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Sample Eigenvalue Based Detection of
High-Dimensional Signals in White Noise

Using Relatively Few Samples
Raj Rao Nadakuditi, Member, IEEE, and Alan Edelman

Abstract—The detection and estimation of signals in noisy,
limited data is a problem of interest to many scientific and en-
gineering communities. We present a mathematically justifiable,
computationally simple, sample-eigenvalue-based procedure for
estimating the number of high-dimensional signals in white noise
using relatively few samples. The main motivation for considering
a sample-eigenvalue-based scheme is the computational simplicity
and the robustness to eigenvector modelling errors which can
adversely impact the performance of estimators that exploit
information in the sample eigenvectors. There is, however, a price
we pay by discarding the information in the sample eigenvectors;
we highlight a fundamental asymptotic limit of sample-eigen-
value-based detection of weak or closely spaced high-dimensional
signals from a limited sample size. This motivates our heuristic def-
inition of the effective number of identifiable signals which is equal
to the number of “signal” eigenvalues of the population covariance
matrix which exceed the noise variance by a factor strictly greater
than 1 + Dimensionality of the system Sample size. The fun-
damental asymptotic limit brings into sharp focus why, when
there are too few samples available so that the effective number of
signals is less than the actual number of signals, underestimation
of the model order is unavoidable (in an asymptotic sense) when
using any sample-eigenvalue-based detection scheme, including
the one proposed herein. The analysis reveals why adding more
sensors can only exacerbate the situation. Numerical simulations
are used to demonstrate that the proposed estimator, like Wax
and Kailath’s MDL-based estimator, consistently estimates the
true number of signals in the dimension fixed, large sample size
limit and the effective number of identifiable signals, unlike Wax
and Kailath’s MDL-based estimator, in the large dimension,
(relatively) large sample size limit.

Index Terms—Detection, random matrices, sample covariance
matrix.

I. INTRODUCTION

THE observation vector, in many signal processing applica-
tions, can be modelled as a superposition of a finite number

of signals embedded in additive noise. Detecting the number

Manuscript received September 21, 2006; revised December 12, 2007. The
associate editor coordinating the review of this manuscript and approving it for
publication was Dr. Erik G.Larsson. The first author was supported in part by
an Office of Naval Research Special Postdoctoral Award in Ocean Acoustics
under Grant N00014-07-1-0269 and in party by the National Science Founda-
tion under Grant DMS-0411962. Early portions of this work appeared in the
first author’s doctoral dissertation, and a few other results were presented at the
2006 Adaptive Sensor Array Processing Workshop and at the 2007 Workshop
on Signal Processing Advances in Wireless Communications.

The authors are with the Department of Mathematics, Massachusetts
Institute of Technology, Cambridge, MA 02139 USA (e-mail: raj@mit.edu;
edelman@mit.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2008.917356

of signals present becomes a key issue and is often the starting
point for the signal parameter estimation problem in diverse ap-
plications such as biomedical signal processing [1], wireless
communications [2], geophysical signal processing [3], array
processing [4], and finance [5], [6] to list a few. When the sig-
nals and the noise are assumed, as we do in this paper, to be
samples of a stationary, ergodic Gaussian vector process, the
sample covariance matrix formed from observations has the
Wishart distribution [7]. This paper uses an information theo-
retic approach, inspired by the seminal work of Wax and Kailath
[8], for determining the number of signals in white noise from
the eigenvalues of the Wishart distributed empirical covariance
matrix formed from relatively few samples.

The reliance of the Wax and Kailath estimator and their
successors [9]–[13], to list a few, on the distributional proper-
ties of the eigenvalues of nonsingular Wishart matrices render
them inapplicable in high-dimensional, sample-starved settings
where the empirical covariance matrix is singular. Ad hoc
modifications to such estimators are often not mathematically
justified, and it is seldom clear, even using simulations as
in [11], whether a fundamental limit of detection is being
encountered vis à vis the chronically reported symptom of
underestimating the number of signals.

This paper addresses both of these issues using relevant
results [14]–[17] from large random matrix theory. The main
contributions of this paper are: 1) the development of a math-
ematically justifiable, computationally simple, sample-eigen-
value-based signal detection algorithm that operates effectively
in sample-starved settings and 2) the introduction of the concept
of effective number of (identifiable) signals which brings into
sharp focus a fundamental limit in the identifiability, under
sample size constraints, of closely spaced or weak signals
using sample-eigenvalue-based detection techniques of the sort
developed in this paper.

The proposed estimator exploits the distributional properties
of the trace of powers, i.e., the moments of the eigenvalues,
of (singular and nonsingular) Wishart distributed large-dimen-
sional sample covariance matrices. The definition of effective
number of identifiable signals is based on the mathematically
rigorous results of Baik and Silverstein [18], Paul [19], and Baik
et al. [20], the physically rigorous derivation by Hoyle and Rat-
tray [21], and the heuristic derivation of the first author in [22].
This concept captures the fundamental limit of sample-eigen-
value-based detection by explaining why, in the large-system
relatively large sample-size limit, if the signal level is below a
threshold that depends on the noise variance, sample size, and
the dimensionality of the system, then reliable sample-eigen-
value-based detection is not possible. This brings into sharp
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focus the fundamental undetectability of weak or closely spaced
signals using sample-eigenvalue-based schemes when too few
samples are available. Adding more sensors will only exacer-
bate the problem by raising the detectability threshold.

