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Abstract

The Support Vector Machine (SVM) idea has attracted recent atten-
tion in solving classification and regression problems. As an example
based method, SVMs distinguish two point classes by finding a separat-
ing boundary layer, which is determined by points that become known as
Support Vectors (SVs). While the computation of the separating bound-
ary layer is formulated as a linearly constrained Quadratic Programming
(QP) problem, in practice the corresponding dual problem is computed.

This paper investigates how the solution to the dual problem depends
on the geometry. When examples are separable, we will show that the
Lagrange multipliers (the unknowns of the dual problem) associated with
SVs can be interpreted geometrically as a normalized ratio of simplex
volumes, and at the same time a simplex volume decomposition relation
must be satisfied. Examples for the two and three dimensional cases
are given during the discussion. Besides showing geometric properties
of SVMs, we also suggest a way to investigate the distribution of the
Lagrange multipliers based on a random matrix model. We finish this
paper with a further analysis of how the Lagrange multipliers depend on
three critical angles using the Singular Value and CS decompositions.
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TCN 99024 awarded from the Battelle-Research Triangle Park and NSF under the grand
DMS-9971591.



1 Introduction

How can we compute the distance that separates two sets of points? This
problem which arises in such applications as Support Vector Machine (SVM)
classifiers [3] can be formulated as a Quadratic Programming (QP) problem.
This paper investigates how the Lagrange multipliers that arise in the QP for-
mulation depend on the geometry of those points. Qur guiding principle is that
we can explain the solutions through the geometry of a linear system rather
than the complexity of a QP problem.

In this paper, we first consider the problem of separating n+1 non-degenerate
points into two sets in R™, and show that these n + 1 points can always be
separated by the E-separating hyperplanes, which are defined to contain the
points from each set respectively. Then we derive the geometric meaning of
the Lagrange multipliers associated with the E-separating hyperplanes showing
that they can be interpreted as a normalized ratio of simplex volumes. For
the E-separating hyperplanes to be optimal, a simplex volume decomposition
relation must be satisfied. When examples are separable, a binary SVM classi-
fier is equivalent to the optimal hyperplanes separating two sets of points. After
deriving the properties of Support Vectors (SVs), we show that the optimal sep-
arating hyperplanes are equivalent to the E-separating hyperplanes computed in
the subspace determined by SVs. It follows that all the results we have obtained
for the E-separating hyperplanes can be applied to SVM classifiers. Therefore,
the Lagrange multiplier associated with each SV can be interpreted geometri-
cally as a normalized ratio of simplex volumes, and at the same time a simplex
volume decomposition relation must be satisfied. Moreover, based on a random
matrix model we suggest a way to investigate the distribution of the Lagrange
multipliers. This paper is finished by a further analysis of how the Lagrange
multipliers depend on three critical angles.

As indicated by Figure 1, the organization of this paper might be conveniently
characterized by the number of the points we want to separate . In Sections 2
and 3, we first consider the problem of separating n + 1 non-degenerate points
in R™, then we formulate the separation of arbitrary NV points as a QP problem.
In Section 4, the geometric and statistical properties of the n + 1 Lagrange
multipliers associated with the E-separating hyperplanes in R™ are derived.
Then we show that in Section 6 the QP problem of size NV can be reduced to a
smaller linear system of size n such that the results obtained in Section 4 can
be applied. At the end, we continue our analysis by showing how the Lagrange
multipliers associated with the n 4+ 1 SVs depend on three critical angles.

2 Separating Two Point Sets

We define the distance between two sets of points to be the maximum gap
(if it exists) between two parallel hyperplanes that separate them. Finding the



Section 2 (n+1 points) The E-separating Hyperplanes

Section 3 (N points) The Dual Problem

Section 4 (n+1 points) The Lagrange Multipliers

Section 6 (N points) Properties of SVs

Section 7 (n+1 points) Three Critical Angles

Figure 1: The organization of this paper can be characterized by the number
of the points we want to separate. Section 5 provides background material and
may be read independently.



pair of optimal separating hyperplanes is formulated as a QP problem. This
problem arises in such applications as SVM classifiers (see Section 5).

We begin this section with the problem of how to separate n + 1 points
in R™ with two parallel hyperplanes. We will show that under the condition
of non-degeneracy, n + 1 points can always be separated in R™ by solving a
linear system, but this system may or may not give the optimal separating
hyperplanes. At the end of this section we formulate the problem of finding the
optimal separating hyperplanes as a linearly constrained QP problem.

Formally, assume that there are n + 1 points {zy,...,Z,+1} in R™, each
of which belongs to one of two classes. We use +1 to represent each class
respectively, and define I, = {1,...,m} to be the index set corresponding to
the positive points and I_ = {m + 1,...,n + 1} for the negative points. To
indicate whether xz; is positive or negative, a sign y; = +1 is assigned to each
point z;. It is also assumed that if any point z; is taken as the origin, then
the resulting n vectors x; — x; (i # j) are linearly independent. The problem is
how to find the pair of optimal hyperplanes separating the positive and negative
points.

Any pair of parallel hyperplanes can be expressed as
wle 4+ b= =1, (2.1)

where w € R™ gives the normal direction of the hyperplanes and b is a scalar.
Since only the hyperplanes that can separate the two sets of points are consid-
ered, we must satisfy the conditions:

wlz;+b>1foriecl, (2.2)
and
wlz;+b< ~1foricl_, (2.3)
that is,
yi(wlz; +b)>1fori=1,...,n+1. (2.4)

An easy consequence from the assumption of linear independence is that
the n + 1 points are separable, i.e., there must exist one pair of hyperplanes
satisfying the separability condition (2.4). We state this result as a proposition.

PROPOSITION 2.1 Suppose we are given n + 1 points z; in R™. Under the
condition of non-degeneracy, that is, if any point x; is taken as the origin then
the resulting n vectors z; —x; (i # j) are linearly independent, these n+1 points
can always be separated into two sets by a pair of parallel hyperplanes.



