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Abstract. Treating matrices as points in n2-dimensional space, we apply geometry to study and
explain algorithms for the numerical determination of the Jordan structure of a matrix. Traditional
notions such as sensitivity of subspaces are replaced with angles between tangent spaces of manifolds
in n2-dimensional space. We show that the subspace sensitivity is associated with a small angle
between complementary subspaces of a tangent space on a manifold in n2-dimensional space. We
further show that staircase algorithm failure is related to a small angle between what we call staircase
invariant space and this tangent space. The matrix notions in n2-dimensional space are generalized
to pencils in 2mn-dimensional space. We apply our theory to special examples studied by Boley,
Demmel, and K̊agström.
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1. Introduction. The problem of accurately computing Jordan–Kronecker ca-
nonical structures of matrices and pencils has captured the attention of many spe-
cialists in numerical linear algebra. Standard algorithms for this process are denoted
“staircase algorithms” because of the shape of the resulting matrices [22, p. 370].
Little is understood concerning how and why they fail, and in this paper, we study
the geometry of matrices in n2-dimensional space and pencils in 2mn-dimensional
space to explain these failures. This follows a geometrical program to complement
and perhaps replace traditional numerical concepts associated with matrix subspaces
that are usually viewed in n-dimensional space.

This paper targets readers who are already familiar with the staircase algorithm.
We refer them to [22, p. 370] and [10] for excellent background material and list other
literature in section 1.1 for those who wish to have a comprehensive understanding
of the algorithm. On the mathematical side, it is also helpful if the reader has some
knowledge of Arnold’s theory of versal forms, though a dedicated reader should be
able to read this paper without such knowledge, perhaps skipping section 3.2.

The most important contributions of this paper may be summarized as follows:
• A geometrical explanation of staircase algorithm failures is given.
• Three significant subspaces are identified that decompose matrix or pencil

space: Tb, R, S. The most important of these spaces is S, which we choose
to call the “staircase invariant space.”

• The idea that the staircase algorithm computes an Arnold normal form that
is numerically more appropriate than Arnold’s “matrices depending on pa-
rameters” is discussed.
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• A first order perturbation theory for the staircase algorithm is given.
• The theory is illustrated using an example by Boley [3].

The paper is organized as follows: In section 1.1 we briefly review the literature on
staircase algorithms. In section 1.2 we introduce concepts that we call pure, greedy,
and directed staircases to emphasize subtle distinctions on how the algorithm might
be used. Section 1.3 contains some important messages that result from the theory
to follow.

Section 2 presents two similar-looking matrices with very different staircase be-
havior. Section 3 studies the relevant n2-dimensional geometry of matrix space, while
section 4 applies this theory to the staircase algorithm. The main result may be found
in Theorem 6.

Sections 5, 6, and 7 mimic sections 2, 3, and 4 for matrix pencils. Section 8 applies
the theory toward special cases introduced by Boley [3] and Demmel and K̊agström
[12].

1.1. Jordan–Kronecker algorithm history. The first staircase algorithm was
given by Kublanovskaya for Jordan structure in 1966 [32], where a normalized QR
factorization is used for rank determination and nullspace separation. Ruhe [35] first
introduced the use of the SVD into the algorithm in 1970. The SVD idea was further
developed by Golub and Wilkinson [23, section 10]. K̊agström and Ruhe [28, 29] wrote
the first library-quality software for the complete Jordan normal form reduction, with
the capability of returning after different steps in the reduction. Recently, Chaitin-
Chatelin and Frayssé [6] developed a nonstaircase “qualitative” approach.

The staircase algorithm for the Kronecker structure of pencils was given by Van
Dooren [13, 14, 15] and K̊agström and Ruhe [30]. Kublanovskaya [33] fully analyzed
the AB algorithm; however, earlier work on the AB algorithm goes back to the 1970s.
K̊agström [26, 27] gave an RGDSVD/RGQZD algorithm and this provided a base
for later work on software. Error bounds for this algorithm were given by Demmel
and K̊agström [8, 9]. Beelen and Van Dooren [2] gave an improved algorithm which
requires O(m2n) operations for m×n pencils. Boley [3] studied the sensitivity of the
algebraic structure. Error bounds are given by Demmel and K̊agström [10, 11].

Staircase algorithms are used both theoretically and practically. Elmroth and
K̊agström [19] used the staircase algorithm to test the set of 2 × 3 pencils; hence
to analyze the algorithm Demmel and Edelman [7] used the algorithm to calculate
the dimension of matrices and pencils with a given form. Van Dooren [14], Emami-
Naeini and Van Dooren [20], Kautsky, Nichols, and Van Dooren [31], Boley and Van
Dooren [5], and Wicks and DeCarlo [36] considered systems and control applications.
Software for control theory was provided by Demmel and K̊agström [12].

A number of papers used geometry to understand Jordan–Kronecker structure
problems. Fairgrieve [21] regularized by taking the most degenerate matrix in a
neighborhood; Edelman, Elmroth, and K̊agström [17, 18] studied versality and strat-
ifications; and Boley [4] concentrates on stratifications.

1.2. The staircase algorithms. Staircase algorithms for the Jordan–Kronecker
form work by making sequences of rank decisions in combination with eigenvalue
computations. We coin the terms pure, greedy, and directed staircases to emphasize
a few variations on how the algorithm might be used. Pseudocode for the Jordan
versions appears near the end of this subsection. In combination with these three
choices, one can choose an option of zeroing. These choices are explained below.

The three variations for purposes of discussion are considered in exact arithmetic.
The pure version is the pure mathematician’s algorithm: It gives precisely the Jordan
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structure of a given matrix. The greedy version (also useful for a pure mathematician!)
attempts to find the most “interesting” Jordan structure near the given matrix. The
directed staircase attempts to find a nearby matrix with a preconceived Jordan struc-
ture. Roughly speaking, the difference between pure, greedy, and directed is whether
the Jordan structure is determined by the matrix, by a user-controlled neighborhood
of the matrix, or directly by the user, respectively.

In the pure staircase algorithm, rank decisions are made using the singular value
decomposition. An explicit distinction is made between zero singular values and
nonzero singular values. This determines the exact Jordan form of the input matrix.

The greedy staircase algorithm attempts to find the most interesting Jordan struc-
ture near the given matrix. Here the word “interesting” (or “degenerate”) is used in
the same sense as it is with precious gems—the rarer, the more interesting. Algorith-
mically, as many singular values as possible are thresholded to zero with a user-defined
threshold. The more singular values that are set to zero, the rarer in the sense of codi-
mension (see [7, 17, 18]).

The directed staircase algorithm allows the user to decide in advance what Jordan
structure is desired. The Jordan structure dictates which singular values are set to
0. Directed staircase is used in a few special circumstances. For example, it is used
when separating the zero Jordan structure from the right singular structure (used
in GUPTRI [10, 11]). Moreover, Elmroth and K̊agström imposed structures by the
staircase algorithm in their investigation of the set of 2 × 3 pencils [19]. Recently,
Lippert and Edelman [34] use directed staircase to compute an initial guess for a
Newton minimization approach to computing the nearest matrix with a given form
in the Frobenius norm.