Conversely, if the signal level is above this threshold,
and the dimensionality of the system is large enough, then
reliable detection using the proposed estimator is possible.
We demonstrate this via numerical simulations that illustrate
the superiority of the proposed estimator with respect to the
Wax–Kailath MDL-based estimator. Specifically, simulations
reveal that while both the new estimator and the Wax–Kailath
MDL estimator are consistent estimators of the number of
signals in the dimensionality fixed, sample size
sense, the MDL estimator is an inconsistent estimator of the
effective number of signals in the large-system relatively large
sample-size limit, i.e., in limit where the ratio

sense. Simulations suggest that the
new estimator is a consistent estimator of the effective number
of signals in the with
sense. We note that simulations will demonstrate the appli-
cability of the proposed estimator in moderate dimensional
settings as well.

The paper is organized as follows. The problem formula-
tion in Section II is followed by a summary in Section III of
the relevant properties of the eigenvalues of large-dimensional
Wishart distributed sample covariance matrices. An estimator
for the number of signals present that exploits these results is
derived in Section IV. An extension of these results to the fre-
quency domain is discussed in Section V. Consistency of the
proposed estimator and the concept of effective number of sig-
nals is discussed in Section VI. Simulation results that illus-
trate the superior performance of the new method in high-di-
mensional, sample-starved settings are presented in Section VII.
Some concluding remarks are presented in Section VIII.

II. PROBLEM FORMULATION

We observe samples (“snapshots”) of possibly signal
bearing -dimensional snapshot vectors where for
each , and are mutually independent. The
snapshot vectors are modelled as

No Signal
Signal Present

for (1)

where , denotes an -dimensional (real or cir-
cularly symmetric complex) Gaussian noise vector where is
assumed to be unknown, denotes a -dimen-
sional (real or circularly symmetric complex) Gaussian signal
vector with covariance , and is a unknown non-
random matrix. In array processing applications, the th column
of the matrix encodes the parameter vector associated with
the th signal whose magnitude is described by the th element
of .

Since the signal and noise vectors are independent of each
other, the covariance matrix of can be decomposed as

(2)

where

(3)

with denoting the conjugate transpose. Assuming that the ma-
trix is of full column rank, i.e., the columns of are linearly
independent, and that the covariance matrix of the signals is
nonsingular, it follows that the rank of is . Equivalently, the

smallest eigenvalues of are equal to zero.
If we denote the eigenvalues of by

then it follows that the smallest eigenvalues of are all
equal to so that

(4)

Thus, if the true covariance matrix were known a priori, the
dimension of the signal vector can be determined from the
multiplicity of the smallest eigenvalue of . When there is no
signal present, all the eigenvalues of will be identical. The
problem in practice is that the covariance matrix is unknown
so that such a straightforward algorithm cannot be used. The
signal detection and estimation problem is hence posed in terms
of an inference problem on samples of -dimensional multi-
variate real or complex Gaussian snapshot vectors.

A. Prior Work and Motivation for New
Sample-Eigenvalue-Based Estimator

Inferring the number of signals from these samples reduces
the signal detection problem to a model selection problem for
which there are many approaches. A classical approach to this
problem, developed by Bartlett [23] and Lawley [24], uses a se-
quence of hypothesis tests. Though this approach is sophisti-
cated, the main problem is the subjective judgement needed by
the practitioner in selecting the threshold levels for the different
tests.

Information theoretic criteria for model selection such as
those developed by Akaike [25], [26], Schwartz [27], and
Rissanen [28] address this problem by proposing the selection
of the model which gives the minimum information criteria.
The criteria for the various approaches is generically a function
of the log-likelihood of the maximum-likelihood estimator of
the parameters of the model and a term which depends on the
number of parameters of the model that penalizes overfitting of
the model order.

For the problem formulated above, Kailath and Wax [8] pro-
pose an estimator for the number of signals (assuming
and ) based on the eigenvalues of
the sample covariance matrix (SCM) defined by

(5)

where is the matrix of observations (sam-
ples). The Akaike Information Criteria (AIC) form of the esti-
mator is given by

for (6)

while the mnimum descriptive length (MDL) criterion is given
by

for (7)
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where is the geometric mean
of the smallest sample eigenvalues and

is their arithmetic mean.
It is known [8] that the AIC form inconsistently estimates the

number of signals, while the MDL form estimates the number
of signals consistently in the classical fixed, sense.
The simplicity of the estimator and the large sample consistency
are among the primary reasons why the Kailath-Wax MDL es-
timator continues to be employed in practice [4]. In the two
decades since the publication of the WK paper, researchers have
come up with many innovative solutions for making the estima-
tors more “robust” in the sense that estimators continue to work
well in settings where the underlying assumptions of snapshot
and noise Gaussianity and intersnapshot independence (e.g., in
the presence of multipath) can be relaxed as in the work of Zhao
et al. [29], [30], Xu et al. [31], and Stoica-Cedervall [32] among
others [33].

