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Abstract

A new method of solution to the local spin density approximation
to the electronic Schrödinger equation is presented. The method is
based on an efficient, parallel, adaptive multigrid eigenvalue solver. It
is shown that adaptivity is both necessary and sufficient to accurately
solve the eigenvalue problem near the singularities at the atomic cen-
ters. While preliminary, these results suggest that direct real space
methods may provide a much needed method for efficiently computing
the forces in complex materials.

1 Introduction

To intelligently design materials with specific high performance properties,
it is necessary to have an understanding of the underlying atomic structure,
reactive sites, and other properties of complex candidate compounds. To
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achieve the generality and reliability needed to predict these properties,
methods based on the first principles solution to the electronic Schrödinger
equation are required. For systems of typical size, the most reliable and
efficient first principles approach is based on the local density approximation
(LDA) of Kohn and Sham [8] to the full many-electron Schrödinger equation.
However, current methods of solution scale as O(N3), whereN is the number
of atoms. For systems of the size commonly encountered in materials science,
such calculations are too large to be practical.

The goal of our program is to develop methods that can efficiently treat
large and complex systems. To be successful, we must solve the following
computational issues:

• The method must be fast to allow simulations requiring thousands of
atomic interaction evaluations.

• The method must be capable of high accuracy: .02 eV/atom.

• The method must effectively capture the multiple length scales inherent
in the problem.

• The method must scale as N2 or less to allow extension to larger sys-
tems.

To address these goals, we are developing the following techniques and soft-
ware tools:

• A rapidly converging method for the non-linear eigenvalue problem
arising in the LDA.

• Adaptive methods for resolving the locality of electronic wavefunctions
with multiple length scales.

• A software infrastructure to exploit the high performance parallel ar-
chitectures capable of providing the throughput and memory we require.

2 The LDA Equations

In the LDA, the electronic wavefunctions are given by the solutions to the
eigenvalue problem:

Hψi = λiψi(1)
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where the Hamiltonian H is given by:

H =

(

−∇2

2m
+ Vext + VH + Vxc

)

(2)

λi is an eigenvalue, and the eigenvectors (the wavefunctions ψi) satisfy the
usual orthonormality constraints of a symmetric operator. In general, we
require the lowest N eigenvalues, where N is the number of electrons in the
system. Electron-electron interaction is included in the Hartree potential,
VH , and the exchange correlation potential, Vxc. Both VH and Vex are
functions of the charge density ρ(~x) =

∑

occ ψ
2
i , where the sum includes only

occupied orbitals. VH is the solution to Poisson’s equation in free space with
this charge density.

Since VH and Vxc are functionals of the electron density, Eq. (1) must
be solved self-consistently. That is, an initial density is input and iterations
continue until the input and output densities are the same. The Vext poten-
tial term represents the attractive interactions of the electrons to the atomic
nuclei and is a function of the positions of the atoms. In our simulations,
Eq. (1) must be solved many times as the position of the atoms change.

There are several length scales in the solution of Eq. (1). The overall
dimension of the system is determined by the atomic positions and the
associated electron density. However, each atomic center is associated with
a length related to the effective charge of its nucleus. For example, sodium
has a small atomic charge and, therefore, a fairly long length scale (≈ 2.5 Å).
On the other hand, oxygen has a high effective charge and a corresponding
very short length scale (≈ .5 Å).

The presence of several length scales in Eq. (1) poses significant difficul-
ties for present solution methods, based on the FFT. Since increases in the
overall dimension of the system and the resolution of the function in real
space (because of a short length scale) both require increases in the size of
the basis, the use of a planewave basis requires the retention of a very large
numbers of basis functions. The computational cost of this is somewhat
offset by the high parallelism and efficient vectorization of the algorithm.
However, because of the steepness of the atomic potentials, we have found
that on the order of 104 to 106 Fourier functions may be required to obtain
sufficient accuracy. Such calculations are extremely CPU intensive.

The eigenvalue equation for a real system is complicated by details which
obscure the essential difficulties of its solution [9]. To develop test problems
(see Section 4) which retain the essential singular behavior while removing
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nonessential details, we replace VH , Vext, and Vex by simple potentials lo-
cated at the atomic sites. The solution to these eigenvalue problems provide
little information as to the convergence properties of the numerical method
with respect to self-consistency or the efficiency of the solution to the em-
bedded Poisson problem. However, they enable us to address the critical
issues of multiple length scales and the singular behavior of the potential.