In the greedy and directed modes, if we explicitly zero the singular values, we end
up computing a new matrix in staircase form that has the same Jordan structure as a
matrix near the original one. If we do not explicitly zero the singular values, we end
up computing a matrix that is orthogonally similar to the original one (in the absence
of roundoff errors), which is nearly in staircase form. For example, in GUPTRI [11],
the choice of whether to zero the singular values is made by the user with an input
parameter named zero which may be true or false.

To summarize the many choices associated with a staircase algorithm, there are
really five distinct algorithms worth considering: The pure algorithm stands on its
own; otherwise, the two choices of combinatorial structure (greedy and directed) may
be paired with the choice to zero or not. Thereby we have the five algorithms:

1. pure staircase,
2. greedy staircase with zeroing,
3. greedy staircase without zeroing,
4. directed staircase with zeroing, and
5. directed staircase without zeroing.
Notice that in the pure staircase, we do not specify zeroing or not zeroing, since

both will give the same result vacuously.
Of course, algorithms run in finite precision. One further detail is that there is

some freedom in the singular value calculations which leads to an ambiguity in the
staircase form: In the case of unequal singular values, an order must be specified, and
when singular values are equal, there is a choice of basis to be made. We will not
specify any order for the SVD, except that all singular values considered to be zero
appear first.

In the ith loop iteration, we use wi to denote the number of singular values that
are considered to be zero. For the directed algorithm, wi are input; otherwise, wi are
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computed. In pseudocode, we have the following staircase algorithms for computing
the Jordan form corresponding to eigenvalue λ.

INPUT:
1) matrix A
2) specify pure, greedy, or direct mode
3) specify zeroing or not zeroing

OUTPUT:
1) matrix A that may or may not be in staircase form
2) Q (optional)

———————————————————————————————————
i = 0, Q = I
Atmp = A− λI
while Atmp not full rank

i = i + 1

Let n′ =
∑i−1

j=1 wj and ntmp = n− n′ = dim(Atmp)

Use the SVD to compute an ntmp by ntmp unitary matrix V whose leading
wi columns span the nullspace or an approximation

Choice I: Pure: Use the SVD algorithm to compute wi and the exact
nullspace

Choice II: Greedy: Use the SVD algorithm and threshold the small
singular values with a user specified tolerance, thereby defining wi.
The corresponding singular vectors become the first wi vectors of V .

Choice III: Directed: Use the SVD algorithm, the wi are defined
from the input Jordan structure. The wi singular vectors are the first
wi columns of V .

A = diag(In′ , V ∗) ·A · diag(In′ , V ), Q = Q · diag(In′ , V )
Let Atmp be the lower right ntmp − wi by ntmp − wi corner of A
Atmp = Atmp − λI

endwhile
If zeroing, return A in the form λI + a block strictly upper triangular matrix.

While the staircase algorithm often works very well, it has been known to fail.
We can say that the greedy algorithm fails if it does not detect a matrix with the
least generic form [7] possible within a given tolerance. We say that the directed
algorithm fails if the staircase form it produces is very far (orders of magnitude, in
terms of the usual Frobenious norm of matrix space) from the staircase form of the
nearest matrix with the intended structure. In this paper, we mainly concentrate on
the greedy staircase algorithm and its failure, but the theory is applicable to both
approaches. We emphasize that we are intentionally vague about how far is “far” as
this may be application dependent, but we will consider several orders of magnitude
to constitute this notion.

1.3. Geometry of staircase and Arnold forms. Our geometrical approach is
inspired by Arnold’s theory of versality [1]. For readers already familiar with Arnold’s
theory, we point out that we have a new normal form that enjoys the same properties
as Arnold’s original form, but is more useful numerically. For numerical analysts, we
point out that these ideas are important for understanding the staircase algorithm.
Perhaps it is safe to say that numerical analysts have had an “Arnold normal form”
for years, but we did not recognize it as such—the computer was doing it for us
automatically.
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Table 1.1

Angles Components

A Staircase fails 〈S, Tb ⊕R〉 〈Tb,R〉 〈S,R〉 S R
No weak stair no large large π/2 small small

Weak stair no large small π/2 small large

Weak stair yes small small π/2 large large

The strength of the normal form that we introduce in section 3 is that it provides
a first order rounding theory of the staircase algorithm. We will show that instead of
decomposing the perturbation space into the normal space and a tangent space at a
matrix A, the algorithm chooses a so-called staircase invariant space to take the place
of the normal space. When some directions in the staircase invariant space are very
close to the tangent space, the algorithm can fail.

From the theory, we decompose the matrix space into three subspaces that we call
Tb, R, and S, the precise definitions of which are given in Definitions 1 and 3. Here,
Tb and R are two subspaces of the tangent space and S is a certain complementary
space of the tangent space in the matrix space. For the eager reader, we point out
that angles between these spaces are related to the behavior of the staircase algorithm;
note that R is always orthogonal to S. (We use 〈·, ·〉 to represent the angle between
two spaces.) See Table 1.1.

Here, by a weak stair [16] we mean the near rank deficiency of any superdiagonal
block of the strictly block upper triangular matrix A.

2. A staircase algorithm’s failure to motivate the theory. Consider the
two matrices

A1 =

⎛
⎝

0 1 0
0 0 δ
0 0 0

⎞
⎠ and A2 =

⎛
⎝

0 δ 0
0 0 1
0 0 0

⎞
⎠ ,

where δ =1.5e-9 is approximately on the order of the square root of the double
precision machine ε = 2−52, roughly, 2.2e-16. Both of these matrices clearly have
the Jordan structure J3(0), but the staircase algorithm on A1 and A2 can behave very
differently.

To test this, we used the GUPTRI [11] algorithm. GUPTRI1 requires an input matrix
A and two tolerance parameters EPSU and GAP. We ran GUPTRI on Ã1 ≡ A1 + εE and
Ã2 ≡ A2 + εE, where

E =

⎛
⎝

.3 .4 .2

.8 .3 .6

.4 .9 .6

⎞
⎠ ,

and ε = 2.2e-14 is roughly 100 times the double-precision machine ε. The singular
values of each of the two matrices Ã1 and Ã2 are σ1 = 1.0000e00, σ2 = 1.4901e-09,
and σ3 = 8.8816e-15. We set GAP to be always ≥ 1 and let EPSU = a/(‖Ãi‖ ∗ GAP),

1GUPTRI [10, 11] is a “greedy” algorithm with a sophisticated thresholding procedure based on
two input parameters EPSU and GAP ≥ 1. We threshold σk−1 if σk−1 < GAP ×max(σk, EPSU ×
‖A‖) (defining σn+1 ≡ 0). The first argument of the maximum σk ensures a large gap between
thresholded and nonthresholded singular values. The second argument ensures that σk−1 is small.
Readers who look at the GUPTRI software should note that singular values are ordered from smallest
to largest, contrary to modern convention.
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Table 2.1

a Computed Jordan structure for Ã1 Computed Jordan structure for Ã2

a ≥ σ2 J2(0) ⊕ J1(0) + O(10−9) J2(0) ⊕ J1(0) + O(10−9)

γ ≤ a < σ2 J3(0) + O(10−6) J3(0) + O(10−14)

a < γ J1(0) ⊕ J1(α) ⊕ J1(β) + O(10−14) J1(0) ⊕ J1(α) ⊕ J1(β) + O(10−14)

  J   1 2J

1A

J

10 10

 10
A1

3

~

-14

-9-6

  

Fig. 2.1. The staircase algorithm fails to find A1 at distance 2.2e-14 from Ã1 but does find a
J3(0) or a J2(0) ⊕ J1(0) if given a much larger tolerance. (The latter is δ away from Ã1.)

where we vary the value of a. (The tolerance is effectively a.) Our observations are
tabulated in Table 2.1.