Despite its obvious practical importance, the robustness of the
algorithm to model mismatch is an issue that we shall not ad-
dress in this paper. Instead we aim to revisit the original problem
considered by Wax and Kailath with the objective of designing
an estimator that is robust to high-dimensionality and sample
size constraints. We are motivated by the observation that the
most important deficiency of the Wax–Kailath estimator and its
successors that is yet to be satisfactorily resolved occurs in the
setting where the sample size is smaller than the number of sen-
sors, i.e., when , which is increasingly the case in many
state-of-the-art radar and sonar systems where the number of
sensors exceeds the sample size by a factor of 10 – 100. In this
situation, the SCM is singular and the estimators become degen-
erate, as seen in (6) and (7). Practitioners often overcome this in
an ad hoc fashion by, for example, restricting in (7) to integer
values in the range so that

for (8)

Since large sample, i.e., , asymptotics [34] were used to
derive the estimators in [8], there is no rigorous theoretical jus-
tification for such a reformulation even if the simulation results
suggest that the WK estimators are working “well enough.”

This is true for other sample-eigenvalue-based solutions
found in the literature that exploit the sample eigenvalue order
statistics [12], [13], employ a Bayesian framework by imposing
priors on the number of signals [35], involve solving a set of
possibly high-dimensional nonlinear equations [9], or propose
sequential hypothesis testing procedures [10]. The fact that
these solutions are computationally more intensive or require
the practitioner to set subjective threshold levels makes them
less attractive than the WK MDL solution; more importantly,
they do not address the sample-starved setting in their analysis
or their simulations either.

For example, in [13], Fishler et al. use simulations to illustrate
the performance of their algorithm with sensors and a
sample size whereas in a recent paper [33], Fishler
and Poor illustrate their performance with sensors and

samples. Van Trees discusses the various techniques
for estimating the number of signals in [4, Sec. 7.8]; the sample-
starved setting where or is not treated in the
simulations either.

There is, however, some notable work on detecting the
number of signals using short data records. Particle filter-based
techniques [36], have proven to be particularly useful in such
short data record settings. Their disadvantage, from our per-
spective, is that they require the practitioner to model the
eigenvectors of the underlying population covariance matrix as
well; this makes them especially sensitive to model mismatch
errors that are endemic to challenging real-world high-di-
mensional settings such as those encountered in large-array
signal processing. This observation also applies to mini-
mization-based techniques [37], [38] that exploit the sparse
representation of observations in an known overcomplete basis
(e.g., composed of samples from the array manifold as in [39]).

This motivates our development of a mathematically justifi-
able, sample-eigenvalue-based estimator with a computational
complexity comparable to that of the modified WK estimator
in (8) that remains robust to high dimensionality and sample
size constraints. The new estimator given by (26) is derived
in Section IV. An implicit assumption in the derivation of
(26) is that the number of signals is much smaller than the
system size, i.e., . A rather important shortcoming of
our sample-eigenvalue-based detection scheme, as we shall
elaborate in Section VI, is that it just might not be possible to
detect low-level or closely spaced signals when there are too
few samples available. In other words, if the signals are not
strong enough or not spaced far enough part, then not only will
proposed estimator consistently underestimate the number of
signals but so will any other sample-eigenvalue-based detector.

The concept of the effective number of signals provides
insight into the fundamental limit, due to snapshot constraints
in high-dimensional settings, of reliable signal detection by
eigen-inference , i.e., by using the sample eigenvalues alone.
This helps identify scenarios where algorithms that exploit any
structure in the eigenvectors of the signals, such as the MUSIC
and the Capon-MVDR algorithms in sensor array processing
[4], particle filter-based techniques [36] or sparsity (in a known
basis) exploiting techniques [37]–[39], might be better able
to tease out lower level signals from the background noise. It
is worth noting that the proposed approach remain relevant in
situations where the eigenvector structure has been identified.
This is because eigen-inference methodologies are inherently
robust to eigenvector modelling errors that occur in high-di-
mensional settings. Thus the practitioner may use the proposed
methodologies to complement and “robustify” the inference
provided by algorithms that exploit the eigenvector structure.

III. PERTINENT RESULTS FROM RANDOM MATRIX THEORY

Analytically characterizing the distribution of the sample
eigenvalues, as a function of the population eigenvalues, is the
first step in designing a sample-eigenvalue-based estimator that
is robust to high-dimensionality and sample size constraints.
For arbitrary covariance , the joint density function of the
eigenvalues of the SCM when is shown
to be given by [34]

(9)
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Fig. 1. Blurring of sample eigenvalues relative to the population eigenvalues
when are there a finite number of snapshots. (a) True eigenvalues. (b) Sample
eigenvalues formed from 20 snapshots.

where , is a normalization constant,
and (or 2) when is real (respectively, complex). In (9),

when while when where
and are, respectively, the set of orthogonal

and unitary matrices with Haar measure.
Note that the exact characterization of the joint density of

the eigenvalues in (9) involves a multidimensional integral over
the orthogonal (or unitary) group. This makes it intractable for
analysis without resorting to asymptotics. Anderson’s landmark
paper [34] does just that by characterizing the distribution of the
sample eigenvalues using large sample asymptotics. A classical
result due to Anderson establishes the consistency of the sample
eigenvalues in the dimensionality fixed, sample size
asymptotic regime [34]. When the dimensionality is small and
there are plenty of samples available, Anderson’s analysis sug-
gests that the sample eigenvalues will be (roughly) symmetri-
cally centered around the population eigenvalues. When the di-
mensionality is large, and the sample size is relatively small, An-
derson’s prediction of sample eigenvalue consistency is in stark
contrast to the asymmetric spreading of the sample eigenvalues
that is observed in numerical simulations. This is illustrated in
Fig. 1 where the eigenvalues of a SCM formed from

samples are compared with the eigenvalues of the un-
derlying population covariance matrix.