3 Parallel Adaptive Solution to the Eigenvalue Prob-

lem

We have developed a parallel adaptive eigenvalue solver (AMG) which in-
tegrates adaptive mesh refinement techniques [3] [2] with a novel multigrid
eigenvalue algorithm [4]. To our knowledge, this is the first time such meth-
ods have been combined to solve materials science problems.

We solve the eigenvalue problem using the multigrid method of Cai et al.
[4]. Given the linear eigenvalue problem Hψ = λψ, the following efficiently
calculates the lowest eigenvalue and eigenvector:

let ψ be an initial guess (ψ 6= 0)
repeat

H-normalize ψ: (ψ,Hψ) = 1
let λ = (ψ,Hψ)/(ψ,ψ)
perform one multigrid V-cycle on (H− λI)ψ = 0

until ‖(H − λI)ψ‖ < ε (some error tolerance)

Convergence is rapid; for a typical problem, machine precision is reached
within fifteen iterations. As with most iterative methods, a good initial guess
can significantly speed convergence. To calculate eigenvalues other than the
lowest, we apply the above procedure and, after each V-cycle, orthogonalize
the candidate eigenvector against all previously calculated eigenvectors.

Because of the multiple length scales present in our problems, we cannot
efficiently represent the eigenvector ψ using a uniform discretization of space.
Uniform grids cannot adapt in response to local changes; thus, the grid
spacing is dictated by the shortest length scale present in the entire problem.
Instead, we represent ψ as a composite grid (see Figure 1), which enables our
solver to locally refine the discretization as required by local phenomena. By
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Composite Grid

Level 0
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Level 2

Figure 1: Wavefunctions are resolved on a composite grid which represents
a non-uniform discretization. In practice, composite grids are implemented
as a hierarchy of grid levels.

exploiting locality, we expend computational resources (flops and memory)
in those regions of the solution where they are most needed.

A composite grid logically consists of a single grid in which the discretiza-
tion is non-uniform. Such grids are actually represented using a hierarchy
of levels (see Figure 1). All grids at the same level have the same mesh
spacing, but successive levels have finer spacing than the ones preceding it,
providing a more accurate representation of the solution. We locally refine
the grid hierarchy according to an error estimate calculated at run-time. In
general, the location and extent of refinement areas must be computed by
the application, as they cannot be predicted a priori .

We implemented our solver using the LPARX [6] parallel programming
system, which provides efficient run-time support for scientific calculations
with dynamic, block structured data. The use of LPARX was essential in
facilitating code development; managing the complicated data structures
of a composite grid hierarchy would have been a daunting task without
LPARX, especially on parallel architectures. LPARX enables us to run the
same code on a diversity of high performance parallel architectures, including
the CM-5, Paragon, single processor workstations, Cray C-90, SP-1, and
networks of workstations. For more details concerning the implementation
and performance, refer to [7] in these proceedings.
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4 Model Problems

All of the following model problems were solved in 3d; we did not attempt to
exploit symmetry. Each AMG solution required approximately one minute
running on an IBM RS/6000 model 590.

4.1 The Hydrogen Atom

In this problem, the Hamiltonian has a deceptively simple form with only a
single term:

H = −
∇2

2m
−
Z

r
.(3)

While the eigenvalue problem corresponding to Eq. (3) can be solved an-
alytically, the singular behavior at r = 0 can cause significant problems
for numerical methods. In fact, it cannot be conveniently solved with our
present FFT methods. For example, for the lowest eigenvalue, our FFT
algorithm with 643 mesh points gives the value -0.69 rather than the correct
value of -0.5. The lowest energy solution in our units is an exponential with
the form e−Zr and energy E = Z2

2
. Note that the severity of the singularity

with increasing Z is reflected in the increasing localization of the solution
around the origin. As Z increases, the density of points in an adaptive
method will increase near the origin.

The Z = 1 solution corresponds to the hydrogen problem. It is plotted
in Figure 2(a). We note that the AMG solution and the exact solution (not
plotted) are identical on the scale of the graph. The cusp at the origin is a
result of the singular nature of the potential at this point. This behavior is
usually difficult to resolve with a numerical method [5].