Here, we use Jk(λ) to represent a k × k Jordan block with eigenvalue λ. In the
table, typically, α �= β �= 0. Setting a small (smaller than γ = 1.9985e-14 here, which
is the smaller singular value in the second stage), the software returns two nonzero
singular values in the first and second stages of the algorithm and one nonzero singular
value in the third stage. Setting EPSU× GAP large (larger than σ2 here), we zero two
singular values in the first stage and one in the second stage, giving the structure
J2(0) ⊕ J1(0) for both Ã1 and Ã2. (There is a matrix within O(10−9) of A1 and A2

of the form J2(0) ⊕ J1(0).) The most interesting case is in between. For appropriate
EPSU × GAP ≈ a (between γ and σ2 here), we zero one singular value in each of the
three stages, getting a J3(0) which is O(10−14) away for A2, while we can only get
a J3(0) which is O(10−6) away for A1. In other words, the staircase algorithm fails
for A1 but not for A2. As pictured in Figure 2.1, the A1 example indicates that a
matrix of the correct Jordan structure may be within the specified tolerance, but the
staircase algorithm may fail to find it.

Consider the situation when A1 and A2 are transformed using a random orthog-
onal matrix Q. As a second experiment, we pick

Q ≈

⎛
⎝

−.39878 .20047 −.89487
−.84538 −.45853 .27400
−.35540 .86577 .35233

⎞
⎠
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Table 2.2

a Computed Jordan structure for Ã1 Computed Jordan structure for Ã2

a ≥ σ2 J2(0) ⊕ J1(0) + O(10−5) J2(0) ⊕ J1(0) + O(10−6)

γ ≤ a < σ2 J1(0) ⊕ J1(α) ⊕ J1(β) J3(0) + O(10−6)

a < γ J1(0) ⊕ J1(α) ⊕ J1(β) + O(10−14) J1(0) ⊕ J1(α) ⊕ J1(β) + O(10−14)

and take Ã1 = Q(A1 + εE)QT , Ã2 = Q(A2 + εE)QT . This will impose a perturbation
of order ε. We ran GUPTRI on these two matrices; Table 2.2 shows the result.

In the table, γ = 2.6980e-14, all other values are the same as in the previous
table.

In this case, GUPTRI is still able to detect a J3 structure for Ã2, although the
one it finds is O(10−6) away. But it fails to find any J3 structure at all for Ã1. The
comparison of A1 and A2 in the two experiments indicates that the explanation is
more subtle than the notion of a weak stair (a superdiagonal block that is almost
column rank deficient) [16].

In this paper we present a geometrical theory that clearly predicts the difference
between A1 and A2. The theory is based on how close certain directions that we will
denote staircase invariant directions are to the tangent space of the manifold of matri-
ces similar to the matrix with specified canonical form. It turns out that for A1, these
directions are nearly in the tangent space, but not for A2. This is the crucial difference!

The tangent directions and the staircase invariant directions combine to form a
“versal deformation” in the sense of Arnold [1], but one with more useful properties
for our purposes.

3. Staircase invariant space and versal deformations.

3.1. The staircase invariant space and related subspaces. We consider
block matrices as in Figure 3.1. Dividing a matrix A into blocks of row and column
sizes n1, . . . , nk, we obtain a general block matrix. A block matrix is conforming to A
if it is also partitioned into blocks of size n1, . . . , nk in the same manner as A. If a
general block matrix has nonzero entries only in the upper triangular blocks excluding
the diagonal blocks, we call it a block strictly upper triangular matrix. If a general
block matrix has nonzero entries only in the lower triangular blocks including the
diagonal blocks, we call it a block lower triangular matrix. A matrix A is in staircase
form if we can divide A into blocks of sizes n1 ≥ n2 ≥ · · · ≥ nk such that (s.t.) A is a
strictly block upper triangular matrix and every superdiagonal block has full column
rank. If a general block matrix has only nonzero entries on its diagonal blocks and
each diagonal block is an orthogonal matrix, we call it a block diagonal orthogonal
matrix. We call the matrix eB a block orthogonal matrix (conforming to A) if B is
a block antisymmetric matrix (conforming to A). (That is, B is antisymmetric with
zero diagonal blocks. Here, we abuse the word “conforming” since eB does not have
a block structure.)

Definition 1. Suppose A is a matrix in staircase form. We call S a staircase
invariant matrix of A if STA = 0 and S is block lower triangular. We call the space
of matrices consisting of all such S the staircase invariant space of A, and denote it
by S.

We remark that the columns of S will not be independent except possibly when
A = 0; S can be the zero matrix as an extreme case. However the generic sparsity
structure of S may be determined by the sizes of the blocks. For example, let A have
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Fig. 3.1. A schematic of the block matrices defined in the text.

the staircase form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0

××
××
××

××
××
××

×
×
×

0 0
0 0

××
××

×
×

0 0
0 0

×
×
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

×××
×××
×××
×××
×××

◦ ◦◦ ◦
× ××
×××

××
××

××
××

××× ×× ×× ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is a staircase invariant matrix of A if every column of S is a left eigenvector of A.
Here, the ◦ notation indicates 0 entries in the block lower triangular part of S that
are a consequence of the requirement that every column be a left eigenvector. This



1012 ALAN EDELMAN AND YANYUAN MA

may be formulated as a general rule: If we find more than one block of size ni × ni,
then only those blocks on the lowest block row appear in the sparsity structure of S.
For example, the ◦’s do not appear because they are above another block of size 2.
As a special case, if A is strictly upper triangular, then S is 0 above the bottom row
as is shown below. Readers familiar with Arnold’s normal form will notice that if A
is a given single Jordan block in normal form, then S contains the versal directions.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

× × × × × ×
× × × × ×

× × × ×
× × ×

× ×
×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
× × × × × × ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Definition 2. Suppose A is a matrix. We call O(A) ≡ {XAX−1 : X is a non-
singular matrix} the orbit of a matrix A. We call T ≡ {AX−XA : X is any matrix}
the tangent space of O(A) at A.

Theorem 1. Let A be an n × n matrix in staircase form; then the staircase
invariant space S of A and the tangent space T form an oblique decomposition of
n× n matrix space, i.e., R

n2

= S ⊕ T .
Proof. Assume that Ai,j , the (i, j) block of A, is ni × nj for i, j = 1, . . . , k and,

of course, Ai,j = 0 for all i ≤ j.
There are n2

1 degrees of freedom in the first block column of S because there
are n1 columns and each column may be chosen from the n1-dimensional space of
left eigenvectors of A. Indeed there are n2

i degrees of freedom in the ith block,
because each of the ni columns may be chosen from the ni-dimensional space of
left eigenvectors of the matrix obtained from A by deleting the first i− 1 block rows
and columns. The total number of degrees of freedom is

∑k
i=1 n

2
i , which combined

with dim(T ) = n2 −
∑k

i=1 n
2
i [7], gives the dimension of the whole space n2.