The role of random matrix theory comes in because of
new analytical results that are able to precisely describe the
spreading of the sample eigenvalues exhibited in Fig. 1. Since
our new estimator explicitly exploits these analytical results, the
use of our estimator in high-dimensional, sample-starved set-
tings is more mathematically justified than other sample-eigen-
value-based approaches found in the literature that explicitly
use Anderson’s sample eigenvalue consistency results. See, for
example [8, eq. (13a), pp. 389] and [12, eq. (5), pp. 2243].

We argue that this is particularly so in settings where
, where practitioners (though, not the original authors!) have

often invoked the equality between the nonzero eigenvalues of
the and the matrix to justify
ad hoc modifications to estimators that use only the nonzero
eigenvalues of the SCM, as in (8). We contend that such an
ad hoc modification to any estimator that explicitly uses An-
derson’s sample eigenvalue consistency results is mathemati-

cally unjustified because the sample eigen-spectrum blurring,
which is only further exacerbated in the regime, remains
unaccounted for.

Before summarizing the pertinent results, we note that the an-
alytical breakthrough alluded to is a consequence of considering
the large-system relatively large sample-size asymptotic regime
as opposed to “classical” fixed system-size large-sample-size
asymptotic regime. Mathematically speaking, the new results
describe the distribution of the eigenvalues in with

asymptotic regime as opposed to the
fixed, regime à la Anderson. We direct the reader to
Johnstone’s excellent survey for a discussion on these asymp-
totic regimes [40, p. 9] and much more.

A. Eigenvalues of the Signal-Free SCM

A central object in the study of large random matrices is the
empirical distribution function (e.d.f.) of the eigenvalues, which
for an arbitrary matrix with real eigenvalues (counted with
multiplicity) is defined as

Number of eigenvalues of
(10)

For a broad class of random matrices, the sequence of e.d.f.’s
can be shown to converge in the limit to a nonrandom
distribution function [41]. Of particular interest is the conver-
gence of the e.d.f. of the signal-free SCM which is described
next.

1) Proposition 3.1: Let denote a signal-free sample co-
variance matrix formed from an matrix of observations
with i.i.d. Gaussian samples of mean zero and variance .
Then the e.d.f. almost surely for every , as

and where

(11)

with , when and zero
otherwise, and is the Dirac delta function.

Proof: This result was proved in [42] and [43] in very
general settings. Other proofs include [15], [44], and [45].
The probability density in (11) is often referred to as the
Marčenko–Pastur density.

Fig. 2 plots the Marčenko–Pastur density in (11) for
and different values of . Note that as , the
eigenvalues are increasingly clustered around but for
modest values of , the spreading is quite significant.

The almost sure convergence of the e.d.f. of the signal-free
SCM implies that the moments of the eigenvalues converge al-
most surely, so that

(12)

The moments of the Marčenko–Pastur density are given by [15],
[46]

(13)
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Fig. 2. Marčenko–Pastur density, given by (11), for the eigenvalues of the
signal-free sample covariance matrix with noise variance 1 and c = limn=m.

For finite and , the sample moments, i.e., ,
will fluctuate about these limiting values. The precise nature of
the fluctuations is described next.

2) Proposition 3.2: If satisfies the hypotheses of Proposi-
tion 3.1 for some then as and

, we have

(14)

where the convergence is in distribution.
Proof: This result appears in [14] and [15] for the real case

and in [16] for the real and complex cases. The result for general
appears in Dumitriu and Edelman [17].
We now use the result in Proposition 3.2 to develop a test

statistic whose distribution is independent of the unknown
noise variance . The distributional properties of this test
statistic are described next.

3) Proposition 3.3: Assume satisfies the hypotheses of
Proposition 3.1 for some . Consider the statistic

Then as and , we have

(15)

where the convergence is in distribution.
Proof: Define the function . Its gradient

vector is given by

(16)

The statistic can be written in terms of as simply
. The limiting distribu-

tion of can be deduced from the distributional properties
of and established in Proposition
3.2. Specifically, by an application of the delta method [47], we
obtain that as with , then

where the mean and the variance are given by

(17a)

(17b)

Substituting, the expressions for and given in (14), in
(17a), and (17b) gives us the required expressions for the mean
and the variance of the normal distribution on the right-hand
side of (15).

