
Solving Multiple Classes of Problems in Parallel
with MATLAB*P

Ron Choy, Alan Edelman
CSAIL,

Massachusetts Institute of Technology,
Cambridge, MA 02139

Email: cly@mit.edu, edelman@math.mit.edu

Abstract— MATLAB [7] is one of the most widely used mathe-
matical computing environments in technical computing. It is an
interactive environment that provides high performance compu-
tational routines and an easy-to-use, C-like scripting language.
Mathworks, the company that develops MATLAB, currently does
not provide a version of MATLAB that can utilize parallel
computing [9]. This has led to academic and commercial efforts
outside Mathworks to build a parallel MATLAB, using a variety
of approaches.

MATLAB*P is a parallel MATLAB that focus on enhancing
productivity by providing an easy to use parallel computing tool.
Using syntaxes identical to regular MATLAB, it can be used to
solve large scale algebraic problems as well as multiple small
problems in parallel. This paper describes how the innovative
combination of ’*p mode’ and ’MultiMATLAB/MultiOctave
mode’ in MATLAB*P can be used to solve a large range of
real world problems.

I. BACKGROUND

MATLAB [7] is one of the most widely used tools in
scientific and technical computing. It started in 1970s as an
interactive interface to EISPACK [10] and LINPACK [4],
a set of eigenvalue and linear system solution routines. It
has since grown to a feature rich product utilizing modern
numerical libraries like ATLAS [12] and FFTW [5], and
with toolboxes in a number of application areas, for example,
financial mathematics, neural networks, and control theory. It
has a built-in interpreted language that is similar to C and
HPF, and the flexible matrix indexing makes it very suitable
for programming matrix problems. It is a very useful tool
to a wide audience. For example, it comes in very handy
as a matrix calculator for simple problems, because of its
easy-to-use command syntax. Its strong graphical capabilities
makes it a good data analysis tool. Also researchers have been
known to build very complex systems using MATLAB scripts.
Compared to similar software like Maple and Mathematica,
MATLAB is known to have a larger number of users. For ex-
ample, at MIT, MATLAB is the dominant computing software
used by the student body.

Because of its roots in serial numerical libraries, MATLAB
has always been a serial program. However, as modern en-
gineering and simulation problems become more and more
complex, space and computing time requirements for solutions
skyrocketed, and a serial MATLAB is no longer able to handle
them. MATLAB*P [6] tries to solve the problem by providing
a parallel backend to MATLAB.

II. TARGETED PROBLEM CLASSES

A tool would be of no use if it does not solve real problems.
When developing MATLAB*P we tried to generalize large
scientific computing problems into categories, and provide
tools that would help solve the problems. We focus on the
following classes of problems:

1) Large problems - These are problems that has either
large memory requirement or large computation time
requirement, or both. They are very common in en-
gineering calculations that involve models with large
number of variables, e.g. structural engineering or fluid
dynamics.

2) Large number of smaller problems - This is a common
class of problems that is ubiquitous in scientific com-
puting. Basically there is a large number of independent
data sets to be processed using the same program. Some
statistics are usually collected at the end. For example,
pair-wise protein alignment and computer graphics ren-
dering both belong to this category.

Traditionally the first class of problem is solved by a
ready-made parallel numerical library, e.g. ScaLAPACK [1] or
PARPACK [8]. The problem with this approach is that the user
will have to program in a traditional programming language
like C++ or FORTRAN, and will have to learn and handle the
data distribution format used by the particular library. These
are all time consuming and error prone.

There are no well defined approach to solve the second class
of problems. Users have been known to use C++ with MPI to
launch processes and collect statistics at the end on a cluster, or
use elaborately written shell scripts with file I/O for the same
purpose. In this paper we will describe how MATLAB*P can
allow rapid development for the solution of these two kinds
of problems.

III. MATLAB*P 2.0 OVERVIEW

MATLAB*P 2.0 is a parallel MATLAB using the backend
support approach, aimed at widespread circulation among a
general audience. In order to achieve this, we took ideas from
the approaches used by other software found in a recent survey
[3]. For example, the embarrassingly parallel approach allow
simplistic, yet useful, division of work into multiple MATLAB
sessions. The message passing approach, which is a superset

Manager
Package

Matrix
Manager

Server
Manager

Client
Manager

PBLAS FFTW ScaLAPACK

Matrix 1

Matrix 2

Matrix 3

............