If S ∈ S is also in T , then S has the form AX − XA for some matrix X. Our
first step will be to show that X must have block upper triangular form after which
we will conclude that AX −XA is strictly block upper triangular. Since S is block
lower triangular, it will then follow that if it is also in T , it must be 0.

Let i be the first block column of X which does not have block upper triangular
structure. Clearly the ith block column of XA is 0 below the diagonal block, so
that the ith block column of S = AX − XA contains vectors in the column space
of A. However, every column of S is a left eigenvector of A from the definition and
therefore is orthogonal to the column space of A. (Notice that we do not require these
column vectors of S to be independent; the one Jordan block case is a good example.)
Thus the ith block column of S is 0, and from the full column rank conditions on the
superdiagonal blocks of A, we conclude that X is 0 below the block diagonal.

Definition 3. Suppose A is a matrix. We call Ob(A) ≡ {QTAQ : Q = eB , B is
a block antisymmetric matrix conforming to A} the block orthogonal orbit of a matrix
A. We call Tb ≡ {AX −XA : X is a block antisymmetric matrix conforming to A}
the block tangent space of the block orthogonal orbit Ob(A) at A. We call R ≡ {block
strictly upper triangular matrix conforming to A} the strictly upper block space of
A.

Note that because of the complementary structure of the two matrices R and S,
we can see that S is always orthogonal to R.
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O(A)

A

S

Ob(A)

R

Tb

Fig. 3.2. A diagram of the orbits and related spaces. The similarity orbit at A is indicated by
a surface O(A); the block orthogonal orbit is indicated by a curve Ob(A) on the surface; the tangent
space of Ob(A), Tb, is indicated by a line, R, which lies on O(A) is pictured as a line too; and the
staircase invariant space S is represented by a line pointing away from the plane.

Theorem 2. Let A be an n× n matrix in staircase form; then the tangent space
T of the orbit O(A) can be split into the block tangent space Tb of the orbit Ob(A)
and the strictly upper block space R, i.e., T = Tb ⊕R.

Proof. We know that the tangent space T of the orbit at A has dimension
n2 −

∑k
i=1 n

2
i . If we decompose X into a block upper triangular matrix and a block

antisymmetric matrix, we can decompose every AX −XA into a block strictly upper
triangular matrix and a matrix in Tb. Since T = Tb + R, each of Tb and R has dimen-
sion ≤ 1/2(n2−

∑k
i=1 n

2
i ), they must both be exactly of dimension 1/2(n2−

∑k
i=1 n

2
i ).

Thus we know that they actually form a decomposition of T , and the strictly upper
block space R can also be represented as R ≡ {AX−XA : X is block upper triangular
matrix conforming to A}.

Corollary 1. R
n2

= Tb ⊕R⊕ S. See Figure 3.2.
In Definition 3, we really do not need the whole set {eB : B is block antisymmet-

ric} ≡ {eB}, we merely need a small neighborhood around B = 0. Readers may well
wish to skip ahead to section 4, but for those interested in mathematical technicalities
we review a few simple concepts. Suppose that we have partitioned n = n1 + · · ·+nk.
An orthogonal decomposition of n-dimensional space into k mutually orthogonal sub-
spaces of dimensions n1, n2, . . . , nk is a point on the flag manifold. (When k = 2,
this is the Grassmann manifold.) Equivalently, a point on the flag manifold is speci-
fied by a filtration, i.e., a nested sequence of subspaces Vi of dimension n1 + · · · + ni

(i = 1, . . . , k):

0 ⊂ V1 ⊂ · · · ⊂ Vk = C
n.
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The corresponding decomposition can be written as

C
n = Vk = V1 ⊕ V2\V1 ⊕ · · · ⊕ Vk\Vk−1.

This may be expressed concretely. If from a unitary matrix U , we define only Vi

for i = 1, . . . , k as the span of the first n1 + n2 + · · · + ni columns, then we have
V1 ⊂ · · · ⊂ Vk, i.e., a point on the flag manifold. Of course, many unitary matrices U
will correspond to the same flag manifold point. In an open neighborhood of {eB},
near the point e0 = I, the map between {eB} and an open subset of the flag manifold
is a one-to-one homeomorphism. The former set is referred to as a local cross section
[25, Lemma 4.1, p. 123] in Lie algebra. No two unitary matrices in a local cross section
would have the same sequence of subspaces Vi, i = 1, . . . , k.

3.2. Staircase as a versal deformation. Next, we are going to build up the
theory of our versal form. Following Arnold [1], a deformation of a matrix A is a
matrix A(λ) with entries that are power series in the complex variables λi, where
λ = (λ1, . . . , λk)

T ∈ C
k, convergent in a neighborhood of λ = 0, with A(0) = A.

Good introductions to versal deformations may be found in [1, section 2.4] and
[17]. The key property of a versal deformation is that it has enough parameters so
that no matter how the matrix is perturbed, it may be made equivalent by analytic
transformations to the versal deformation with some choice of parameters. The ad-
vantage of this concept for a numerical analyst is that we might make a rounding error
in any direction and yet still think of this as a perturbation to a standard canonical
form.

Let N ⊂ M be a smooth submanifold of a manifold M . We consider a smooth
mapping A : Λ → M of another manifold Λ into M and let λ be a point in Λ such
that A(λ) ∈ N . The mapping A is called transversal to N at λ if the tangent space
to M at A(λ) is the direct sum

TMA(λ) = A∗TΛλ ⊕ TNA(λ).

Here, TMA(λ) is the tangent space of M at A(λ), TNA(λ) is the tangent space of
N at A(λ), TΛλ is the tangent space of Λ at λ, and A∗ is the mapping from TΛλ to
TMA(λ) induced by A. (It is the Jacobian.)

Theorem 3. Suppose A is in staircase form. Fix Si ∈ S, i = 1, . . . , k, s.t.
span{Si} = S and k ≥ dim(S). It follows that

A(λ) ≡ A +
∑
i

λiSi(3.1)

is a versal deformation of every particular A(λ) for λ small enough. A(λ) is miniversal
at λ = 0 if {Si} is a basis of S.

Proof. Theorem 1 tells us the mapping A(λ) is transversal to the orbit at A.
From the equivalence of transversality and versality [1], we know that A(λ) is a
versal deformation of A. Since the dimension of the staircase invariant space S is
the codimension of the orbit, A(λ) given by (3.1) is a miniversal deformation if the
Si are a basis for S (i.e., k = dim(S)). Moreover, A(λ) is a versal deformation of
every matrix in a neighborhood of A; in other words, the space S is transversal to the
orbit of every A(λ). Take a set of matrices Xi s.t. the XiA−AXi form a basis of the

tangent space T of the orbit at A. We know T ⊕S = R
n2

(here ⊕ implies T ∩S = 0),
so there is a fixed minimum angle θ between T and S. For small enough λ, we can
guarantee that the XiA(λ) −A(λ)Xi are still linearly independent of each other and
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span a subspace of the tangent space at A(λ) that is at least, say, θ/2 away from S.
This means that the tangent space at A(λ) is transversal to S.

Arnold’s theory concentrates on general similarity transformations. As we have
seen above, the staircase invariant directions are a perfect versal deformation. This
idea can be refined to consider similarity transformations that are block orthogonal.
Everything is the same as above, except that we add the block strictly upper triangular
matrices R to compensate for the restriction to block orthogonal matrices. We now
spell this out in detail, as follows.