B. Eigenvalues of the Signal Bearing SCM

When there are signals present then, in the limit,
where is kept fixed, the limiting e.d.f. of will still be given
by Proposition 3.1. This is because the e.d.f., defined as in (10),
weights the contribution of every eigenvalue equally so that ef-
fect of the fraction of “signal” eigenvalues vanishes in the

limit.
Note, however, that in the signal-free case, i.e., when ,

Proposition 3.1 and the result in [48] establish the almost sure
convergence of the largest eigenvalue of the SCM to .
In the signal bearing case, a so-called phase transition phenom-
enon is observed, in that the largest eigenvalue will converge
to a limit different from that in the signal-free case only if the
“signal” eigenvalues are above a certain threshold. This is de-
scribed next.

1) Proposition 3.4: Let denote a sample covariance ma-
trix formed from an matrix of Gaussian observations
whose columns are independent of each other and identically
distributed with mean and covariance . Denote the eigen-
values of by . Let

denote the th largest eigenvalue of . Then as
with

if

if
(18)

for and the convergence is almost surely.
Proof: This result appears in [18] for very general settings.

A matrix theoretic proof for the real-valued SCM case may be
found in [19] while a determinental proof for the complex case
may be found in [20]. A heuristic derivation that relies on an
interacting particle system interpretation of the sample eigen-
values appears in [22].

The “signal” eigenvalues strictly below the threshold de-
scribed in Proposition 3.4 exhibit, on rescaling, fluctuations
described by the Tracy–Widom distributions [49]–[51]. There
is an interesting phenomenon described in [20] that occurs for
“signal” eigenvalues exactly equal to the threshold. For “signal”
eigenvalues above the threshold described in Proposition 3.4,
the fluctuations about the asymptotic limit are described next.
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Fig. 3. Sample realizations of the proposed criterion when there are k = 2 complex-valued signals and � = 10, � = 3, and � = � � � = � = 1. (a) Complex
signals: n = 16, m = 32. (b) Complex signals: n = 32, m = 64.

2) Proposition 3.5: Assume that and satisfy the hy-
potheses of Proposition 3.4. If has multiplicity
1 and if then

(19)

where the convergence in distribution is almost surely.
Proof: A matrix theoretic proof for the real case may be

found in [19] while a determinental proof for the complex case
may be found in [20]. The result has been strengthened for
non-Gaussian situations by Baik and Silverstein for general

[52].

IV. ESTIMATOR FOR THE NUMBER OF SIGNALS

We derive an information theoretic estimator for the number
of signals by exploiting the distributional properties of the mo-
ments of eigenvalues of the (signal-free) SCM given by Propo-
sitions 3.2 and 3.3, as follows. The overarching principle used
is that, given an observation and a family

of models, or equivalently a parameterized family of probability
densities indexed by the parameter vector , we select
the model which gives the minimum AIC [26] defined by

AIC (20)

where is the maximum-likelihood estimate of , and is the
number of free parameters in . Since the noise variance is un-
known, the parameter vector of the model, denoted by , is
given by

(21)

There are thus free parameters in . Assuming that there
are signals, the maximum-likelihood estimate
of the noise variance is given by [34] (which Proposition 3.2
corroborates in the setting)

(22)

where are the eigenvalues of .
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Consider the test statistic

(23)

(24)

for a constant . This choice is motivated by Proposition 3.3
where we note that the limiting distribution of the test statistic
in the signal-free case does not depend on the (unknown) noise
variance. When signals are present and assuming ,
then the distributional properties of the “noise” eigen-
values are closely approximated by the distributional properties
of the eigenvalues given by Proposition 3.2 of the signal-free
SCM, i.e., when . It is hence reasonable to approximate
the distribution of the statistic with the normal distribution
whose mean and variance, for some , given in Proposition
3.3. The log-likelihood function , for large can
hence be approximated by

(25)

In (23) and (25), it is reasonable (Bai and Silverstein provide
an argument in [16]) to use for the (unknown) lim-
iting parameter . Plugging in
into (23) and (25), ignoring the constant term on the right-hand
side of (25) when the log-likelihood function is substituted into
(20) yields the estimator (26a)–(26b), shown at the bottom of
the page. In (26), the ’s are the eigenvalues of the sample co-
variance matrix . Fig. 3 plots sample realizations of the score
function.

V. EXTENSION TO FREQUENCY DOMAIN

AND VECTOR SENSORS

When the snapshot vectors for repre-
sent Fourier coefficients vectors at frequency then the sample
covariance matrix

(27)

Fig. 4. Finite system dimensionality and sample size induced fluctuations of
the single “signal” eigenvalue on the far right and the “noise” eigenvalues about
their limiting positions are shown. The magnitude of the fluctuations impacts
the ability to discriminate the “signal” eigenvalue from the largest “noise”
eigenvalue.

is the periodogram estimate of the spectral density matrix at fre-
quency . The time-domain approach carries over to the fre-
quency domain so that the estimator in (26) remains applicable
with where are
the eigenvalues of .

When the signals are wideband and occupy frequency
bins, denoted by , then the information on the
number of signals present is contained in all the bins. The
assumption that the observation time is much larger than the
correlation times of the signals (sometimes referred to as the
SPLOT assumption—stationary process, long observation
time) ensures that the Fourier coefficients corresponding to the
different frequencies are statistically independent.

