as a time series, which can then be used

to compute dG
dp . While the computational cost of the adjoint methods

scales like O(N + P) for N differential equations and P parameters, this
approach scales like O(NP) and is thus only applicable to models with
small numbers of parameters (thus excluding neural networks). However,
when the universal approximator has small numbers of parameters, this
can be the most efficient approach. This method requires an ODE or a
DAE.

5. ForwardDiffSensitivity: a forward-mode automatic differentiation approach,
using ForwardDiff.jl [4] to calculate the forward sensitivity equations,
i.e. an AD-generated implementation of forward-mode “discretize-then-
optimize”. Because it utilizes a forward-mode approach, the scaling matches
that of the forward sensitivity approach and it tends to have similar perfor-

4

mance characteristics. This method applies to any Julia-based differential
equation solver.

6. TrackerAdjoint: a Tracker-driven taped-based reverse-mode discrete ad-
joint sensitivity, i.e. an AD-generated implementation of reverse-mode
“discretize-then-optimize”. This is done by using the TrackedArray con-
structs of Tracker.jl [5] to build a Wengert list (or tape) of the forward
execution of the ODE solver which is then reversed. This method applies
to any Julia-based differential equation solver.

7. ZygoteAdjoint: a Zygote-driven source-to-source reverse-mode discrete
adjoint sensitivity, i.e. an AD-generated implementation of reverse-mode
“discretize-then-optimize”. This utilizes the Zygote.jl [1] system directly
on the differential equation solvers to generate a source code for the re-
verse pass of the solver itself. Currently this is only directly applicable to
a few differential equation solvers, but is under heavy development.

8. ReverseDiffAdjoint: A ReverseDiff.jl taped-based reverse-mode discrete
adjoint sensitivity, i.e. an AD-generated implementation of reverse-mode
“discretize-then-optimize”. In contrast to TrackerAdjoint, this methodol-
ogy can be substantially faster due to its ability to precompile the tape
but only supports calculations on the CPU.

For each of the non-AD approaches, there are the following choices for how
the Jacobian-vector products Jv (jvp) of the forward sensitivity equations and
the vector-Jacobian products v′J (vjp) of the adjoint sensitivity equations are
computed:

1. Automatic differentiation for the jvp and vjp. In this approach, automatic
differentiation is utilized for directly calculating the jvps and vjps. For-
wardDiff.jl with a single dual dimension is applied at f(u+λε) to calculate
df
duλ where ε is a dual dimensional signifier. For the vector-Jacobian prod-
ucts, a forward pass at f(u) is utilized and the backwards pass is seeded
at λ to compute the λ′ dfdu (and similarly for df

dp). Note that if f is a neu-
ral network, this implies that this product is computed by starting the
backpropogation of the neural network with λ and the vjp is the result-
ing return. Three methods are allowed to be chosen for performing the
internal vjp calculations:

(a) Zygote.jl source-to-source transformation based vjps. Note that only
non-mutating differential equation function definitions are supported
in this mode. This mode is the most efficient in the presence of neural
networks.

(b) ReverseDiff.jl tape-based vjps. This allows for JIT-compilation of
the tape for accelerated computation. This is the fastest vjp choice
in the presence of heavy scalar operations like in chemical reaction
networks, but is not compatible with GPU acceleration.

5

(c) Tracker.jl with arrays of tracked real values is utilized on mutating
functions.

The internal calculation of the vjp on a general UDE recurses down to
primitives and embeds optimized backpropogations of the internal neural
networks (and other universal approximators) for the calculation of this
product when this option is used.

2. Numerical differentiation for the jvp and vjp. In this approach, finite
differences is utilized for directly calculating the jvps and vjps. For a
small but finite ε, (f(u+ λε)− f(u)) /ε is used to approximate df

duλ. For
vjps, a finite difference gradient of λ′f(u) is used.

3. Automatic differentiation for Jacobian construction. In this approach,
(sparse) forward-mode automatic differentiation is utilized by a combi-
nation of ForwardDiff.jl [4] with SparseDiffTools.jl for color-vector based
sparse Jacobian construction. After forming the Jacobian, the jvp or vjp
is calculated.