Proof. To demonstrate this, we will find w and b such that equality holds:
yi(wTz;+b)=1fori=1,...,n+ 1. (2.5)

Without loss of generality, we assume that z, 1 is the origin. It follows imme-
diately that b = —1. Thus for the remaining n points, the equalities in (2.5)
become

whz; =2forieI,, (2.6)

and
wlz;=0foricI . (2.7)

Let X = [z1,...,T,] be a square matrix. The equations (2.6) and (2.7) uniquely
determine the unknown vector w by the following linear system:

XTo [ 2 ] (2.8)

where the sub-vector 2 corresponds to the positive points. From the assumption
of linear independence, the matrix X is nonsingular so that the above linear
system must have a unique solution w. Therefore, there always exists such a
pair of hyperplanes that satisfies the separability condition (2.4). W

In the following context, we denote the pair of hyperplanes satisfying Equa-
tion (2.5) by E-separating hyperplanes, the letter “E” represents equality. The
two hyperplanes containing the positive and negative points are called positive
hyperplane and negative hyperplane respectively.

DEFINITION 1 Suppose we are given n + 1 points x; in R™ such that if any
point x; is taken as the origin then the resulting n vectors x; — z; (1 # j) are
linearly independent. The E-separating hyperplanes are the pair of hyperplanes
satisfying Equation (2.5).

Figure 2 shows the two dimensional case. It is easy to see how three vertices
of a triangle uniquely determine the pair of lines satisfying Equation (2.5), i.e.,
the E-separating lines. One might be tempted to believe that the pair of E-
separating hyperplanes gives the optimal separator, but a simple example in
Figure 2(b) shows that this is not true. Here the pair of solid lines defines a
larger gap than the pair of dotted E-separating lines.

How can we find the optimal separating hyperplanes? We know that the
distance between the two parallel hyperplanes in (2.1) is d = ﬁ Therefore,
given any N points belonging to two classes, we can formulate the finding of
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Figure 2: The horizontal lines labeled by “E-line” are the E-separating lines.
In both cases, the solid lines labeled by “opt line” are the optimal separator.
Squares and circles are used to indicate the positive and negative points respec-
tively.

the optimal separating hyperplanes as the following linearly constrained QP
problem:

1
minillrjlize f(w,b) = EHWH (2.9)
subject to:
yi(wlz; +b) > 1, fori=1,...,N. (2.10)

If the two sets of points are separable, then the above QP problem must have
an optimal solution, which is unique as proved in Section 6. In the following
context, it is always assumed that the two sets of points are separable.

3 The Dual Problem and Optimal Conditions

In this section, we derive the dual problem to the linearly constrained QP
problem (2.9), which is the one that is actually computed in practice. We also
give conditions for judging if a solution is optimal.

Let a; be the Lagrange Multipliers corresponding to the inequality con-
straints in (2.10). Then the Lagrangian is

N N
1
L(w,b,a) = §Hw|\2 —Za,-y,-(wa,-—i—b)—l—Zai, (3.1)
i=1 i=1



where a = [a3,...,an] and a; > 0. By requiring the gradients of L(w,b, )
with respect to w and b vanish, the following relations are obtained:

N
w = Zyiaimi, (3.2)
i=1

and
N
=1

Substituting the above equations into L(w, b, o), we get

N
a) = Zai Z aiajyiy;(T] ;). (3.4)
i-1

i,j=1

Maximizing L(a) or equivalently minimizing —L(a) subject to a; > 0 and
Condition (3.3) gives the dual problem:

1
minimize F(a) = §aTHoz -a’1 (3.5)
subject to:
yTa=0, (3.6)
a>0, (3.7)
where y = [y1,...,yn]T, 1 1T and H is a symmetric semi-positive

= [1,
definite matrix with H;; = yz( T )y] The objective function F () is equal to
—L(a). From the fact that f(w, ) and F(a) are equal at optimality, it follows
that

lwl* =" a. (3.8)

j=1
Thus the distance between the two sets of points is

i=—2 (3.9)

Y szil Q;

Since the above quadratic programming (QP) problem is convex, the Karush-
Kuhn-Tucker (KKT) conditions (page 35, [2]) become both necessary and suf-
ficient for o to be optimal. These KKT conditions can be summarized as the
following;:



yTa =0, (3.10)

a >0, (3.11)
N

yi(z oy T +b) > 1V 4, (3.12)
j=1
N

vi()_ ejyjz] i +b) > 1 only if a; =0. (3.13)
j=1

If a; > 0, then from KKT conditions (3.12) and (3.13) we know that

N
Zajyjm?mi +b=y.
j=1

Therefore,

N
b=vy; — Zajyjmfaci. (3.14)

J=1

4 The Lagrange Multipliers of the E-separating
Hyperplanes

As already seen in Figure 2, the pair of optimal separating lines depends on
the shape of the triangle constructed by z;. For an acute triangle such as in
Figure 2(a), the E-separating lines are optimal. While for an obtuse triangle
such as in Figure 2(b), the E-separating lines are not optimal. To investigate
how the optimal separator depends on the geometry, we begin with the pair
of E-separating hyperplanes. We first derive the geometric meaning of the La-
grange multipliers (the unknowns of the dual problem giving the E-separating
hyperplanes), then show that the optimality conditions can be expressed geo-
metrically as a simplex volume decomposition relation, which explains clearly
how the optimal solutions in Figure 2 depend on the shape of the triangles.

4.1 The Geometric Meaning of the Lagrange Multipliers

If the inequality constraints in (2.10) are enforced to be active, i.e., (2.10)
becomes (2.5), then the QP problem (2.9) will give us the pair of E-separating
hyperplanes. Since only equality constraints are involved, the Lagrange multi-
pliers a; become unconstrained. In this section, we derive the formula for the
Lagrange multipliers associated with the E-separating hyperplanes and show
that they can be interpreted geometrically as a normalized ratio of simplex
volumes.