Definition 4. If the matrix C(λ) is block orthogonal for every λ, then we refer
to the deformation as a block orthogonal deformation.

We say that two deformations A(λ) and B(λ) are block orthogonally equivalent
if there exists a block orthogonal deformation C(λ) of the identity matrix such that
A(λ) = C(λ)B(λ)C(λ)−1.

We say that a deformation A(λ) is block orthogonally versal if any other defor-
mation B(μ) is block orthogonally equivalent to the deformation A(φ(μ)). Here, φ is
a mapping analytic at 0 with φ(0) = 0.

Theorem 4. A deformation A(λ) of A is block orthogonally versal iff the mapping
A(λ) is transversal to the block orthogonal orbit of A at λ = 0.

Proof. The proof follows Arnold [1, sections 2.3 and 2.4] except that we use the
block orthogonal version of the relevant notions, and we remember that the tangents
to the block orthogonal group are the commutators of A with the block antisymmetric
matrices.

Since we know that T can be decomposed into Tb ⊕ R, we get the following
theorem.

Theorem 5. Suppose a matrix A is in staircase form. Fix Si ∈ S, i = 1, . . . , k,
s.t. span{Si} = S and k ≥ dim(S). Fix Rj ∈ R, j = 1, . . . , l, s.t. span{Rj} = R and
l ≥ dim(R). It follows that

A(λ) ≡ A +
∑
i

λiSi +
∑
j

λjRj

is a block orthogonally versal deformation of every particular A(λ) for λ small enough.
A(λ) is block orthogonally miniversal at A if {Si}, {Rj} are bases of S and R.

It is not hard to see that the theory we set up for matrices with all eigenvalues 0
can be generalized to a matrix A with different eigenvalues. The staircase form is a
block upper triangular matrix, each of its diagonal blocks of the form λiI + Ai, with
Ai in staircase form defined at the beginning of this chapter, and superdiagonal blocks
arbitrary matrices. Its staircase invariant space is spanned by the block diagonal ma-
trices, each diagonal block being in the staircase invariant space of the corresponding
diagonal block Ai. R space is spanned by the block strictly upper triangular matrices
s.t. every diagonal block is in the R space of the corresponding Ai. Tb is defined
exactly the same as in the one eigenvalue case. All our theorems are still valid. When
we give the definitions or apply the theorems, we do not really use the values of the
eigenvalues. All that is important is how many different eigenvalues A has. In other
words, we are working with bundle instead of orbit.

These forms are normal forms that have the same property as the Arnold’s normal
form: They are continuous under perturbation. The reason that we introduce block
orthogonal notation is that the staircase algorithm is a realization to first order of the
block orthogonally versal deformation, as we will see in the next section.
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4. Application to matrix staircase forms. We are ready to understand the
staircase algorithm described in section 1.2. We concentrate on matrices with all
eigenvalues 0, since otherwise the staircase algorithm will separate other structures
and continue recursively.

We use the notation stair(A) to denote the output A of the staircase algorithm as
described in section 1.2. Now suppose that we have a matrix A which is in staircase
form. To zeroth order, any instance of the staircase algorithm replaces A with Â =
QT

0 AQ0, where Q0 is block diagonal orthogonal. Of course this does not change the
staircase structure of A; the Q0 represents the arbitrary rotations within the subspaces
and can depend on how the software is written and the subtlety of roundoff errors
when many singular values are 0. Next, suppose that we perturb A by εE. According
to Corollary 1, we can decompose the perturbation matrix uniquely as E = S+R+Tb

with S ∈ S, R ∈ R, and Tb ∈ Tb. Theorem 6 states that, in addition to some block
diagonal matrix Q0, the staircase algorithm will apply a block orthogonal similarity
transformation Q1 = I + εX + o(ε) to A + εE to kill the perturbation in Tb.

Theorem 6. Suppose that A is a matrix in staircase form and E is any per-
turbation matrix. The staircase algorithm (without zeroing) on A + εE will produce
an orthogonal matrix Q (depending on ε) and the output matrix stair(A + εE) =
QT(A+ εE)Q = Â+ ε(Ŝ + R̂) + o(ε), where Â has the same staircase structure as A,
Ŝ is a staircase invariant matrix of Â, and R̂ is a block strictly upper triangular ma-
trix. If singular values are zeroed out, then the algorithm further kills Ŝ and outputs
Â + εR̂ + o(ε).

Proof. After the first stage of the staircase algorithm, the first block column is
orthogonal to the other columns, and this property is preserved through the comple-
tion of the algorithm. Generally, after the ith iteration, the ith block column below
(including) the diagonal block is orthogonal to all other columns to its right, and this
property is preserved all through. So when the algorithm terminates, we will have a
matrix whose columns below (including) the diagonal block are orthogonal to all the
columns to the right; in other words, it is a matrix in staircase form plus a staircase
invariant matrix.

We can always write the similarity transformation matrix as Q = Q0(I + εX +
o(ε)), where Q0 is a block diagonal orthogonal matrix and X is a block antisymmetric
matrix that does not depend on ε because of the local cross section property that we
mentioned at the beginning of section 3. Notice that Q0 is not a constant matrix
decided by A; it depends on εE to its first order. We should have written (Q0)0 +
ε(Q0)1 + o(ε) instead of Q0 . However, we do not expand Q0 since as long as it is a
block diagonal orthogonal transformation, it does not change the staircase structure
of the matrix. Hence, we get

stair(A + εE) = stair(A + εS + εR + εTb)

= (I + εXT + o(ε))QT
0 (A + εS + εR + εTb)Q0(I + εX + o(ε))

= (I + εXT + o(ε))(Â + εŜ + εR̂ + εT̂b)(I + εX + o(ε))

= Â + ε(Ŝ + R̂ + T̂b + ÂX −XÂ) + o(ε)

= Â + ε(Ŝ + R̂) + o(ε).

(4.1)

Here, Â, Ŝ, R̂, and T̂b are, respectively, QT
0 AQ0, Q

T
0 SQ0, Q

T
0 RQ0, and QT

0 TbQ0.
It is easy to check that Ŝ, R̂, T̂b is still in the S,R, Tb space of Â. X is a block anti-
symmetric matrix satisfying T̂b = XÂ−ÂX. We know that X is uniquely determined
because the dimensions of T̂b and the block antisymmetric matrix space are the same.
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The reason that T̂b = XÂ− ÂX, and hence the last equality in (4.1), holds is because
the algorithm forces the output form as described in the first paragraph of this proof:
Â+ εR̂ is in staircase form and εŜ is a staircase invariant matrix. Since (S ⊕R)∩ Tb
is the zero matrix, the Tb term must vanish.

To understand more clearly what this observation tells us, let us check some
simple situations. If the matrix A is only perturbed in the direction S or R, then the
similarity transformation will simply be a block diagonal orthogonal matrix Q0. If
we ignore this transformation, which does not change any structure, we can think of
the output to be unchanged from the input. This is the reason we call S the staircase
invariant space. The reason we did not include R in the staircase invariant space is
that A + εR is still within Ob(A). If the matrix A is only perturbed along the block
tangent direction Tb, then the staircase algorithm will kill the perturbation and do a
block diagonal orthogonal similarity transformation.

Although the staircase algorithm decides this Q0 step by step all through the
algorithm (due to SVD rank decisions), we can actually think of the Q0 as decided at
the first step. We can even ignore this Q0 because the only reason it comes up is that
the SVD we use follows a specific method of sorting singular values when they are
different and choosing the basis of the singular vector space when the same singular
values appear.