4. Numerical differentiation for Jacobian construction. In this approach,
(sparse) numerical differentiation is utilized by a combination of DiffEqD-
iffTools.jl with SparseDiffTools.jl for color-vector based sparse Jacobian
construction. After forming the Jacobian, the jvp or vjp is calculated.

In total this gives 48 different adjoint method approaches, each with different
performance characteristics and limitations. A full performance analysis which
measures the optimal adjoint approach for various UDEs has been omitted from
this paper, since the combinatorial nature of the options requires a considerable
amount of space to showcase the performance advantages and generality disad-
vantages between each of the approaches. A follow-up study focusing on accu-
rate performance measurements of the adjoint choice combinations on families
of UDEs is planned.

2 Benchmarks

2.1 ODE Solve Benchmarks

The three ODE benchmarks utilized the Lorenz equations (LRNZ) weather
prediction model from [6] and the standard ODE IVP Testset [7, 8]:

dx

dt
= σ(y − x) (16)

dy

dt
= x(ρ− z)− y (17)

dz

dt
= xy − βz (18)

6

The 28 ODE benchmarks utilized the Pleiades equation (PLEI) celestial me-
chanics simulation from [6] and the standard ODE IVP Testset [7, 8]:

x′′i =
∑

j 6=i
mj(xj − xi)/rij (19)

y′′i =
∑

j 6=i
mj(yj − yi)/rij (20)

where
rij =

(
(xi − xj)2 + (yi − yj)2

)3/2
(21)

on t ∈ [0, 3] with initial conditions:

u(0) = [3.0, 3.0,−1.0,−3.0, 2.0,−2.0, 2.0, 3.0,−3.0, 2.0, 0, 0, (22)

− 4.0, 4.0, 0, 0, 0, 0, 0, 1.75,−1.5, 0, 0, 0,−1.25, 1, 0, 0] (23)

written in the form u = [xi, yi, x
′
i, y
′
i].

The rest of the benchmarks were derived from a discretization a two-dimensional
reaction diffusion equation, representing systems biology, combustion mechan-
ics, spatial ecology, spatial epidemiology, and more generally physical PDE equa-
tions:

At = D∆A+ αA(x)− βAA− r1AB + r2C (24)

Bt = αB − βBB − r1AB + r2C (25)

Ct = αC − βCC + r1AB − r2C (26)

where αA(x) = 1 if x > 80 and 0 otherwise on the domain x ∈ [0, 100],
y ∈ [0, 100], and t ∈ [0, 10] with zero-flux boundary conditions. The diffu-
sion constant D was chosen as 100 and all other parameters were left at 1.0.
In this parameter regime the ODE was non-stiff as indicated by solves with
implicit methods not yielding performance advantages. The diffusion operator
was discretized using the second order finite difference stencil on an N×N grid,
where N was chosen to be 16, 32, 64, 128, 256, and 512. To ensure fairness, the
torchdiffeq functions were compiled using torchscript. The code for reproducing
the benchmark can be found at:

https://gist.github.com/ChrisRackauckas/cc6ac746e2dfd285c28e0584a2bfd320

2.2 Neural ODE Training Benchmark

The spiral neural ODE from [3] was used as the benchmark for the training of
neural ODEs. The data was generated according from the form:

u′ = Au3 (27)

where A = [−0.1, 2.0;−2.0,−0.1] on t ∈ [0, 1.5] where data was taken at 30
evenly spaced points. Each of the software packages trained the neural ODE

7

for 500 iterations using ADAM with a learning rate of 0.05. The defaults using
the SciML software resulted in a final loss of 4.895287e-02 in 7.4 seconds, the
optimized version (choosing BacksolveAdjoint with compiled ReverseDiff vector-
jacobian products) resulted in a final loss of 2.761669e-02 in 2.7 seconds, while
torchdiffeq achieved a final loss of 0.0596 in 289 seconds. To ensure fairness, the
torchdiffeq functions were compiled using torchscript. Code to reproduce the
benchmark can be found at:

https://gist.github.com/ChrisRackauckas/4a4d526c15cc4170ce37da837bfc32c4

2.3 SDE Solve Benchmark

The torchsde benchmarks were created using the geometric Brownian motion
example from the torchsde README. The SDE was a 4 independent geometric
Brownian motions:

dXt = µXtdt+ σXtdWt (28)

where µ = 0.5 and σ = 1.0. Both software solved the SDE 100 times using the
SRI method [9] with fixed time step chosen to give 20 evenly spaced steps for
t ∈ [0, 1]. The SciML ecosystem solvers solved the equation 100 times in 0.00115
seconds, while torchsde v0.1 took 1.86 seconds. We contacted the author who
rewrote the Brownian motion portions into C++ and linked it to torchsde as
v0.1.1 and this improved the timing to roughly 5 seconds, resulting in a final
performance difference of approximately 1,600x. The code to reproduce the
benchmarks and the torchsde author’s optimization notes can be found at:

https://gist.github.com/ChrisRackauckas/6a03e7b151c86b32d74b41af54d495c6

3 Sparse Identification of Missing Model Terms
via Universal Differential Equations

The SINDy algorithm [10, 11, 12] enables data-driven discovery of governing
equations from data. Notice that to use this method, derivative data Ẋ is re-
quired. While in most publications on the subject this [10, 11, 12] information
is assumed. However, for our studies we assume that only the time series infor-
mation is available. Here we modify the algorithm to apply to only subsets of
the equation in order to perform equation discovery specifically on the trained
neural network, and in our modification the Ẋ term is replaced with Uθ(t), the
output of the universal approximator, and thus is directly computable from any
trained UDE.

After training the UDE, choose a set of state variables:

X =




xT (t1)
xT (t2)

...
xT (tm)


 =




x1 (t1) x2 (t1) · · · xn (t1)
x1 (t2) x2 (t2) · · · xn (t2)

...
...

. . .
...

x1 (tm) x2 (tm) · · · xn (tm)


 (29)

8

and compute a the action of the universal approximator on the chosen states:

Ẋ =




xT (t1)
ẋT (t2)

...
xT (tm)


 =




ẋ1 (t1) ẋ2 (t1) · · · ẋn (t1)
ẋ1 (t2) ẋ2 (t2) · · · ẋn (t2)

...
...

. . .
...

ẋ1 (tm) ẋ2 (tm) · · · ẋn (tm)


 (30)

Then evaluate the observations in a basis Θ(X). For example:

Θ(X) =
[

1 X XP2 XP3 · · · sin(X) cos(X) · · ·
]

(31)

where XPi stands for all Pith order polynomial terms such as

XP2 =




x21 (t1) x1 (t1)x2 (t1) · · · x22 (t1) · · · x2n (t1)
x21 (t2) x1 (t2)x2 (t2) · · · x22 (t2) · · · x2n (t2)

...
...

. . .
...

. . .
...

x21 (tm) x1 (tm)x2 (tm) · · · x22 (tm) · · · x2n (tm)


 (32)

Using these matrices, find this sparse basis Ξ over a given candidate library
Θ by solving the sparse regression problem Ẋ = ΘΞ with L1 regularization,

i.e. minimizing the objective function
∥∥∥Ẋ−ΘΞ

∥∥∥
2

+ λ ‖Ξ‖1. This method and

other variants of SInDy applied to UDEs, along with specialized optimizers for
the LASSO L1 optimization problem, have been implemented by the authors
and collaborators DataDrivenDiffEq.jl library for use with the DifferentialEqua-
tions.jl training framework.

3.1 Application to the Partial Reconstruction of the Lotka-
Volterra Equations

On the Lotka-Volterra equations, we trained a UDE model against a trajec-
tory of 31 points with a constant step size ∆t = 0.1 starting from x0 =
0.44249296, y0 = 4.6280594 to recover the function Uθ(x, y). The parame-
ters are chosen to be α = 1.3, β = 0.9, γ = 0.8, δ = 1.8. The trajectory has
been perturbed with additive noise drawn from a normal distribution scaled by
10−3.