THEOREM 4.1 The Lagrange multipliers associated with the E-separating hy-
perplanes can be expressed as a normalized ratio of simplex volumes.

Proof. Define h such that it has the same direction as w and its length
gives the distance between the E-separating hyperplanes. Again without loss of
generality, we assume that x, 1 is the origin. It follows that point A must be
in the positive hyperplane, i.e.,

wTh =2, (4.1)
From the definition of A, it is true that

2 2
= ——=hand h = —=w. (4.2)
1112 [[w]}?

w

Define 8; = a; ifi € Iy and §; = —a; ifi € I_ fori = 1,...,n. Then Equation
(3.2) becomes

i—1
where 3 = [31,...,0n]T. Combining the two equations above, we obtain the
following linear system:
XB=—2_h (4.4)
[R]12 '

The solution to this linear system in terms of determinants tells us that

2y, det X;
- = 2yt TR 45
ar =y TRl det X’ (4.5)
where X; = [z1,...,21-1,h, T141,...,z,) for L = 1,...,n. If a1,...,a, are

known, a,11 can be determined by Equation (3.6), i.e.,
Ap41 = Z o — Z Q. (46)
il i€(I_—{n+1})

Recall that
det X = +nlvol X.

Therefore, a; can be expressed geometrically as

+2 vol X;

~ R vol X a7
= TR vol X (4.7)
for | = 17---,7’L, and
2 Zie(uul,f{,wl}) +vol X;
T : (4.8)
(| A2 vol X
m



Equation (4.7) and (4.8) indicate clearly how the Lagrange multipliers depend
on the geometry of points z; and h. In Figure 2(a), the E-separating lines are
optimal. The three corresponding Lagrange multipliers in terms of the ratio of
simplex volumes are shown in the following:

2 N 2 A 2 A 2
o= Qo — —_— gy — = .
! IIhH2A’ ? IIthA’ ’ IIhII2A (| A[?

4.2 The Simplex Volume Decomposition at Optimality

In this section, we show that the necessary and sufficient condition for the
E-separating hyperplanes to be optimal can be expressed geometrically as a
simplex volume decomposition relation.

Using KKT condition (3.10), Equation (3.8) can be written as

n+1
[w]* =Y ai=2) a
i=1 iely
=2 o (4.9)
iel_
4
1Al

Choosing a different point as the origin will give different simplices X and X;
in Formula (4.7), but the ratio of their determinants is unchanged. Therefore,
the Lagrange multipliers o; do not depend on the choice of the origin. In the
following context, we always assume that a positive point is chosen as the origin
when «; with ¢ € I is considered, and a negative point is chosen as the origin
when «; with ¢ € I is considered, so that Formula (4.5) can be applied without
considering the case (4.6).

Substituting c; with Formula (4.5) into Equation (4.9) gives us the following
relation:

det X = Z det X;
i€l

det X = — Z det)zz-,
iel_

(4.10)

where X and X; are the simplices obtained by choosing a positive point as
the origin. From KKT conditions (3.10) — (3.13) and the definition of the E-
separating hyperplanes, we know that if all the Lagrange multipliers o; are
nonnegative then the E-separating hyperplanes must be optimal and vice versa.

10



If o; is positive, then by Formula (4.5) det X and det X; must have identical
signs if 7 € I, or det X and det X; must have different signs ifi € I_. It follows
that when the E-separating hyperplanes are optimal, Relation (4.10) becomes

vol X = Z vol X;
iel,

vol X = Z vol X;.
icl_

(4.11)

On the other hand, if the above relation is true, we want to show that
all the «; are nonnegative. In (4.11), writing the first equation in terms of
determinants, we have

[det X| =) " |det X;]. (4.12)
il
Suppose det X = vol X. Subtracting the first equation in (4.10) from Equation
(4.12) gives us
0= |det X;| — det X;. (4.13)
i€l
Since each term is nonnegative, | det X;| — det X; must be zero, i.e.,

det X,' = vol X,'.

Therefore, o; must be nonnegative according to (4.5) for ¢ € I,. The same result
can be derived for the case when det X = — vol X. By the same reasoning, it is
also ture that a; must be nonnegative for ¢ € I_ if the second equation in (4.11)
is satisfied. Therefore, we can conclude that the E-separating hyperplanes must
be optimal.

We state the above results in the following theorem:

THEOREM 4.2 The pair of E-separating hyperplanes is optimal if and only if
the simplex volume decomposition relation (4.11) is satisfied.

If there is only one negative point as in the two dimensional cases shown by
Figure 2, the simplex volume decomposition relation (4.11) can be replaced by
a simplex decomposition relation:

simplex X = Z simplex X;. (4.14)

il

From the geometry, it is easy to see that this relation is true if and only if h is
inside the symplex constructed by the positive points in the positive hyperplane.

11
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Figure 3: The simplex decomposition for an acute triangle

Figure 4: The simplex decomposition for an obtuse triangle
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Figure 5: A three dimensional simplex decomposition where A is inside the base
triangle

The relation (4.10) for the cases described in Figure 2(a) and Figure 2(b) is
illustrated by Figure 3 and Figure 4 respectively. For acute triangles, since h is
between z1 and x2, the pair of E-separating lines is optimal. While for obtuse
triangles, since the above relation is not satisfied, the pair of E-separating lines
is not optimal. Figure 5 shows a three dimensional simplex decomposition where
the E-planes separating the points {z1, 22,23} and {z4} are optimal.

If the simplex volume decomposition relation is not satisfied, then the E-
separating hyperplanes are not optimal. To achieve the optimal separator such
as the pair of solid lines in Figure 2(b), some conditions in (2.5) must be relaxed
to inequalities.