Client

Proxy

Server #0

#1
Server Server

#2
Server
#3

Server
#4

..........

.....................

Fig. 1. Structure of MATLAB*P 2.0

of the embarrassingly parallel approach, allows finer control
between the MATLAB sessions.

In order to make MATLAB*P useful for a wider range
of audience, these other approaches are incorporated into the
system as well.

A. Structure of MATLAB*P 2.0 system

MATLAB*P 2.0 is a complete rewrite of MATLAB*P in
C++. The code is organized in a way to ensure easy extension
of the software.

The server itself is divided in four self-contained parts:
1) Client Connection Manager

Client Connection Manager is responsible for communi-
cations with the client. It provides functions for reading
commands and arguments from the client and sending
the results back to the client. It is only used in the head
server process.

2) Server Connection Manager
Server Connection Manager takes care of communica-
tion between server processes. It mainly controls broad-
casting of commands and arguments from head process
to the slave processes, and collection of results and error
codes. Also it provides rank and size information to the
processes.

3) Package Manager
Package Manager is responsible for maintaining a list
of available packages and functions provided by them.
When initiated by the server process, Package Manager
will also perform the actual call to the functions.

4) Matrix Manager
Matrix Manager contains all the functions needed to
create, delete and change the matrices on the server pro-
cesses. It maintains a mapping from client-side matrix
identifiers to actual matrices on the server. It is also
responsible for performing garbage collection.

This organization offers great advantages. First of all, de-
bugging is made easier because bugs are localized and thus
are much easier to track down. Also, this compartmentized
approach allows easier extension of the server. For example,
the basic Server Connection Manager makes use of MPI

(Message Passing Interface) as the means of communication
between server processes. However, one could write a Server
Connection Manager that uses PVM (Parallel Virtual Machine)
instead. As long as the new version implements all the public
functions in the class, no change is needed in any other part
of the code.

Similar extensions can be made to Client Connection Man-
ager as well. The basic Client Connection Manager uses TCP
socket. An interesting replacement would be to make a Client
Connection Manager that act as an interface to a language like
C++ or Java.

IV. FEATURES OF MATLAB*P 2.0

A. Parallelism through Polymorphism - *p mode

The key to the system lies in the *p variable. It is an
object of layout class in MATLAB. Through the use of the
*p variable, matrices that are distributed on the server could
be created. For example,

X = randn(8192*p,8192);

The above creates a row distributed, 8192 x 8192 normally
distributed random matrix on the server. X is a handle to
the distributed matrix, identified by MATLAB as a ddense
class object. By overloading randn and many other built-in
functions in MATLAB, we are able to tie in the parallel
support transparent to the user. This is called parallelism
through polymorphism

e = eig(X);

The command computes the eigenvalues of X by calling
the appropriate ScaLAPACK routines, and store the result in a
matrix e, which resides on the server. The result is not returned
to the client unless explicitly requested, to reduce data traffic.

E = pp2matlab(e);

This command returns the result to MATLAB.
The use of the *p variable along with overloaded MATLAB

routines enable existing MATLAB scripts to be reused. For
example,

function H = hilb(n)

J = 1:n;
J = J(ones(n,1),:);
I = J’;
E = ones(n,n);
H = E./(I+J-1);

The above is the built-in MATLAB routine to construct a
Hilbert matrix. Because the operators in the routine (colon,
ones, subsasgn, transpose, rdivide, +, -) are overloaded to work
with *p, typing

H = hilb(16384*p)

would create a 16384 by 16384 Hilbert matrix on the server.
By exploiting MATLAB’s object-oriented features in this way,
many existing scripts would run in parallel under MATLAB*P
without any modification.

B. ’MultiMATLAB/MultiOctave mode’

One of the goals of the project is to make the software to be
useful to as wide an audience as possible. In order to achieve
this, we found that it would be fruitful to combine other
parallel MATLAB approaches into MATLAB*P, to provide
a unified parallel MATLAB framework.

In conjunction with Parry Husbands, we developed a
prototype implementation of a MultiMATLAB[11]-like, dis-
tributed MATLAB package in MATLAB*P, which we call the
PPEngine. With this package and associated m-files, we can
run multiple MATLAB processes on the backend and evaluate
MATLAB functions in parallel on dense matrices.

The system works by starting up MATLAB engine instances
on each node through calls to the MATLAB engine interface.
From that point on, MATLAB commands can be relayed to
the MATLAB engine.