The neural network consists of an input layer, one hidden layers with 32
neurons and a linear output layer. The input and hidden layer have hyberbolic
tangent activation functions. We trained for 200 iterations with ADAM with a
learning rate γ = 10−2. We then switched to BFGS with an initial stepnorm
of γ = 10−2 setting the maximum iterations to 10000. Typically the training
converged after 400-600 iterations in total. The loss was chosen was the L2 loss
L =

∑
i(uθ(ti)− di)2. The training converged to a final loss between 10−2 and

10−5 for the knowledge-enhanced neural network.
From the trained neural network, data was sampled over the original tra-

jectory and fitted using the SR3 method with varying threshold between 10−7

and 103 logarithmically spaced to ensure a sparse solution. A pareto optimal

9

0 100 200 300 400 500 600

10-4

10-2

100

102

104

Iterations

Lo
ss

0.2 0.4 0.6 0.8 1.0
10-4.5

10-4.0

10-3.5

10-3.0

10-2.5

10-2.0

Summed L2 Error of Model

F
in

al
 T

ra
in

in
g

Lo
ss

Figure 1: Loss trajectories and errors for 74 runs of the partially reconstruction
of the Lotka Volterra equations under noisy data.

solution was selected via the L1 norm of the coefficients and the L2 norm of the
corresponding error between the differential data and estimate. The knowledge-
enhanced neural network returned zero for all terms except non-zeros on the
quadratic terms with nearly the correct coefficients that were then fixed using
an additional sparse regression over the quadratic terms. The resulting parame-
ters extracted are β ≈ 0.9239 and γ ≈ 0.8145. Performing a sparse identification
on the ideal, full solution and numerical derivatives computed via an interpo-
lating spline resulted in a failure.

To ensure reproducible results, the training procedure has been evaluated
74 times given the initial trajectory. The training failed once (1.35 %) to
exactly identify the original equation in symbolic terms. The final loss has a
mean of 0.0004 with a standard error of 0.0012, an upper and lower bound of
0.0103 and 3.3573 10−5 respectively. The training converged between 241 and
615 iterations. The sum of the L2 error of the recovered model on the training
data is centered around 0.1472 with a standard deviation of 0.1688. The results
are shown in Figure 1.

3.2 Discovery of Robertson’s Equations with Prior Con-
servation Laws

On Robertson’s equations, we trained a UDAE model against a trajectory of
10 points on the timespan t ∈ [0.0, 1.0] starting from y1 = 1.0, y2 = 0.0, and

10

y3 = 0.0. The parameters of the generating equation were k1 = 0.04, k2 = 3e7,
and k3 = 1e4. The universal approximator was a neural network with one
hidden layers of size 64. The equation was trained using the BFGS optimizer
to a loss of 9e− 6.

4 Model-based Learning for the Fisher-KPP Equa-
tions

To generate training data for the 1D Fisher-KPP equation ??, we take the
growth rate and the diffusion coefficient to be r = 1 and D = 0.01 respectively.
The equation is numerically solved in the domain x ∈ [0, 1] and t ∈ [0, T]
using a 2nd order central difference scheme for the spatial derivatives and the
time-integration is done using the Tsitouras 5/4 Runge-Kutta method. We
implement periodic boundary condition ρ(x = 0, t) = ρ(x = 1, t) and initial
condition ρ(x, t = 0) = ρ0(x) is taken to be a localized function given by

ρ0(x) =
1

2

(
tanh

(
x− (0.5−∆/2)

∆/10

)
− tanh

(
x− (0.5 + ∆/2)

∆/10

))
, (33)

with ∆ = 0.2 which represents the width of the region where ρ ' 1. The data
are saved at evenly spaced points with ∆x = 0.04 and ∆t = 0.5.

In the UPDE ??, the growth neural network NNθ(ρ) has 4 densely connected
layers with 10, 20, 20 and 10 neurons each and tanh activation functions. The
diffusion operator is represented by a CNN that operates on an input vector of
arbitrary size. It has 1 hidden layer with a 3× 1 filter [w1, w2, w3] without any
bias. To implement periodic boundary conditions for the UPDE at each time
step, the vector of values at different spatial locations [ρ1, ρ2, . . . , ρNx

] is padded
with ρNx to the left and ρ1 to the right. This also ensures that the output of
the CNN is of the same size as the input. The weights of both the neural
networks and the diffusion coefficient are simultaneously trained to minimize
the loss function

L =
∑

i

(ρ(xi, ti)− ρdata(xi, ti))
2 + λ|w1 + w2 + w3|, (34)

where λ is taken to be 102 (note that one could also structurally enforce w3 =
−(w1 +w2)). The second term in the loss function enforces that the differential
operator that is learned is conservative—that is, the weights sum to zero. The
training is done using the ADAM optimizer with learning rate 10−3.