Thus the AIC-based criterion for detecting the number of
wideband signals that occupy the frequency bands
is obtained by summing the corresponding criterion in (26) over
the frequency range of interest

(28a)

(26a)

for (26b)

Here if and if
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Fig. 5. Comparison of the performance of the new estimator in (26) with the MDL estimator in (8) for various n (system size) andm (sample size). (a) Empirical
probability that k = 2 for various n and m. (b) Empirical probability that k = 1 for various n and m. (c) Empirical probability that k = 0 for various n and m.

(28b)

When the number of snapshots is severely constrained, the
SPLOT assumption is likely to be violated so that the Fourier co-
efficients corresponding to different frequencies will not be sta-

tistically independent. This will likely degrade the performance
of the proposed estimators.

When the measurement vectors represent quaternion-valued
narrowband signals, then so that the estimator in (26)
can be used. Quaternion-valued vectors arise when the data col-
lected from vector sensors is represented using quaternions as
in [53].

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 24, 2008 at 15:11 from IEEE Xplore.  Restrictions apply.



NADAKUDITI AND EDELMAN: SAMPLE EIGENVALUE BASED DETECTION 2633

Fig. 6. Effective number of identifiable signals, computed using (32) for the values ofn (system size) andm (sample size) considered in Fig. 5 when the population
covariance matrix has two signal eigenvalues � = 10 and � = 3 and n� 2 noise eigenvalues � = � � � = � = � = 1.

Fig. 7. Comparison of the performance of the new estimator in (26) with the MDL estimator in (8) for various values of n (system size) with m (sample size)
such that n=m is fixed. (a) Empirical probability that k = 2 for various n and fixed n=m. (b) Empirical probability that k = 1 for various n and fixed n=m.

VI. CONSISTENCY OF THE ESTIMATOR AND THE EFFECTIVE

NUMBER OF IDENTIFIABLE SIGNALS

For a fixed sample size, and system dimensionality, the prob-
ability of detecting a signal is the most practically useful crite-
rion for comparing the performance of different estimators. For
theoretical purposes, however, the large sample consistency of
the estimator is (usually) more analytically tractable and hence
often supplied as the justification for employing an estimator.
We conjecture that the proposed algorithm is a consistent es-
timator of the true number of signals in the “classical” large
sample asymptotic regime in the sense made explicit next.

1) Conjecture 6.1: Let be a covariance matrix that
satisfies the hypothesis of Proposition 3.4. Let be a sample co-
variance matrix formed from snapshots. Then in the fixed,

limit, is a consistent estimator of where is the
estimate of the number of signals obtained using (26).

The “classical” notion of large sample consistency does not
adequately capture the suitability of an estimator in high-dimen-
sional, sample-starved settings when or . In

such settings, it is more natural to investigate the consistency
properties of the estimator in the large-system relatively large
sample-size limit instead. We can use Proposition 3.4 to estab-
lish an important property of the proposed estimator in such a
limit.

2) Theorem 6.2: Let and be two sized covariance
matrices whose eigenvalues are related as

(29a)

(29b)

where for some , and all ,

. Let and be the associated sample covariance
matrices formed from snapshots. Then for every

such that

for

(30a)
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TABLE I
COMPARISON OF THE EMPIRICAL PERFORMANCE OF THE NEW ESTIMATOR IN (26) WITH THE WAX–KAILATH MDL ESTIMATOR IN (8) WHEN THE POPULATION

COVARIANCE MATRIX HAS TWO SIGNAL EIGENVALUES � = 10 AND � = 3 AND n� 2 NOISE EIGENVALUES � = � � � = � = � = 1. THE EFFECTIVE

NUMBER OF IDENTIFIABLE SIGNALS IS COMPUTED USING (32) WHILE THE SEPARATION METRIC Z IS COMPUTED FOR j = k USING (37). HERE n DENOTES

THE SYSTEM SIZE, m DENOTES THE SAMPLE SIZE, AND THE SNAPSHOT VECTORS, MODELLED IN (1), ARE TAKEN TO BE COMPLEX-VALUED

and

(30b)

where the convergence is almost surely and is the estimate of
the number of signals obtained using the algorithm in (26).

Proof: The result follows from Proposition 3.4. The

th sample eigenvalue of both and will converge almost
surely to the same limit equal to . Furthermore, for
every , the th largest eigenvalue of will converge
to the same limit, given by Proposition 3.4, as the th largest

eigenvalue of . The fluctuations about this limit will hence be
identical by Proposition 3.5 so that (30) follows in the asymp-
totic limit.

Note that the rate of convergence to the asymptotic limit for
and will, in general, de-

pend on the eigenvalue structure of and may be arbitrarily
slow. Thus, Theorem 6.2 yields no insight into rate of con-
vergence-type issues which are important in practice. Rather,
the theorem is a statement on the asymptotic equivalence, from
an identifiability point of view, of sequences of sample covari-
ance matrices which are related in the manner described. At

this point, we are unable to prove the consistency of the pro-
posed estimator as this would require more a refined analysis
that characterizes the fluctuations of subsets of the (ordered)
“noise” eigenvalues. The statement regarding consistency of the
proposed estimator, in the sense of large-system relatively large
sample-size limit, is presented as a conjecture with numerical
simulations used as nondefinitive yet corroborating evidence.