Examples of the usage of the PPEngine system:

>> % Example 1
>> a = 1:100*p;
>> b = mm(’chi2rnd’,a);

The first example creates a distributed matrix of length 100,
then fill it with random values from the chi-square distribution
through calls to the function chi2rnd from MATLAB statistics
toolbox.

>> % Example 2
>> a = rand(100,100*p);
>> b = rand(100,100*p);
>> c = mm(’plus’,a,b);

This example creates two column distributed matrices of
size 100x100, adds them, and puts the result in another matrix.
This is the slow way of doing the equivalent of:

>> a = rand(100,100*p);
>> b = rand(100,100*p);
>> c = a+b;

The ’MultiOctave’ mode works exactly the same as ’Mul-
tiMATLAB’ mode, only using Octave, a freely available
MATLAB-like scientific computing software, for the compu-
tation.

>> % Example 3
>> a = randn(4,4*p);
>> b = mm(’sin’,a)
>> c = mo(’sin’,a)
>> norm(b-c)

ans =

6.7820e-07

The above interesting example shows that Octave and
MATLAB uses a different algorithm for the sine function.

>> % Example 4
>> a = (0:(np-1)*p)/np;
>> b = a + (1/np);
>> [mypi, fcnt] = mm(’quadl’,’4./(1+x.ˆ2)’,a,b);

>> disp(’Pi calculated from quadl in mm mode’)
>> pi_from_quadl=sum(mypi)

>> disp(’Number of function evalua-
tion on each processor’)
>> fcnt(:)

Pi calculated from quadl in mm mode

pi_from_quadl =

3.1416

Number of function evalua-
tion on each processor

ans =

18
18
18
18

The above example illustrates how np, the variable that
returns the number of processes running on the backend server,
can be used in a script to write adaptive code. When the
above example is run on 4 processes, a is 0:0.25:0.75, and b is
0.25:0.25:1. In the ’MultiMATLAB’ call each slave MATLAB
will compute the adaptive Lobatto quadrature of

�
�������

in the intervals (0,0.25), (0.25,0.50), (0.50,0.75), (0.75,1.0)
respectively. The result from each slave MATLAB is summed
to form pi.

C. Visualization Package

This visualization package was written by Bruning, Hol-
loway and Sulejmanpasic, under supervision of Ron Choy, as
a term project for the class 6.338/18.337 - Applied Parallel
Computing at MIT. It has since then been merged into the
main MATLAB*P source.

This package adds spy, surf, and mesh routines to MAT-
LAB*P. This enable visualization of very large matrices. The
rendering is done in parallel, using the Mesa OpenGL library.

Figure 2, 3, 4 shows the routines in action.
All three routines allow zooming into a portion of the

matrix. Also, ppsurf and ppmesh allow changing of the camera

Fig. 2. ppspy on 1024x1024 matrix on eight nodes

Fig. 3. ppsurf on the 1024x1024 ’peaks’ matrix

angle, just as supported in MATLAB.

V. PAGERANK WITH MATLAB*P

Google [2] is a large-scale hypertext search engine which
makes heavy use of the structure present in hypertext. It
assigns Pagerank, an objective measure of its importance as
indicated by citation, to each webpage. The biggest challenge
in computing Pagerank is to compute the eigenvalue of a huge
sparse matrix.

MIT undergraduate David Cheng has developed a ’toy’
version of the Pagerank computation in MATLAB*P. The
code, which consists of only 53 lines of MATLAB (with
comments), is listed in the appendix. The interesting thing
about the code is that it would run perfectly fine in regular
MATLAB. This demonstrates the power and flexibility of
MATLAB*P in parallelizing MATLAB code.

The code uses the power method to compute the largest
eigenvalues of a sparse matrix. Currently the sparse routines

Fig. 4. ppmesh on the 1024x1024 ’peaks’ matrix

in MATLAB*P is not finalized, so the code is suffering
from performance problems. But as the dominant operation
in the power method is the sparse matrix times dense vector
multiplication, which parallelizes very well, we expect that the
performamce of the code would improve dramatically in the
near future.

VI. SIGNAL PROCESSING IN MATLAB*P WITH

MULTIMATLAB MODE

This once again demonstrates the power of MATLAB*P
in parallelizing existing MATLAB code. We were given a
3000 lines signal processing code that perform the following
operation on input radar signal data:

1) Normalize and pulse compress
2) Calculate Doppler window coefficients and calculate

FFT
3) Doppler process

The first step took around 97

for i = 1:num_of_channels
output(:,i) = normal-

ize_compress(input(:,i));
end

We were able to parallelize this for-loop with 6 lines of
changes to the original serial code. Basically the for-loop
is replaced with a ’MultiMATLAB’ call to a script which
contains the original loop. The input data is transferred to
the server, and the output data is transferred back.