As the singularity strengthens with increasing charge, the lowest energy
scales as Z2. Figure 2(b) illustrates how this behavior is reproduced by the
AMG solution. As expected, to obtain the correct scaling, it is necessary to
go to higher levels of adaptivity. However, because of increased localization,
the total number of points remains roughly the same. To illustrate the
efficiency of adaptivity, we note that the resolution at the finest level is
equivalent to a uniform grid with 40963 basis elements, as compared to the
fewer than 643 points required by the adaptive algorithm.

4.2 The H+

2 Molecule

A problem that is similar to the hydrogen atom problem, but more com-
monly used as a test problem for chemical methods, is the H+

2 molecule.
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Figure 2: The left graph displays the lowest energy eigenvector for the hy-
drogen atom; graph data was extracted from the 3d volume along the Z axis.
Tick marks on the abscissa represent mesh points. The right plot shows the
eigenvalues for a −Z

R
potential.

In this problem, there is only one electron. However, there are two centers
with singularities. The Hamiltonian is:

H =
−∇2

2m
−

1

|~r +
~Ra

2
|
−

1

|~r −
~Ra

2
|
,where ~Ra is the atomic separation.(4)

This problem can also be solved analytically [1]. Again, it is two stiff for
practical solution by FFT. On the other hand, the AMG method does quite
well as illustrated by the binding energy curve in Figure 3(b). (Binding
energy is defined as the total energy of the atoms at a specified distance
minus the energy at infinite separation.) The wave function is plotted in
Figure 3(a). Note the increased density of points in the vicinity of the
nuclei.

4.3 Adaptive Multigrid vs. FFT

In this test problem, we soften the singularities in the original potential by
introducing an error function with a variable cut off (rcut). We replace the
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Figure 3: The left graph displays the lowest energy eigenvector for the hy-
drogen molecular ion; graph data was extracted from the 3d volume along
the Z axis. Tick marks on the abscissa represent mesh points. The right
plot shows binding energy as a function of atomic separation.

1

r
potentials of Eq. ( 4) with the smoothed potentials erf( r

rcut
)/r. If this

potential is sufficiently softened (i.e. rcut is large), the FFT, the uniform
grid, and the AMG methods will all converge to the same answer. Results
are summarized in Table 1. The exact answer for these parameters and
rcut = 0 is -0.911. It is clear that both the uniform grid method and the
FFT method lose accuracy quickly as rcut approaches 0.

References

[1] D. R. Bates, K. Ledsham, and A. L. Stewart, Wave functions of the hy-
drogen molecular ion, Phil. Trans. Roy. Soc. London, 246 (1953), pp. 215–
240.

[2] M. J. Berger and P. Colella, Local adaptive mesh refinement for shock
hydrodynamics, Journal of Computational Physics, 82 (1989), pp. 64–84.

[3] M. J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic par-
tial differential equations, Journal of Computational Physics, 53 (1984),
pp. 484–512.



Scalable Numerical Methods for Material Design 9

Table 1: A comparison of eigenvalues for the FFT, adaptive multigrid solver,
and a uniform grid solver. All methods used approximately the same number
of basis elements. The known solution for rcut = 0 is -0.911.

rcut FFT Adaptive Uniform

0.0 -1.0946 -0.9005 -1.2009
0.1 -0.9986 -0.8931 -1.0353
0.2 -0.8998 -0.8734 -0.9035
0.3 -0.8664 -0.8551 -0.8672
0.4 -0.8427 -0.8325 -0.8430

[4] Z. Cai, J. Mandel, and S. McCormick, Multigrid methods for nearly sin-
gular linear equations and eigenvalue problems. (submitted for publica-
tion), 1994.

[5] K. Cho, T. A. Arias, J. D. Joannopoulos, and P. K. Lam, Wavelets
in electronic structure calculations, Physical Review Letters, 71 (1993),
pp. 1808–1811.

[6] S. R. Kohn and S. B. Baden, A robust parallel programming model for
dynamic non-uniform scientific computations, in Proceedings of the 1994
Scalable High Performance Computing Conference, May 1994.

[7] , The parallelization of an adaptive multigrid eigenvalue solver with
LPARX, in Proceedings of the Sixth SIAM Conference on Parallel Pro-
cessing for Scientific Computing, San Francisco, CA, Februrary 1995.

[8] W. Kohn and L. Sham, Phys, Rev., 140 (1965), p. A1133.

[9] M. W. Sung, Molecular Dynamics Simulation Of Metallic Clusters and
Heteroclusters, PhD thesis, University of California, San Diego, 1994.