3) Conjecture 6.3: Let be a covariance matrix that
satisfies the hypothesis of Proposition 3.4. Let be a sample
covariance matrix formed from snapshots. Define

Number of eigenvalues of (31)

Then in the limit with , is a
consistent estimator of where is the estimate of the
number of signals obtained using the algorithm in (26).

Motivated by Proposition 3.4, we (heuristically) define the
effective number of (identifiable) signals as

Number of eigenvalues of

(32)
Conjecture 6.3 then simply states that the proposed estimator is
a consistent estimator of the effective number of (identifiable)
signals in the large-system relatively large sample-size limit.
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TABLE II
COMPARISON OF THE EMPIRICAL PERFORMANCE OF THE NEW ESTIMATOR IN (26) WITH THE WAX–KAILATH MDL ESTIMATOR IN (8) WHEN THE POPULATION

COVARIANCE MATRIX HAS TWO SIGNAL EIGENVALUES � = 10 AND � = 3 AND n� 2 NOISE EIGENVALUES � = � � � = � = � = 1. THE EFFECTIVE

NUMBER OF IDENTIFIABLE SIGNALS IS COMPUTED USING (32) WHILE THE SEPARATION METRIC Z IS COMPUTED FOR j = k USING (37). HERE n DENOTES

THE SYSTEM SIZE, m DENOTES THE SAMPLE SIZE, AND THE SNAPSHOT VECTORS, MODELLED IN (1), ARE TAKEN TO BE COMPLEX-VALUED

A. Asymptotic Identifiability of Two Closely Spaced Signals

Suppose there are two uncorrelated (hence, independent) sig-
nals so that . In (1) let . In a
sensor array processing application, we think of
and as encoding the array manifold vectors for a
source and an interferer with powers and , located at
and , respectively. The covariance matrix given by

(33)

has the smallest eigenvalues and
the two largest eigenvalues

(34a)

(34b)

respectively. Applying the result in Proposition 3.4 allows us to
express the effective number of signals as

if
if
if

(35)

In the special situation when and
, we can (in an asymptotic sense) reliably detect

the presence of both signals from the sample eigenvalues alone
whenever we have the conditions in (36), shown at the bottom of
the next page. Equation (36) captures the tradeoff between the
identifiability of two closely spaced signals, the dimensionality
of the system, the number of available snapshots, and the cosine
of the angle between the vectors and .

We note that the concept of the effective number of signals
is an asymptotic concept for large dimensions and relatively
large sample sizes. For moderate dimensions and sample
sizes, the fluctuations in the “signal” and “noise” eigenvalues
affect the reliability of the underlying detection procedure
as illustrated in Fig. 4. From Proposition 3.4, we expect that
the largest “noise” eigenvalue will, with high probability, be
found in a neighborhood around while the
“signal” eigenvalues will, with high probability, be found in
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a neighborhood around . From
Proposition 3.5, we expect the “signal” eigenvalues to exhibit
Gaussian fluctuations with a standard deviation of approxi-

mately . This motivates our

definition of the metric given by

(37)

which measures the (theoretical) separation of the th “signal”
eigenvalue from the largest “noise” eigenvalue in standard de-
viations of the th signal eigenvalue’s fluctuations. Simulations
suggest that reliable detection (with an empirical probability
greater than 90%) of the effective number of signals is pos-
sible if lies between 5 and 15. This large range of values
for the minimum , which we obtained from the results in
Section VII, suggests that a more precise characterization of the
finite system, finite sample performance of the estimator will
have to take into account the more complicated-to-analyze in-
teractions between the “noise” and the “signal” eigenvalues that
are negligible in the large-system relatively large sample-size
limit. Nonetheless, because of the nature of the random matrix
results on which our guidance is based, we expect our heuristics
to be more accurate in high-dimensional, relatively large sample
size settings than the those proposed in [54] and [12] which rely
on Anderson’s classical large sample asymptotics.

We note that in using estimator in (26) it is implicit that
is the dimension of the “spatial” variable whose covariance is
modelled by (2) while is the dimension of the “temporal”
variable. Flipping the role of “space” and “time” when forming
the sample covariance matrix will rescale the eigenvalues but
will not affect the threshold below which the “signal” eigen-
values will be indistinguishable from the “noise” eigenvalues.
The noninterchangeability of the “space” and “time” dimen-
sions in the determination of the thresholds in (31) and (36) is a
consequence of the asymmetricity of our initial assumption that
the observations have spatial but not temporal correlations.

VII. NUMERICAL SIMULATIONS

We now illustrate the performance of our estimator using
Monte Carlo simulations. The results obtained provide evidence
for the consistency properties conjectured in Section VI. In all
of our simulations, we use a population covariance matrix
that has arbitrarily fixed, yet unknown, eigenvectors,
“signal” eigenvalues with and , and
“noise” eigenvalues with . We
assume that the snapshot vectors modelled as in (1) are com-
plex-valued so that we must plug in in (26); the choice
of complex-valued signals is motivated by applications in array
signal processing and wireless communications.