REMARK 4.1 It is not true that the equality constraint with the most negative
Lagrange multiplier must be relazed. A counter example can be constructed.

4.3 A Random Matrix Model: The Lagrange Multiplier
Distribution

For the E-separating hyperplanes, a; can be either positive or negative as
indicated by Formula (4.7). It is interesting to study the distribution of sign(«;).

As a model, we will assume that X is a random matrix whose elements
are N(0,1) (standard normal distribution) and independent. In statistics, W =
XTX is called a Wishart matrix W,,(n,nI,x,) where I,,,, represents a n X n
idendity matrix (page 82, [7]). Multiplying Equation (4.4) by X7T, we can see
that (1 : n) is determined by the inverse Wishart matrix W1

a(l:n) = diag(y)Wl[ : } (4.15)

13
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Figure 6: Histograms of o and a; . Each column of sub-figures corresponds to
a different m. The size of the experiment is 8000 and n = 12.

Since permuting the columns of X does not affect the distribution of W~1, we
can conclude that the Lagrange multipliers associated with the positive points
must have identical distributions and so do the Lagrange multipliers associated
with the negative points (except a,11). Therefore, in the following context it is
general enough to only consider two Lagrange multipliers c; and Qinfm+1,n}
which are denoted by ozl+ and o respectively. Again m gives the number of
positive points.

In Figure 6, each column of sub-figures plots experimental histograms of o}
and a; corresponding to a different m. These histograms tell us that the p.d.f.
of af' tends to spread out (have larger variance) and become more symmetric
about the y-axis as m increases, and at the same time the p.d.f. of a; always
has a similar shape but also tends to spread out as m increases. From the
first sub-plot in Figure 6(a), we can see that ai" is always positive at m = 1.
The above observation is consistent with the approximations to Pr(a; > 0)
for i = 1,...,n as shown in Figure 7. The plot in Figure 7(a) indicates that
Pr(af > 0) monotonically decreases as m increases since increasing m moves
the median of ] toward the origin, and Pr(a; > 0) = 0.5, i.e., the median of
a; is zero for any m. While the plot in Figure 7(b) indicates that Pr(a; > 0)

14
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Figure 7: Each curve plots the ratio of the occurrence of ; > 0 fori=1,...,n

during 8000 computations at a different m. In sub-figure (b), two cases with
n = 12 and n = 18 are plotted against each other indicating that Pr(a; > 0) is
independent of n.

and Pr(a; > 0) do not depend on n.

Although the density function of W~ is known (page 113, [7]), we have not
at this time chosen to verify the above observations analytically. To shed light
on the distribution of o;, we examine the elements of W1, Let %W =TTT be
the Cholesky factorization of %W, where T is an upper-triangular matrix with
positive diagonal elements. We know that the elements ¢;; (1 < i < j < n) of
T are all independent, tZ; is X2 ;. , (i = 1,...,n), and ¢;; is N(0,1) (1 < i <
j < n) (Theorem 3.2.14, page 99, [7]). Here X;?_, ., represents the chi-square
distribution with n —i+ 1 degrees of freedom. Again by symmetry, the diagonal
elements of W ! must have identical distributions and so do the off-diagonal
elements. Therefore, examining one diagonal and one off-diagonal element is
enough to derive the distributions of all elements of W ~!. From the following

equation:

W71 — leleT
n k)

15



we have

1

w! =
(nm) =

; (4.16)

*tn—ln
n X t%n X tn_1n—1

W' (n,n—1) = (4.17)

It follows that the following theorem is true:

THEOREM 4.3 Let X be a n xn random matriz whose elements are N(0,1) and
all independent. Define W = XTX. The diagonal elements of W~ have the
same distribution as
1
nxry

(4.18)

and the off-diagonal elements have the same distribution as

T3 T4

nXrLX Ty V2xnxr

where 7; (i = 1,2,3) are all independent, vy is X2, vy is X2, r3 is N(0,1) and

Ty = % is the t-distribution with 2 degrees of freedom which is denoted by

(4.19)

to. Note that the elements of W~ are not independent.

Assume that m < n. Since

of =23 W(1,5) (4.20)
j=1
and
ap =-2) Wl m+1,5), (4.21)
j=1

the difference between them is that o] has one diagonal element in it which
has the same distribution as ﬁ while «; does not. This difference can be
1

visualized by the histogram plots of ozf' and a; in Figure 6. The first sub-plot
of Figure 6 shows what the distribution function of —L_5 looks like. At m = 1,

nXXf
it is obvious that Pr(aj > 0) =1, and
Pr(a; > 0) = Pr(ry > 0) = 0.5,
because the p.d.f. of a t-distribution is symmetic. At m = 2,

Pr(af > 0) = Pr(1 — 75 >0)=Pr(ry < \/5)

16



We know that the p.d.f of ¢5 is

2
f(r) = @a (4.22)

[N

where —oo < r < oo (page 600, [6]). Integrating it from —oco to /2 gives us

2 1
Pr(af >0) = % +5 ~ 08536 < 1. (4.23)
From Theorem 4.3 and the definitions of af” and aj, it is easy to see that
Pr(af > 0) and Pr(a; > 0) do not depend on n. The plots in figures 6 and 7
are consistent with these analytic results.

By the analytic and experimental results obtained above, we give the follow-
ing conjecture:

CONJECTURE 1 Assume that there are n random points x4, ..., z, in R™, where
the coordinates x;; of x; are N(0,1) and all independent (i, = 1,...,n). For
the E-separating hyperplanes separating the positive points {z1,...,%Tm} and the
negative points {Tmi1,...,Tn,0}, Pr(aj > 0) decreases monotonically as the
number of positive points m increases and it does not depend on n; for any
m < n, 1> Pr(aj >0)>Pr(a; >0)=0.5.