We know that every matrix A can be reduced to a staircase form under an or-
thogonal transformation. In other words, we can always think of any general ma-
trix M as PTAP , where A is in staircase form. Thus, in general, the staircase
algorithm always introduces an orthogonal transformation and returns a matrix in
staircase form and a first order perturbation in its staircase invariant direction, i.e.,
stair(M + εE) = stair(PTAP + εE) = stair(A + εPEPT ).

It is now obvious that if a staircase form matrix A has its S and T almost normal
to each other, then the staircase algorithm will behave very well. On the other hand,
if S is very close to T , then it will fail. To emphasize this, we write it as a conclusion.

Conclusion 1. The angle between the staircase invariant space S and the tangent
space T decides the behavior of the staircase algorithm. The smaller the angle, the
worse the algorithm behaves.

In the one Jordan block case, we have an if-and-only-if condition for S to be
near T .

Theorem 7. Let A be an n×n matrix in staircase form and suppose that all of its
block sizes are 1× 1; then S(A) is close to T (A) iff the following two conditions hold:

(1) (Row condition) there exists a nonzero row in A s.t. every entry on this row
is o(1).

(2) (Chain condition) there exists a chain of length n − k with the chain value
O(1), where k is the lowest row satisfying (1).

Here we call Ai1,i2 , Ai2,i3 , . . . , Ait,it+1 a chain of length t and the product Ai1,i2Ai2,i3 · · ·
Ait,it+1 the chain value.

Proof sketch. Notice that S being close to T is equivalent to S being almost per-
pendicular to N , the normal space of A. In this case, N is spanned by {I, AT , AT2, . . . ,
AT (n−1)} and S consists of matrices with nonzero entries only in the last row. Con-
sidering the angle between any two matrices from the two spaces, it is straightforward
to show that for S to be almost perpendicular to N is equivalent to the following:

(1) There exists a k s.t. the (n, k) entry of each of the matrices I, AT , . . . , AT (n−1)

is o(1) or 0.
(2) If the entry is o(1), then it must have some other O(1) entry in the same

matrix. Assume k is the largest choice if there are different k’s. By a combi-
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natorial argument, we can show that these two conditions are equivalent to
the row and chain conditions, respectively, in our theorem.

Remark 1. Note that saying that there exists an O(1) entry in a matrix is
equivalent to saying that there exists a singular value of the matrix of O(1). So, the
chain condition is the same as saying that the singular values of An−k are not all O(ε)
or smaller.

Generally, we do not have an if-and-only-if condition for S to be close to T . We
only have a necessary condition, that is, only if at least one of the superdiagonal
blocks of the original unperturbed matrix has a singular value almost zero, i.e., it has
a weak stair, will S be close to T . Actually, it is not hard to show that the angle
between Tb and R is at most in the same order as the smallest singular value of the
weak stair. So, when the perturbation matrix E is decomposed into R + S + Tb, R
and Tb are typically very large, but whether S is large depends on whether S is close
to T .

Notice that (4.1) is valid for sufficiently small ε. What range of ε is considered
sufficiently small? Clearly, ε has to be smaller than the smallest singular value δ of
the weak stairs. Moreover, the algorithm requires the perturbations along both T and
S to be smaller than δ. Assuming the angle between T and S is θ, then generally,
when θ is large, we would expect an ε smaller than δ to be sufficiently small. However,
when θ is close to zero, for a random perturbation, we would expect an ε in the order
of δ/θ to be sufficiently small. Here, again, we can see that the angle between S and
T decides the range of effective ε. For small θ, when ε is not sufficiently small, we
observed some discontinuity in the zeroth order term in (4.1) caused by the ordering
of singular values during certain stages of the algorithm. Thus, instead of the identity
matrix, we get a permutation matrix in the zeroth order term.

The theory explains why the staircase algorithm behaves so differently on the
two matrices A1 and A2 in section 2. Using Theorem 7, we can see that A1 is
a staircase failure (k = 2), while A2 is not (k = 1). By a direct calculation, we
find that the tangent space and the staircase invariant space of A1 is very close
(sin(〈S, T 〉) = δ/

√
1 + δ2), while this is not the situation for A2 (sin(〈S, T 〉) = 1/

√
3).

When transforming to get Ã1 and Ã2 with Q, which is an approximate orthogonal
matrix up to the order of square root of machine precision εm, another error in the
order of

√
εm (10−7) is introduced, it is comparable with δ in our experiment, so the

staircase algorithm actually runs on a shifted version A1 + δE1 and A2 + δE1. That
is why we see R as large as an O(10−6) added to J3 in the second table for Ã2 (see
Table 2.2). We might as well call A2 a staircase failure in this situation, but A1 suffers
a much worse failure under the same situation, in that the staircase algorithm fails
to detect a J3 structure at all. This is because the tangent space and the staircase
invariant space are so close that the S and T component are very large, hence (4.1)
no longer applies.

5. A staircase algorithm failure to motivate the theory for pencils. The
pencil analog to the staircase failure in section 2 is

(A1, B1) =

⎛
⎝
⎡
⎣

0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎦ ,

⎡
⎣

δ 0 0 0
0 δ 0 0
0 0 1 0

⎤
⎦
⎞
⎠ ,

where δ = 1.5e-8. This is a pencil with the structure L1 ⊕ J2(0). After we add
a random perturbation of size 1e-14 to this pencil, GUPTRI fails to return back the
original pencil no matter which EPSU we choose. Instead, it returns back a more



STAIRCASE FAILURES 1019

generic L2 ⊕ J1(0) pencil O(ε) away.
On the other hand, for another pencil with the same L1 ⊕ J2(0) structure,

(A2, B2) =

⎛
⎝
⎡
⎣

0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎦ ,

⎡
⎣

1 0 0 0
0 1 0 0
0 0 δ 0

⎤
⎦
⎞
⎠ ,

GUPTRI returns an L1 ⊕ J2(0) pencil O(ε) away.
At this point, readers may correctly expect that the reason behind this is again

the angle between two certain spaces, as in the matrix case.

6. Matrix pencils. Parallel to the matrix case, we can set up a similar theory
for the pencil case. For simplicity, we concentrate on the case when a pencil only
has L-blocks and J(0)-blocks. Pencils containing LT -blocks and nonzero (including
∞) eigenvalue blocks can always be reduced to the previous case by transposing and
exchanging the two matrices of the pencil and/or shifting.

6.1. The staircase invariant space and related subspaces for pencils. A
pencil (A,B) is in staircase form if we can divide both A and B into block rows of
sizes r1, . . . , rk and block columns of sizes s1, . . . , sk+1, s.t. A is strictly block upper
triangular with every superdiagonal block having full column rank and B is block up-
per triangular with every diagonal block having full row rank and the rows orthogonal
to each other. Here we allow sk+1 to be zero. A pencil is called conforming to (A,B)
if it has the same block structure as (A,B). A square matrix is called row (column)
conforming to (A,B) if it has diagonal block sizes the same as the row (column) sizes
of (A,B).

Definition 5. Suppose (A,B) is a pencil in staircase form and Bd is the block
diagonal part of B. We call (SA, SB) a staircase invariant pencil of (A,B) if ST

AA = 0,
SBB

T
d = 0, and (SA, SB) has complementary structure to (A,B). We call the space

consisting of all such (SA, SB) the staircase invariant space of (A,B) and denote it
by S.