Using 4000 Monte Carlo simulations, and various values of
and , we obtain an estimate of the number of signals from

the eigenvalues of the sample covariance matrix using our new
estimator and the modified Wax–Kailath estimator, described in
(26) and (8) respectively. We do not consider the Wax–Kailath
AIC estimator in (6) in our simulations because of its proven [8]
inconsistency in the fixed system size, large sample limit—we
are interested in estimators that exhibit the consistency conjec-
tured in Section VI in both asymptotic regimes. A thorough
comparison of the performance of our estimator with other es-
timators (and their ad hoc modifications) found in the literature
is beyond the scope of this paper.

We first investigate the large sample consistency in the clas-
sical sense of fixed and . For a choice of and dif-
ferent values of we compute the empirical probability of de-
tecting two signals. For large values of we expect both the
new and the Wax–Kailath MDL estimator to detect both signals
with high probability. Fig. 5 plots the results obtained in the nu-
merical simulations.

Fig. 5(a) shows that for and , if is
large enough then either estimator is able to detect both signals
with high probability. However, the new estimator requires sig-
nificantly fewer samples to do so than the Wax–Kailath MDL
estimator.

Fig. 5(b) and (c) plot the empirical probability of detecting
one and zero signals, respectively, as a function of for
various values of . The results exhibit the chronically reported
symptom of estimators underestimating the number of sig-
nals—this is not surprising given the discussion in Section VI.
Fig. 6 plots the effective number of identifiable signals ,
determined using (32) for the various values of and
considered. We observe that the values of and for which
the empirical probability of the new estimator detecting one
signal is high also correspond to regimes where . This
suggests that the asymptotic concept of the effective number
of signals remains relevant in a nonasymptotic regime as well.
At the same time, however, one should not expect the signal
identifiability/unidentifiability predictions in Section VI to be
accurate in the severely sample-starved settings where .
For example, Fig. 5(c) reveals that the new estimator detects
zero signals with high empirical probability when there are less
than ten samples available even though in this regime
from Fig. 6. In the large-system relatively large sample-size
asymptotic limit, however, these predictions are accurate—we
discuss this next.

When samples are available, Fig. 7(a) shows that
the proposed estimator consistently detects two signals while
the Wax–Kailath MDL estimator does not. However, when

samples are available, Fig. 7(a) suggests that neither
estimator is able to detect both the signals present. A closer
examination of the empirical data presents a different picture.
The population covariance has two signal eigenvalues

Asymptotic identifiability condition (36)
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and with the noise eigenvalues . Hence, when
, from (31), the effective number of signals .

Fig. 7(b) shows that for large and , the new estimator
consistently estimates one signal, as expected. We remark that
the signal eigenvalue , which is asymptotically unidentifi-
able, falls exactly on the threshold in (31). The consistency of
the new estimator with respect to the effective number of sig-
nals corroborates the asymptotic tightness of the fundamental
limit of sample-eigenvalue-based detection. On inspecting
Table I(b) and (d) it is evident that the Wax–Kailath MDL
estimator consistently underestimates the effective number of
signals in the large-system relatively large sample-size limit.

Table II provides additional evidence for Conjecture 6.3. We
offer Table II(c) and (d) as evidence for the observation that
large-system relatively large sample consistency aside, the rate
of convergence can be arbitrary slow and cannot be entirely ex-
plained by the metric in (37).

VIII. CONCLUDING REMARKS

We have developed an information theoretic approach for de-
tecting the number of signals in white noise from the sample
eigenvalues alone. The proposed estimator explicitly takes into
account the blurring of the sample eigenvalues due to the fi-
nite size. The stated conjecture on the consistency of the algo-
rithm, in both the fixed, sense and the

with sense, remains to be proven. It would
be interesting to investigate the impact of a broader class of
penalty functions on the consistency, strong or otherwise, in
both asymptotic regimes, in the spirit of [29].

In future work, we plan to address the problem of estimating
the number of high-dimensional signals in noise with arbitrary
covariance [30], using relatively few samples when an indepen-
dent estimate of the noise sample covariance matrix, that is itself
formed from relative few samples, is available. This estimator
will also be of the form in (26) and will exploit the analytical
characterization of properties of the traces of powers of random
Wishart matrices with a covariance structure that is also random
[55].

It remains an open question to analyze such signal detection
algorithms in the Neyman–Pearson sense of finding the most
powerful test that does not exceed a threshold probability of
false detection. Finer properties, perhaps buried in the rate of
convergence to the asymptotic results used, might be useful in
this context. In the spirit of Wax and Kailath’s original work, we
developed a procedure that did not require us to make any sub-
jective decisions on setting threshold levels. Thus, we did not
consider largest eigenvalue tests in sample-starved settings of
the sort described in [40], [51], [56], and the references therein.
Nevertheless, if the performance can be significantly improved
using a sequence of nested hypothesis tests, then this might be a
price we might be ready to pay. This is especially true for the de-
tection of low-level signals right around the threshold where the
asymptotic results suggest that it becomes increasingly difficult,
if not impossible, to detect signals using the sample eigenvalues
alone.
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