From the above conjecture, it follows that the Lagrange multipliers associated
with the positive points have more chance to be positive than the Lagrange
multipliers associated with the negative points under the assumed model.

5 Classification Problems and Support Vector
Machines

This section contains background material that may be familiar to some
specialists. We have chosen to include this material for the benefit of the many
readers who are not already familiar with the underlying problem. Before intro-
ducing Support Vector Machines and showing how they relate to the distance
problem, we review classification problems by going through an example.

5.1 A Classification Problem and Its Bayesian Solution

Imagine that inside a newly invented Las Vegas machine, there are M genera-
tors, each of which can randomly generate k-dimensional vectors = (z € ZC RF)
using its own probabilistic model. A color H,, is assigned to each generator for
m =0,...,M — 1. If z is generated by the mth generator, then we color it
with H,,. In the following context we will use color H,, to represent the class of
vectors generated by the mth generator. At each time, the machine randomly

17



turns on one generator and outputs a vector z. The game is to guess the color
of z. Since z can be output by any generator, we are not able to tell the right
answer all the time. The best thing we can do is to minimize the error.

Given an observation z, a classification problem is to identify the class this
x belongs to. Denoted by ﬁ(), a deterministic solution to the above problem
called decision rule is a function that uniquely maps every k-dimensional vector
in T to one of the M colors, i.e., H: T — {Hy,Hy,.... Hyr_1}. If the ideal
decision rule is H(-), then the function H(-) can be considered as an estimation
of H(-).

Let us define P, to be the probability that the machine chooses the mth
generator, i.e., P,, = Pr[z € H,,], and characterize the probabilistic model
underlying each generator by a probability density function p,,(z). If all the
statistics P, and p,,(z) are known, then the optimal decision rule can be derived
analytically to minimize the expectation of some cost. For instance, if we define
that the cost of the correct answer (H(z) = H(z)) is zero, and the cost of the
wrong answer (H(z) # H(z)) is one, then the expectation of the cost is just
the probability of error. Of course for casinos, this probablity of error must be
set higher than % By Bayesian rule, it can be shown that the optimal solution
minimizing the probability of error is in the form of a Likelihood Ratio Test
[12]. For the case where all the P, are equal, the solution is simply

H(z) = H,p: with opt = argmax p,,(z)

m

form=20,...,M — 1.

Each decision rule H(-) decomposes the domain Z into M regions:
Zm ={z| H(z) = Hp,}.

Therefore, geometrically fI() corresponds to the boundary separating these
regions Z,,. For example, let us consider the binary case where

po(x) = N(mg, o°T),

p1(z) = N(my,o’T),

and Py = P; = % The boundary is just the hyperplane orthogonally bisecting
the line m1mg as shown in Figure 8.

5.2 Support Vector Machine Classifiers

In practice, there are many cases where the statistics P, and p,,(z) are un-
known. The only available information is a finite set of examples {(z;, H;), z; €
R, H; € {Hy,...,Hpy 1} for i = 1,...,N}. Using these examples a SVM
classifier estimates the optimal decision rule by finding a boundary layer that
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y-axis
N

Figure 8: A two dimensional Bayesian separating boundary. The circles repre-
sent the instances of color Hy, and the squares represent the instances of color
H,;.

separates the M subsets of examples. Without loss of generality, we only con-
sider the binary case. Again, y; = £1 is assigned to each point z; to represent
its class. If the positive and negative points are separable by hyperplanes, then
a linear SVM classifier is just the pair of separating hyperplanes that defines
the distance between the two sets of points. Therefore, when examples are sep-
arable, SVMs can be formulated as the same QP problem as (2.9), and its dual
problem is the same as (3.5). As an example, A two dimensional linear SVM
classifier is shown in Figure 9. For the inseparable case, [3] could be a good
reference.

Nonlinearity is introduced by mapping every point in R? into a higher di-
mensional space R? where a hyperplane has more degrees of freedom. The map
® is implicitly defined by a positive definite function k(-) which gives the inner
product of two mapped points in R?, i.e.,

k(z1,22) = <I>(w1)T<I>(w2) where z1,z2 € R?.

The same problem is computed in R to find the pair of hyperplanes separating
the mapped examples (®(z;),y;) with the maximum gap. All the key relations
are kept same except that the inner product =7 z, is replaced by k(z1, z2). Thus,
the QP problem (2.9) becomes

1
minirilize f(w,b) = §||w|\2 (5.1)

w7
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y-axis

Figure 9: A linear SVM classifier. The circles represent the instances of color
Hj, and the squares represent the instances of color Hj.

subject to:
yi(wT®(z;) +b) > 1, fori=1,..,N and w € R%. (5.2)

The corresponding dual problem is the same as (3.5) except that the Hessian
matrix is defined by H;; = y;k(x;, z;)y;. The resulting nonlinear SVM separator
is given by

N
Z a;yik(zi, ) + b= £1.
i=1

Since only the inner product k(.) is involved in computing the dual problem, we
do not need to know the exact form of ®.

From the above argument, we see that a nonlinear SVM is equivalent to the
optimal separating hyperplanes in a higher dimensional space. Therefore, it is
general enough to only consider the linear case. We point out again that KKT
conditions (3.10) — (3.13) are the if and only-if conditions for o and b to be the
optimal solution. Points z; are called support vectors (SVs) if their Lagrange
multipliers a; are positive. From KKT condition (3.13), SVs must be in the
two optimal hyperplanes. In Figure 2(a) z1, z2 and z3 are SVs, while in Figure
2(b) only z; and z3 are SVs. An important property of SVM classifiers is that
discarding the examples corresponding to non SVs will not change the optimal
hyperplanes. We will prove it and other properties of SVs in Section 6. Once «
and b are computed, the SVM decision rule is the following:

1. if Z;V:1 ajy;jz; © +b < —1 then H(z) = H,.

2. if Y, ajy;2Tz +b > 1 then H(z) = Hi.
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Figure 10: The pair of optimal separating hyperplanes is unique.