For example, let (A,B) have the staircase form

(A,B) =

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0

××
××

××
××

×
×

0 0
0 0

××
××

×
×

0 0
0 0

×
×
0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎣

×××
×××

××
××

××
××

×
×

× ×
× ×

××
××

×
×

× ×
× ×

×
×
×

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

;

then

(SA, SB) =

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

◦ ◦ ◦◦ ◦ ◦
◦ ◦ ◦◦ ◦ ◦ ◦ ◦◦ ◦
× ××
×××

××
××

××
××

××× ×× ×× ×

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

×××
×××
×××
×××

◦ ◦◦ ◦
× ×× ◦ ◦ ◦ ◦

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

is a staircase invariant pencil of (A,B) if every column of SA is in the left null space
of A and every row of SB is in the right null space of B. Notice that the sparsity
structure of SA and SB is at most complementary to that of A and B, respectively,
but SA and SB are often less sparse because of the requirement on the nullspace. To
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be precise, if we find more than one diagonal block with the same size, then among
the blocks of this size, only the blocks on the lowest block row appear in the sparsity
structure of SA. If any of the diagonal blocks of B is a square block, then SB has all
zero entries throughout the corresponding block column.

As special cases, if A is a strictly upper triangular square matrix and B is an upper
triangular square matrix with diagonal entries nonzero, then SA has only nonzero
entries in the bottom row and SB is simply a zero matrix. If A is a strictly upper
triangular n × (n + 1) matrix and B is an upper triangular n × (n + 1) matrix with
diagonal entries nonzero, then (SA, SB) is the zero pencil.

Definition 6. Suppose (A,B) is a pencil. We call O(A,B) ≡ {X(A,B)Y :
X,Y are nonsingular square matrices } the orbit of a pencil (A,B). We call T ≡
{X(A,B) − (A,B)Y : X,Y are any square matrices } the tangent space of O(A,B)
at (A,B).

Theorem 8. Let (A,B) be an m× n pencil in staircase form; then the staircase
invariant space S of (A,B) and the tangent space T form an oblique decomposition
of m× n pencil space, i.e., R

2mn = S + T .
Proof. The proof of the theorem is similar to that of Theorem 1; first we prove

the dimension of S(A,B) is the same as the codimension of T (A,B), then we prove
S ∩ T = {0} by induction. The reader may fill in the details.

Definition 7. Suppose (A,B) is a pencil. We call Ob(A,B) ≡ {P (A,B)Q : P =
eX , X is a block antisymmetric matrix row conforming to (A,B), Q = eY , Y is a block
antisymmetric matrix column conforming to (A,B)} the block orthogonal orbit of a
pencil (A,B). We call Tb ≡ {X(A,B)− (A,B)Y : X is a block antisymmetric matrix
row conforming to (A,B), Y is a block antisymmetric matrix column conforming to
(A,B)} the block tangent space of the block orthogonal orbit Ob(A,B) at (A,B). We
call R ≡ {U(A,B)−(A,B)V : U is a block upper triangular matrix row conforming to
(A,B), V is a block upper triangular matrix column conforming to (A,B)} the block
upper pencil space of (A,B).

Theorem 9. Let (A,B) be an m × n pencil in staircase form; then the tangent
space T of the orbit O(A,B) can be split into the block tangent space Tb of the orbit
Ob(A,B) and the block upper pencil space R, i.e., T = Tb ⊕R.

Proof. This can be proved by a very similar argument concerning the dimensions
as for matrix, in which the dimension of R is 2

∑
i<j risj +

∑
risi, the dimension of

Tb is
∑

i<j rirj +
∑

i<j sisj , the codimension of the orbit O(A,B) (or T ) is
∑

siri −∑
j>i sisj + 2

∑
j>i sirj −

∑
j>i rirj [7].

Corollary 2. R
2mn = Tb ⊕R⊕ S.

6.2. Staircase as a versal deformation for pencils. The theory of versal
forms for pencils [17] is similar to that for matrices. A deformation of a pencil (A,B)
is a pencil (A,B)(λ) with entries power series in the real variables λi. We say that two
deformations (A,B)(λ) and (C,D)(λ) are equivalent if there exist two deformations
P (λ) and Q(λ) of identity matrices such that (A,B)(λ) = P (λ)(C,D)(λ)Q(λ).

Theorem 10. Suppose (A,B) is in staircase form. Fix Si ∈ S, i = 1, . . . , k,
s.t. span{Si} = S and k ≥ dim(S). It follows that

(A,B)(λ) ≡ (A,B) +
∑
i

λiSi(6.1)

is a versal deformation of every particular (A,B)(λ) for λ small enough. (A,B)(λ)
is miniversal at λ = 0 if {Si} is a basis of S.
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Definition 8. We say two deformations (A,B)(λ) and (C,D)(λ) are block
orthogonally equivalent if there exist two block orthogonal deformations P (λ) and
Q(λ) of the identity matrix such that (A,B)(λ) = P (λ)(C,D)(λ)Q(λ). Here, P (λ)
and Q(λ) are exponentials of matrices which are conforming to (A,B) in row and
column, respectively.

We say that a deformation (A,B)(λ) is block orthogonally versal if any other de-
formation (C,D)(μ) is block orthogonally equivalent to the deformation (A,B)(φ(μ)).
Here, φ is a mapping holomorphic at 0 with φ(0) = 0.

Theorem 11. A deformation (A,B)(λ) of (A,B) is block orthogonally versal iff
the mapping (A,B)(λ) is transversal to the block orthogonal orbit of (A,B) at λ = 0.

This is the corresponding result to Theorem 4.
Since we know that T can be decomposed into Tb ⊕ R, we get the following

theorem.
Theorem 12. Suppose a pencil (A,B) is in staircase form. Fix Si ∈ S, i =

1, . . . , k, s.t. span{Si} = S and k ≥ dim(S). Fix Rj ∈ R, j = 1, . . . , l, s.t. span{Rj} =
R and l ≥ dim(R). It follows that

(A,B)(λ) ≡ (A,B) +
∑
i

λiSi +
∑
j

λjRj

is a block orthogonally versal deformation of every particular (A,B)(λ) for λ small
enough. (A,B)(λ) is block orthogonally miniversal at (A,B) if {Si}, {Rj} are bases
of S and R.

Notice that as in the matrix case, we can also extend our definitions and theorems
to the general form containing LT -blocks and nonzero eigenvalue blocks, and again,
we will not specify what eigenvalues they are and hence get into the bundle case. We
want to point out only one particular example here. If (A,B) is in the staircase form
of Ln + J1(·), then A will be a strictly upper triangular matrix with nonzero entries
on the super diagonal and B will be a triangular matrix with nonzero entries on the
diagonal except the (n+ 1, n+ 1) entry. SA will be the zero matrix and SB will be a
matrix with the only nonzero entry on its (n + 1, n + 1) entry.

7. Application to pencil staircase forms. We concentrate on L⊕J(0) struc-
tures only, since otherwise the staircase algorithm will separate all other structures
and continue similarly after a shift and/or transpose on that part only. As in the ma-
trix case, the staircase algorithm basically decomposes the perturbation pencil into
three spaces Tb, R, and S and kills the perturbation in Tb.