11

5 Adaptive Solving for the 100 Dimensional Hamilton-
Jacobi-Bellman Equation

5.1 Forward-Backwards SDE Formulation

Consider the class of semilinear parabolic PDEs, in finite time t ∈ [0, T] and
d-dimensional space x ∈ Rd, that have the form:

∂u

∂t
(t, x) +

1

2
tr
(
σσT (t, x) (Hessxu) (t, x)

)

+∇u(t, x) · µ(t, x)

+ f
(
t, x, u(t, x), σT (t, x)∇u(t, x)

)
= 0,

(35)

with a terminal condition u(T, x) = g(x). In this equation, tr is the trace of
a matrix, σT is the transpose of σ, ∇u is the gradient of u, and Hessxu is the
Hessian of u with respect to x. Furthermore, µ is a vector-valued function, σ is
a d × d matrix-valued function and f is a nonlinear function. We assume that
µ, σ, and f are known. We wish to find the solution at initial time, t = 0, at
some starting point, x = ζ.

Let Wt be a Brownian motion and take Xt to be the solution to the stochastic
differential equation

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt (36)

with a terminal condition u(T, x) = g(x). With initial condition X(0) = ζ
has shown that the solution to ?? satisfies the following forward-backward SDE
(FBSDE) [13]:

u(t,Xt)− u(0, ζ) =

−
∫ t

0

f(s,Xs, u(s,Xs), σ
T (s,Xs)∇u(s,Xs))ds

+

∫ t

0

[∇u(s,Xs)]
T
σ(s,Xs)dWs, (37)

with terminating condition g(XT) = u(XT ,WT). Notice that we can combine
36 and 37 into a system of d+ 1 SDEs:

dXt =µ(t,Xt)dt+ σ(t,Xt)dWt,

dUt =f(t,Xt, Ut, σ
T (t,Xt)∇u(t,Xt))dt

+
[
σT (t,Xt)∇u(t,Xt)

]T
dWt,

(38)

where Ut = u(t,Xt). Since X0, µ, σ, and f are known from the choice of
model, the remaining unknown portions are the functional σT (t,Xt)∇u(t,Xt)
and initial condition U(0) = u(0, ζ), the latter being the point estimate solution
to the PDE.

12

To solve this problem, we approximate both unknown quantities by universal
approximators:

σT (t,Xt)∇u(t,Xt) ≈ U1
θ1(t,Xt),

u(0, X0) ≈ U2
θ2(X0),

(39)

Therefore we can rewrite 38 as a stochastic UDE of the form:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt,

dUt = f(t,Xt, Ut, U
1
θ1(t,Xt))dt+

[
U1
θ1(t,Xt)

]T
dWt,

(40)

with initial condition (X0, U0) = (X0, U
2
θ2

(X0)).
To be a solution of the PDE, the approximation must satisfy the terminating

condition, and thus we define our loss to be the expected difference between the
approximating solution and the required terminating condition:

l(θ1, θ2|XT , UT) = E [‖g(XT)− UT ‖] . (41)

Finding the parameters (θ1, θ2) which minimize this loss function thus give
rise to a BSDE which solves the PDE, and thus U2

θ2
(X0) is the solution to the

PDE once trained.

5.2 The LQG Control Problem

This PDE can be rewritten into the canonical form by setting:

µ = 0,

σ = σI,

f = −α
∥∥σT (s,Xs)∇u(s,Xs))

∥∥2 ,
(42)

where σ =
√

2, T = 1 and X0 = (0, ..., 0) ∈ R100. The universal stochastic
differential equation was then supplemented with a neural network as the ap-
proximator. The initial condition neural network was had 1 hidden layer of size
110, and the σT (t,Xt)∇u(t,Xt) neural network had two layers both of size 110.
For the example we chose λ = 1. This was trained with the LambaEM method
of DifferentialEquations.jl [14] with relative and absolute tolerances set at 1e−4
using 500 training iterations and using a loss of 100 trajectories per epoch.