3. For the case when z fells in between the two hyperplanes, it is inconclusive
so that z can be classified either as Hy or H;.

6 Support Vectors and Simplex Volume Decom-
positions

Recall that in this paper examples are assumed to be separable so that the
optimal solution to Problem (2.9) must exist, and that points z; with positive
Lagrange multipliers are called SVs. In this section, we first derive the properties
of SVs, then improve the standard definition of SVs so as to insist that they
be non-redundant. In order to apply the results obtained in Section 4, we
show that the optimal separating hyperplanes are equivalent to the E-separating
hyperplanes computed in the subspace determined by SVs.

LEMMA 6.1 The pair of optimal separating hyperplanes is unique.

The proof is illustrated geometrically by Figure 10. Suppose that we have
two different pairs of optimal hyperplanes (1) and (2). If they are parallel to
each other as indicated in Figure 10(a), then it is obvious that the negative
hyperplane of (1) and the positive hyperplane of (2) defines a larger gap, which
is contradictory to the assumption that (1) and (2) are optimal. Similarly, if
they intersect as shown in Figure 10(b), then the pair of hyperplanes (3) is wider,
which is a contradiction again. Therefore by contradiction, we can conclude that
the pair of optimal separating hyperplanes is unique.

PROPERTY 1 The pair of optimal separating hyperplanes is independent of points
that are not SVs.

21



Proof. Given a set of SVs {z;,,...,2;,,,} and their Lagrange multipliers
a* = |a,,...,o,,,|T. Discarding the N — (n + 1) points that are not SVs
removes the corresponding constraints in the QP problem (2.9):

1
minirglize f(w,b) = §||w|\2 (6.1)

w,
subject to:
yi(wTwi + b) Z ]., for i = ll, ...,ln+1.

It follows that the dual problem becomes

minimize F(a)= %aTHoz -a’1 (6.2)
subject to:
yTa =0,
>0,
where a = [a1,...,an11]7 and H; j = yli(wlq;wlj)ylj.

In order to prove that solving Problem (6.1) still gives us the same optimal
separating hyperplanes, we need to show that a* is an optimal solution to the
above dual problem. Define I, = {l1,...,lnt1}. If o is an optimal solution to
Problem (6.2), then by inflating it with zeroes, the resulting & is feasible to the
original dual problem (3.5), where

) {a,. ific I,
o; =

0 otherwise.

With another fact that o* is defined to be feasible to Problem (6.2), we can
conclude that a* must be an optimal solution to Problem (6.2). By Lemma 6.1,

Problem (6.1) (with less constraints) determines the same optimal hyperplanes
as Problem (2.9) does. W

From Property 1 and Lemma 6.1, we know that the optimal separating
hyperplanes can be computed by the following equality constrained QP problem
if we know which points are SVs:

1
minimize f(w)= §||w|\2 (6.3)
subject to:

yi(wTz; —1) =1, fori=1,... 1,
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where z;,, is assumed to be zero (b = —1). Since only equality constraints are

involved, the Lagrange multipliers become unconstrained in the corresponding
dual problem:

1
minimize F(a) = EaTHoz —aT |: (2) } , (6.4)

which can be solved by the following linear system if H is nonsingular:
2
Ha = [ 0 ] (6.5)

Since Ha = XTw (z;, , = 0), we have

XTw = [ 3 ] (6.6)

We recognize that Equation (6.6) is just the vector form of the equality con-
straints in Problem (6.3), which tells us that the optimal w is given by the least
square solution to Equation (6.6).

n+1

Before giving the second property of SVs, we define a set of SVs to be
non-redundant if they are not degenerate as defined in Proposition 2.1.

PROPERTY 2 SVs may be redundant.

Considering the case shown in Figure 2(a), we know that all the three points
are SVs. Suppose that another positive point x4 is given as a new example
such that it is on the positive separating line and between z; and 2. By the
definition of x4, we have

T4 =cC1T1 + CoZ2, (67)

where c;, co > 0 and c;+c2 = 1. From the geometry, it is easy to see that adding
z4 will not change the optimal solution. Equation (3.2) and (6.7) together tell
us that
W = Q1T1 + Qo
= (a1 — c104)x1 + (a2 — Caas) Ty + Q44 (6.8)

== dliﬂl + dz:ﬂg + a4xy.

Therefore, as long as 0 < a4 < min {‘z—ll, ‘z—j}, by KKT conditions (3.10) — (3.13)
we know that a = [di,da,d; + d2 + a4,a4]T is an optimal solution to the
corresponding dual problem. Since a4 > 0, 24 is a SV like others. But we know
that it linearly depends on z; and x5. Note that o = [, a2, a1 + g, 0]7 is also

an optimal solution.

REMARK 6.1 The optimal solution to the dual problem (3.5) may not be unique,
but the primal problem (2.9) must have a unique solution.

PROPERTY 3 There exists such a set of SVs that are not redundant.
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Proof. Again, let {x;,,...,%;,,,} be a set of SVs. Equation (4.4) tells us
that

2
XB=—=h
]2
where h and 3 are the same as defined in Section 4, and X = [z;,,...,2;,] is a
g X n matrix (we assume that z;,,, = 0). Let us redefine the negative points
by z;; = —z;; so that the above equation can be written as

Z:Ul ar, ||hH2h (6.9)

Since every negative point z;; has the following decomposition:

xy; = T, — h,
where Z;; is the projection of z;; onto the positive optimal separating hyper-
plane, Equation (6.9) becomes

Z zyQl; + Z T, = (ﬁ + Z ali)h

Lely Le(d_—{lns1}) Le(T_{lns1}) (6.10)
= Chh,

where ¢, > 0. Since all the points in the left hand side of Equation (6.10) are
in the positive optimal hyperplane and o, is positive, h (the projection of z;,_,
onto the positive optimal hyperplane) must be inside the polytope constructed
by these points. Knowing that among these points the ones that construct the
smallest polytope containing h correspond to the smallest basis that can linearly
express h, we choose the points z;, with the same indices as the candidates
to be linearly independent SVs, and denote them by {z.,...,2Z.,}. A three
dimensional case is shown in Figure 11. Since A is inside the smallest polytope
constructed by the projection of z., onto the positive optimal hyperplane, we
are guaranteed that the following equation has a positive solution:

Z O, = 2h
- [A]

It follows that the points we have chosen (if ¢; € I_ replace z., by —z.,) are
still SVs and they are linearly independent. W

DEFINITION 2 By Property 3, we define SVs to be non-redundant in addition
to the requirement that their corresponding Lagrange multipliers be positive.