Theorem 13. Suppose that (A,B) is a pencil in staircase form and E is any
perturbation pencil. The staircase algorithm (without zeroing) on (A,B) + εE will
produce two orthogonal matrices P and Q (depending on ε) and the output pencil
stair((A,B) + εE) = PT((A,B) + εE)Q = (Â, B̂) + ε(Ŝ + R̂) + o(ε), where (Â, B̂)
has the sane staircase structure as (A,B), Ŝ is a staircase invariant pencil of (Â, B̂),
and R̂ is in the block upper pencil space R. If singular values are zeroed out, then the
algorithm further kills Ŝ and output (Â, B̂) + εR̂ + o(ε).

We use a formula to explain the statement more clearly:

(I + εX + o(ε))P1((A,B) + εS + εR + εTb)Q1(I − εY + o(ε))

= (I + εX + o(ε))((Â, B̂) + εŜ + εR̂ + εT̂b)(I − εY + o(ε))

= (Â, B̂) + ε(Ŝ + R̂ + T̂b + X(Â, B̂) − (Â, B̂)Y ) + o(ε)

= (Â, B̂) + ε(Ŝ + R̂) + o(ε).

(7.1)
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Similarly, we can see that when a pencil has its T and S almost normal to each
other, the staircase algorithm will behave well. On the other hand, if S is very
close to T , then it will behave badly. This is exactly the situation in the two pencil
examples in section 5. Although the two pencils are both ill-conditioned, a direct
calculation shows that the first pencil has its staircase invariant space very close to
the tangent space (the angle 〈S, T 〉 = δ/

√
δ2 + 2) while the second one does not (the

angle 〈S, T 〉 = 1/
√

2 + δ2).
The if-and-only-if condition for S to be close to T is more difficult than in the

matrix case. One necessary condition is that one super diagonal block of A almost is
not full column rank or one diagonal block of B almost is not full row rank. This is
usually referred to as weak coupling.

8. Examples: The geometry of the Boley pencil and others. Boley [3,
Example 2, p. 639] presents an example of a 7×8 pencil (A,B) that is controllable (has
generic Kronecker structure) yet it is known that an uncontrollable system (nongeneric
Kronecker structure) is nearby at a distance 6e-4. What makes the example inter-
esting is that the staircase algorithm fails to find this nearby uncontrollable system
while other methods succeed (for example, [24]). Our theory provides a geometrical
understanding of why this famous example leads to staircase failure: The staircase
invariant space is very close to the tangent space.

The pencil that we refer to is (A,B(ε)), where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

· 1 · · · · · ·
· · 1 · · · · ·
· · · 1 · · · ·
· · · · 1 · · ·
· · · · · 1 · ·
· · · · · · 1 ·
· · · · · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and B(ε) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1 −1 −1 −1 7
· 1 −1 −1 −1 −1 −1 6
· · 1 −1 −1 −1 −1 5
· · · 1 −1 −1 −1 4
· · · · 1 −1 −1 3
· · · · · 1 −1 2
· · · · · · ε 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(The dots refer to zeros, and in the original Boley example ε = 1.)
When ε = 1, the staircase algorithm predicts a distance of 1, and is therefore off

by nearly four orders of magnitude. To understand the failure, our theory works best
for smaller values of ε, but it is still clear that even for ε = 1, there will continue to
be difficulties.

It is useful to express the pencil (A,B(ε)) as P0 + εE, where P0 = (A,B(0)) and
S is zero except for a 1 in the (7,7) entry of its B part. P0 is in the bundle of pencils
whose Kronecker form is L6 + J1(·) and the perturbation E is exactly in the unique
staircase invariant direction (hence the notation “S”) as we pointed out at the end of
section 6.

The relevant quantity is then the angle between the staircase invariant space and
the pencil space. An easy calculation reveals that the angle is very small: θS = 0.0028
radians. In order to get a feeling for what range of ε first order theory applies, we
calculated the exact distance d(ε) ≡ d(P (ε),bundle) using the nonlinear eigenvalue
template software [34]. To first order, d(ε) = θS · ε. Figure 8.1 plots the distances first
for ε ∈ [0, 2] and then a close-up for ε = [0, 0.02].

Our observation based on this data suggests that first order theory is good to
two decimal places for ε ≤ 10−4 and one place for ε ≤ 10−2. To understand the
geometry of staircase algorithmic failure, one decimal place or even merely an order
of magnitude is quite sufficient.

In summary, we see clearly that the staircase invariant direction is at a small



STAIRCASE FAILURES 1023

0 0.005 0.01 0.015 0.02
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

-5

size of perturbation

th
e 

di
st

an
ce

 to
 th

e 
or

bi
t

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-4

size of perturbation

th
e 

di
st

an
ce

 to
 th

e 
or

bi
t

Fig. 8.1. The picture to explain the change of the distance of the pencils P0 + εE to the bundle
of L6 + J(·) as ε changes. The second subplot is part of the first one at the points near ε = 0.

angle to the tangent space, and therefore the staircase algorithm will have difficulty
finding the nearest pencil on the bundle or predicting the distance. This difficulty is
quantified by the angle θS .

Since the Boley example is for ε = 1, we computed the distance well past ε = 1.
The breakdown of first order theory is attributed to the curving of the bundle towards
S. A three-dimensional schematic is portrayed in Figure 8.2.

The relevant picture for control theory is a planar intersection of the above pic-
ture. In control theory, we set the special requirement that the A matrix has the
form [0 I]. Pencils on the intersection of this hyperplane and the bundle are termed
uncontrollable.

We analytically calculated the angle θc between S and the tangent space for the
“uncontrollable surfaces.” We found that θc = 0.0040. Using the nonlinear eigenvalue
template software [34], we numerically computed the true distance from P0 + εE to
the uncontrollable surfaces and calculated the ratio of this distance to ε. We found
that for ε < 8e− 4, the ratio agrees with θc = 0.0040 very well.

We did a similar analysis on the three pencils C1, C2, C3 given by Demmel and
K̊agström [12]. We found that the sin values of the angles between S and T are,
respectively, 2.4325e-02, 3.4198e-02, and 8.8139e-03 and the sin values between
Tb and R are, respectively, 1.7957e-02, 7.3751e-03, and 3.3320e-06. This explains
why we saw the staircase algorithm behave progressively worse on them. Especially,
it explains why, when a perturbation about 10−3 is added to these pencils, C3 behaves
dramatically worse than C1 and C2. The component in S is almost of the same order
as the entries of the original pencil.

So we conclude that the reason the staircase algorithm does not work well on this
example is because P0 = (A,B(0)) is actually a staircase failure, in that its tangent
space, is very close to its staircase invariant space, and also the perturbation is so
large that even if we know the angle in advance we cannot estimate the distance well.
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P0

P1

C

O(P0)

T (P0)

L

H

S

Fig. 8.2. The staircase algorithm on the Boley example. The surface represents the orbit
O(P0). Its tangent space at the pencil P0, T (P0), is represented by the plane on the bottom. P1 lies
on the staircase invariant space S inside the “bowl.” The hyperplane of uncontrollable pencils is
represented by the plane cutting through the surface along the curve C. It intersects T (P0) along L.
The angle between L and S is θc. The angle between S and T (P0), θS , is represented by the angle
∠HP0P1.
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