On this problem, for an arbitrary g, one can show with Itô’s formula that:

u(t, x) = − 1

λ
ln
(
E
[
exp

(
−λg(x+

√
2WT−t

)])
, (43)

which was used to calculate the error from the true solution.

13

0 50 100 150 200
10-1.5

10-1.0

10-0.5

100.0

The number of iteration steps

R
el

at
iv

e
ap

pr
ox

im
at

io
n

er
ro

r

Figure 2: Adaptive solution of the 100-dimensional Hamilton-Jacobi-Bellman
equation. This demonstrates that as the universal approximators U1

θ1
and U2

θ2
converge to satisfy the terminating condition, U2

θ2
network convergences to the

solution of Equation ??.

14

5 10 15 20 25 30

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Spatial Plot at t=0.46551725

data
prediction

0.0 0.5 1.0 1.5
0.00

0.05

0.10

0.15

Time Series Plot: Middle X

data
prediction

Figure 3: Reduction of the Boussinesq equations. On the left is the comparison
between the training data (blue) and the trained UPDE (orange) over space at
the 10th fitting time point, and on the right is the same comparison shown over
time at spatial midpoint.

6 Reduction of the Boussinesq Equations

As a test for the diffusion-advection equation parameterization approach, data
was generated from the diffusion-advection equations using the missing function
wT = cos(sin(T 3)) + sin(cos(T 2)) with N spatial points discretized by a finite
difference method with t ∈ [0, 1.5] with Neumann zero-flux boundary conditions.
A neural network with two hidden layers of size 8 and tanh activation functions
was trained against 30 data points sampled from the true PDE. The UPDE was
fit by using the ADAM optimizer with learning rate 10−2 for 200 iterations and
then ADAM with a learning rate of 10−3 for 1000 iterations. The resulting fit
is shown in 3 which resulted in a final loss of approximately 0.007. We note
that the stabilized adjoints were required for this equation, i.e. the backsolve
adjoint method was unstable and results in divergence and thus cannot be used
on this type of equation. The trained neural network had a forward pass that
took around 0.9 seconds.

For the benchmark against the full Bossinesq equations, we utilized Oceanani-
gans.jl [15]. It was set to utilize adaptive time stepping to maximize the time
step according to the CFL condition number (capped at CFL ≤ 0.3) and
matched the boundary conditions, along with setting periodic boundary condi-
tions in the horizontal dimension. The Bossinesq simulation used 128×128×128
spatial points, a larger number than the parameterization, in order to accurately
resolve the mean statistics of the 3-dimensional dynamics as is commonly re-
quired in practice [16]. The resulting simulation took 13,737 seconds on the same
computer used for the neural diffusion-advection approach, demonstrating the
approximate 15,000x acceleration.

15

7 Automated Derivation of Closure Relations
for Viscoelastic Fluids

The full FENE-P model is:

σ + g

(
λ

f(σ)
σ

)
=

η

f(σ)
γ̇, (44)

f(σ) =
L2 + λ(L2−3)

L2η Tr(σ)

L2 − 3
, (45)

where

g(A) =
DA

Dt
− (∇uT)A−A(∇uT),

is the upper convected derivative, and L, η, λ are parameters [17]. For a one
dimensional strain rate, γ̇ = γ̇12 = γ̇21 6= 0, γ̇ij = 0 else, the one dimensional
stress required is σ = σ12. However, σ11 and σ22 are both non-zero and store
memory of the deformation (normal stresses). The Oldroyd-B model is the
approximation:

G(t) = 2ηδ(t) +G0e
−t/τ , (46)

with the exact closure relation:

σ(t) = ηγ̇(t) + φ, (47)

dφ

dt
= G0γ̇ − φ/τ. (48)

As an arbitrary nonlinear extension, train a UDE model using a single ad-
ditional memory field against simulated FENE-P data with parameters λ = 2,
L = 2, η = 4. The UDE model is of the form,

σ = U0(φ, γ̇) (49)

dφ

dt
= U1(φ, γ̇) (50)

where U0, U1 are neural networks each with a single hidden layer containing 4
neurons. The hidden layer has a tanh activation function. The loss was taken as
L =

∑
i(σ(ti)− σFENE-P(ti))

2 for 100 evenly spaced time points in ti ∈ [0, 2π],
and the system was trained using an ADAM iterator with learning rate 0.015.
The fluid is assumed to be at rest before t = 0, making the initial stress also
zero.