LEMMA 6.2 The optimal separating hyperplanes are equivalent to the E-separating
hyperplanes computed in the subspace determined by SVs.
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X2

Figure 11: On the positive optimal plane, 1, 2 and z3 define the smallest
triangle containing h. It follows that z4 is redundant and {zi, 2,3, x5} are
SVs.

Proof. Given a set of SVs {z;,,...,%;,,,}, we can determine the optimal
separating hyperplanes by computing the least square solution to (6.6). Let
X = QanXan be the compact QR decomposition of X and & = QT w, where
X is nonsingular by the definition of SVs. If P is a matrix that completes Q,
i.e., W = [Q, P] is square orthogonal, then w has the form:

w = Qu + P,

where @ € R"™ and # € R?~". From Equation (6.6), we have

XTip = [ 3 ] (6.11)

Since X is nonsingular, the above system has a unique solution:

w;zT[ﬁ].

It is easy to see that to minimize
w|[? = [|l@]|* + [|7]|* for # € RT" ™,

7 must be zero, i.e., the least square solution is w = Q. Therefore, once we are
given a set of SVs, the original QP problem can be reduced to a linear system
(6.11). From results in Section 4, we recognize that this is exactly the linear
system that defines the E-separating hyperplanes in R™ that separate the n+ 1
projected SVs {z},,...,z7,,0}. Thus we can conclude that the pair of optimal
hyperplanes (in R?) is equivalent to the pair of E-separating hyperplanes (in
R™) in the sense that w = Qw and @ = QTw. W
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From Lemma 6.2 and the results about the E-separating hyperplanes in
Section 4, it immediately follows that the following theorem is true:

THEOREM 6.1 Given n + 1 SVs {z1,...,z,41} in RI. Define X = [z; —
Tptlye-ey@n — Tny1), I+ = {l,...,om} and I = {m+1,...,n+ 1}. If
X = qunf(nxn is the compact QR decomposition of X, then the Lagrange
multiplier associated with each SV is determined by

2 wvol Xl

= e 6.12
T4 vol X (6.12)

aj

forl=1,...,n, and

Qpt1 = Z o; — Z (678 (613)

i€l i€I_—{n+1}

Where X; = [Z1,...,Z1—1,h,Z111,...,Zn], and Qh defines the normal direction
of the optimal separating hyperplanes and its length gives the distance between
them. The pair of optimal separating hyperplanes is given by

QXxT [ (2) })Ta; +b=+1, (6.14)

where b is determined by (3.14). Moreover, the following simplex volume de-
composition relation must be satisfied at optimality:

vol X = Z vol Xi,
icly

vol Xt = Z vol X:r,
icl

(6.15)

where the superscript “+” indicates that a positive point is chosen as the origin
in the subspace determined by SVs.

REMARK 6.2 The above argument shows that the Lagrange multiplier associated
with each SV can be interpreted geometrically as a normalized ratio of simplex
volumes, and at optimality a simplex volume decomposition relation must be
satisfied.

7 A Trigonometric Interpretation of o

If we inflate (or deflate) the geometry, i.e., each point is multiplied by a factor
¢ such that z; = cx;, then from Formula (4.7) and Formula (4.8), we know that
each a; will be changed by a factor %2 Since the volumes of X; and X inflate
(or deflate) in the same way, their ratio will be a constant. Define v; to be

_detXi (_ )
’Y'L_detX 1= ,"'7n7
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where X and X; are the same as defined in Section 4. We first show that ~;
depends on two angles. Then by introducing another one, we show that the
Lagrange multipliers a; associated with the E-separating hyperplanes can be
expressed in terms of three angles.

We need the following theorem during our derivation. Since its proof is not
directly related to the main theme of this paper, we put it in the appendix.

THEOREM 7.1 Let X; = [z1,...,Zm] and X2 = [Tm41,...,Tn] be a partition
of a general square matric X = [z1,...,Z,] with m > n —m. We denote the
compact QR decompositions of X1 and Xz by X1 = QT*™R™™™ and X5 =
Q;X(nfm)Rénfm)X(nfm)

and X5 by

respectively. After defining the determinants of X,

det X1 = +det Rl

and
det X2 = +det Rz,

we have the following decomposition of det X :

det X = det X; det X, H sin 6;, (7.1)

i=1

where 0; are the principal angles between the subspaces spanned by X, and X,.