The following is the timing results on 10.6MB on input
radar signal data. MATLAB*P was run on a 8 processor linux
cluster with AMD XP 1800+ processors and with fast ethernet
interconnect:

MATLAB MATLAB*P
149.87s 30.07s

The performance of the MATLAB*P version can be im-
proved even further by loading the input data in parallel on
the MATLAB*P server.

REFERENCES

[1] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley,
D. Walker, and R. C. Whaley. ScaLAPACK Users’ Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1997.

[2] Sergey Brin and Lawrence Page. The anatomy of a large-scale hy-
pertextual Web search engine. Computer Networks and ISDN Systems,
30(1–7):107–117, 1998.

[3] R. Choy. Parallel matlab survey. http://theory.lcs.mit.edu
/ � cly/survey.html, 2001.

[4] J.J. Dongarra, J.R.Bunch, C.B.Moler, and G.W.Stewart. LINPACK
User’s Guide. SIAM, Philadelphia, 1979.

[5] M. Frigo and S. Johnson. Fftw: An adaptive software architecture for
the fft. Proc. Intl. Conf. of Acoustics, Speech and Signal Processing,
1998, v. 3, p. 1381, 1998.

[6] P. Husbands and C. Isbell. Matlab*p: A tool for interactive supercom-
puting. The Ninth SIAM Conference on Parallel Processing for Scientific
Computing, 1999.

[7] Mathworks Inc. MATLAB 6 User’s Guide. 2001.
[8] Kristi Maschhoff and Danny Sorensen. A portable implementation

of arpack for distributed memory parallel archituectures. Preliminary
proceedings, Copper Mountain Conference on Iterative Methods, 1996.

[9] C. Moler. Why there isn’t a parallel matlab.
http://www.mathworks.com/company/newsletter/pdf/spr95cleve.pdf,
1995.

[10] B.T. Smith, J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ilebe, V.C.
Kelma, and C.B. Moler. Matrix Eigensystem Routines - EISPACK Guide.
Springer-Verlag, 2nd edition, 1976.

[11] A.E. Trefethen, V.S. Menon, C.C. Chang, G.J. Czajkowski, C. Myers,
and L.N. Trefethen. Multimatlab: Matlab on multiple processors.
Technical report, 1996.

[12] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear
algebra software. Technical Report UT-CS-97-366, 1997.

APPENDIX

function [x,cnt] = pagerankpow(G,U,damp)
% [X,CNT]=PAGERANKPOW(G) re-
turns the pagerank of each page in the link matrix
% G. An optional return param-
eter CNT provides the total num-
ber of iterations
% made (the algorithm is moti-
vated by the power method to find the principal
% eigenvector).
% [...]=PAGERANKPOW(G,U) dis-
plays the top few pagerank val-
ues and their
% corresponding urls taken from U.
% [...]=PAGERANKPOW(G,U,damp) uses the damp-
ing factor damp (default .85) used
% in the pagerank computa-
tion. Also displays the top few ranked pages.

% Link structure

[n,n] = size(G);
n = double(n);

% use histogram to find nonze-
ros in each column of G
%c = histc(find(G), 1:n:(n*n));
nz = find(G);
c = histc(nz(:), 1:n:(n*n));
cz = find(c == 0);

c(cz) = 1; % so we don’t di-
vide by zero later

% Power method

if nargin < 3, damp = .85; end

delta = (1-damp)/n;
x = ones(n,1)/n; % start with uni-
form dist.
z = zeros(n,1);
cnt = 0;
while max(abs(x-z)) > .000001

z = x;

x = G * (z ./ c);
x = damp*x + (damp * (sum(z(cz)) / n) + delta);

cnt = cnt+1;
end

if nargin > 1,
% Print URLs in page rank order.

r = sum(G, 2);
[ignore,p] = sort(-x);
disp(’ page-rank in out url’)
k = 1;
while (k <= 10)

j = p(k);
disp(sprintf(’ %3.0f %8.4f %4.0f %4.0f %s’, ...

j,x(j),r(j),c(j),U{j}))
k = k+1;

end
end