References

[1] Mike Innes, Alan Edelman, Keno Fischer, Chris Rackauckus, Elliot Saba,
Viral B Shah, and Will Tebbutt. Zygote: A differentiable programming
system to bridge machine learning and scientific computing. arXiv preprint
arXiv:1907.07587, 2019.

16

[2] Alan C Hindmarsh, Peter N Brown, Keith E Grant, Steven L Lee, Radu
Serban, Dan E Shumaker, and Carol S Woodward. SUNDIALS: Suite of
nonlinear and differential/algebraic equation solvers. ACM Transactions
on Mathematical Software (TOMS), 31(3):363–396, 2005.

[3] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud.
Neural ordinary differential equations. In Advances in neural information
processing systems, pages 6571–6583, 2018.

[4] J. Revels, M. Lubin, and T. Papamarkou. Forward-mode automatic differ-
entiation in julia. arXiv:1607.07892 [cs.MS], 2016.

[5] Michael Innes, Elliot Saba, Keno Fischer, Dhairya Gandhi, Marco Concetto
Rudilosso, Neethu Mariya Joy, Tejan Karmali, Avik Pal, and Viral Shah.
Fashionable modelling with flux. CoRR, abs/1811.01457, 2018.

[6] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential
Equations I (2nd Revised. Ed.): Nonstiff Problems. Springer-Verlag, Berlin,
Heidelberg, 1993.

[7] Francesca Mazzia and Cecilia Magherini. Test set for initial value prob-
lem solvers, release 2.4. Technical Report 4, Department of Mathematics,
University of Bari, Italy, February 2008.

[8] Francesca Mazzia and Cecilia Magherini. Test Set for Initial Value Problem
Solvers, release 2.4. Department of Mathematics, University of Bari and
INdAM, Research Unit of Bari, February 2008.

[9] Andreas Rößler. Runge–kutta methods for the strong approximation of
solutions of stochastic differential equations. SIAM Journal on Numerical
Analysis, 48(3):922–952, 2010.

[10] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering gov-
erning equations from data by sparse identification of nonlinear dynamical
systems. Proceedings of the National Academy of Sciences, 113(15):3932–
3937, 2016.

[11] Niall M Mangan, Steven L Brunton, Joshua L Proctor, and J Nathan
Kutz. Inferring biological networks by sparse identification of nonlinear
dynamics. IEEE Transactions on Molecular, Biological and Multi-Scale
Communications, 2(1):52–63, 2016.

[12] Niall M Mangan, J Nathan Kutz, Steven L Brunton, and Joshua L Proctor.
Model selection for dynamical systems via sparse regression and informa-
tion criteria. Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 473(2204):20170009, 2017.

[13] Jianfeng Zhang. Backward stochastic differential equations. In Backward
Stochastic Differential Equations, pages 79–99. Springer, 2017.

17

[14] Christopher Rackauckas and Qing Nie. Differentialequations.jl – a perfor-
mant and feature-rich ecosystem for solving differential equations in ju-
lia. The Journal of Open Research Software, 5(1), 2017. Exported from
https://app.dimensions.ai on 2019/05/05.

[15] Ali Ramadhan, Gregory LeClaire Wagner, Chris Hill, Jean-Michel Campin,
Valentin Churavy, Tim Besard, Andre Souza, Alan Edelman, John Mar-
shall, and Raffaele Ferrari. Oceananigans.jl: Fast and friendly geophysical
fluid dynamics on GPUs. The Journal of Open Source Software, 4(44):1965,
2020.

[16] Benoit Cushman-Roisin and Jean-Marie Beckers. Chapter 4 - equations
governing geophysical flows. In Benoit Cushman-Roisin and Jean-Marie
Beckers, editors, Introduction to Geophysical Fluid Dynamics, volume 101
of International Geophysics, pages 99 – 129. Academic Press, 2011.

[17] P.J. Oliveira. Alternative derivation of differential constitutive equations of
the oldroyd-b type. Journal of Non-Newtonian Fluid Mechanics, 160(1):40
– 46, 2009. Complex flows of complex fluids.

18