Let

Xi(l) = [T1, -y Ti1, Tit1y-- - Tn, A
and

XU = [z1,...,2i 1, Zig1,- .. T, T3
be matrices obtained by permuting the columns of X; and X respectively. Since
Xi(l) and X () are obtained by the same permutation and permuting the columns
of a matrix may only change the sign of its determinant, ; has the same form
in terms of Xi(l) and X(1:

det X i(l)
T det XM

Using the decomposition theorem 7.1 and denoting that

(2) _
Xi —[$1,...,l‘i,1,$i+1,...,;Bn},
we have

det XZ.(Q) det h sin 6; det A sin 0;
’}/i = = .
det Xl-(2) detz;siney;  detzisiny; (7.2)
B I|| sin6;

7 [l singy”
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where 6; is the principle angle between the subspaces spanned by Xi(2) and h,
and 1; is the principle angle between the subspaces spanned by Xi(z) and z;. If
p; is a vector perpendicular to the n — 1 dimensional subspace spanned by Xi@)
and we redefine ; to be the angle between p; and h, and v; to be the angle

between p; and z;, then the formula becomes

_ 4 lh|| cosé;

=zl cos i (7:3)

i

It is not hard to verify the above formula from Equation (4.4). Define p;
such that

XT i — €;. 7.4
p

Multiplying both sides of Equation (4.4) with p! gives us:

2
I'xp=——pIn

2
Bi = pi h 7.5
BE (7:5)
2
= 5 ||pill[|R][ cos 6;.
A2
It follows that
i = |Ipill[[]| cos 6;. (7.6)
By the definition of p;, we know that
Ipill = ———
bil| = .
cos ;|| z; ||

Substituting ||p;|| into (7.6) with the above result, we have

B ||R|| cos 6;

= Nl cos g (7.7)

i

REMARK 7.1 The definition of p; (7.4) removes the + sign in Formula (7.2).

From the above results, we can express «; in terms of cos#; and cos; as
the following for i = 1,...,n:

2y; ||h|| cos;
o; =
TR o] cos s -
Yi cosb; ’

~ slAllle] cos i’
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Let ¢; be the angle between p; and z; such that
1 .
Area(Az;zpy1h) = §Hh|\ |lz; | sin ;. (7.9)

Then we have the following formula for «;:

Y sin ¢; cos 6;

= Area(Az;zpi1h)  cost;

(7.10)
cosbi Therefore, for the corre-
cos Y;

sponding E-separating hyperplanes to be optimal y; <% must be nonnegative.

It follows that the sign of «; is determined by y;

cos ¢

The above argument has proved the following theorem:

THEOREM 7.2 Define p; such that XTp, = e;. Then the formula (6.12) in
Theorem 6.1 can be written in terms of three angles ¢;, 0; and ;:

B i sin ¢, cos 0,
~ Area(A#j@n41h)  cosyy

a (7.11)

where 0; is the angle between p; and h, 1; is the angle between p; and Z;, and
¢1 is the angle between &; and h.

Theorem 7.2 shows that o; can be decomposed into two terms. One term
containing three angles is independent of the scale of the coordinates, while the
other one is reciprocal to the square of the scale.

As an example, we consider the acute triangle case shown in Figure 2(a).

Since points 1 and z2 are positive, we have

L

R

08 ¢; (i=1,2).

Thus a; can be expressed in terms of the following angles:

sin Zz1x3h cos Zx3ToT
4= Area(Azyz3h)  sin Zzizzzs
2 cos Zx1x3h cos Lx3xax 2 cos Zzxixzhsin Zxoxsh
h2 % sin Zx1x3To T R2 X sin Zx1x3To
sin Zxzox3h Ccos ZT3T1x2
ay = X = (7.12)
Area(Azqzsh)  sin Zzizzzo
2 cos Zxawzhcos Lxzzizy 2 sin Zxsxix3h cos Lxaxsh
h2 sin Zx1x3To T h2 % sin Zx1x3%2

0132061—‘1-&2:?.
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8 Conclusions and Future Work

Knowing which ones are Support Vectors is equivalent to compressing the
corresponding Quadratic Programming problem into a smaller linear system. In
this paper, we have shown how the optimal solution to the SVM dual problem
depends on the geometry of SVs in terms of both simplex volumes and angles,
and that SVs must satisfy a simplex volume decomposition relation. Follow-
ing Section 4.3, we are interested in deriving more statistical properties of the
Lagrange Multipliers as future work.

Acknowledgment

We want to thank David Gorsich of U.S. Army TARDEC (Tank-Automotive
Research, Development and Engineering Center) for bringing this problem to
our attention, giving valuable advice, and providing financial support to this
research. During the writing of this paper, discussions with Lizhao Zhang and
Ryan M. Rifkin have been very helpful for us. We also want to thank Prof.
Tomaso Poggio for his lectures on SVM at Massachusetts Institute of Technol-

ogy.

A The Proof of Theorem 7.1

Let X1 = [z1,...,2] and X2 = [Tymy1,-.-,Z,] be a partition of a gen-
eral square matrix X = [z1,...,2,] with m > n — m. We denote the com-
pact QR decompositions of X; and X2 by X; = QF*™RT™™ and Xy =
Q;X("fm)Rénfm)X("fm) respectively. If Q;X(nfm) and Q}*™ are rectangu-
lar matrices that complete @, and Qs, i.e., P = [@1,Q3] and T = [Q2, Q4] are

square orthogonal, then we have

T+ | R Qrinsz}
PX‘[ 0 QTQ:R, |-

It follows that

det X = +det PTX = + det R det Ry det Q1 Q».

Q1 Q2
Qi Q2
columns of W are orthonormal. By the CS decomposition theorem (page 77, [5]),
we know that there exist orthogonal matrices U; € R™*™, U, € R(n—m)x(n-m)
and V; € R(n~m)x(n=m) gych that

v; 0 17 QTQ e
T oa] [egn-[5] (a0

Let us consider the matrix W = [ ] It is easy to show that the
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where
C = diag(cosb1,...,c080, m),

S = diag(sin 6y, ...,sin0,_,,),

and 6; are the principal angles between subspaces spanned by X; and X» (page
603, [5]). Therefore,

det QTQ, = +det UpQT Qo) = + det S = + H sin 6;, (A.2)
=1
and
det X = +det Ry det Ry [ sin6;. (A.3)

i—1
Define the determinants of X; and X, respectively by

det X1 = +det Rl

and

det X2 = *det Rz,

so that we have the following decomposition of det X:

det X = det X det X, [ sin6;. (A.4)

i=1
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