
The road from Kac's matrixto Kac's random polynomialsAlan Edelman� Eric KostlanyAbstractThis paper tells the story of a matrix and a problem both of which are associatedwith the name Mark Kac, though most likely he never made the connection. Thismatrix appears as the Clement matrix in Higham's toolbox, and in the Ehrenfest urnmodel of di�usion. Our immediate interest in this matrix arises in the study of rootsof random polynomials.1 A<|>BThis report may be thought of as a path with two endpoints, both of which may beassociated with the name Mark Kac. No on second thought, the focus is not so muchon the path, but rather the two endpoints themselves as there are many paths between thetwo points, some more scenic than others. We have no reason to suspect that Kac evertook the path from A to B as his itinerary took him to many other destinations.Endpoint \A" is the so-called Kac matrix, a simple matrix with many hidden treasures.Endpoint \B" is a Kac problem on the average number of real roots of a random algebraicequation. The matrix (\A") appeared in 1946 in a lecture on Brownian motion [12]. Therandom polynomial question (\B") �rst appeared in a 1943 paper [11].2 The Kac MatrixThe n+ 1 by n+ 1 Kac matrix is de�ned as the tridiagonal matrixKacn � 0BBBBBBBB@ 0 n1 0 n� 12 0 n� 2.. . . . . . . .n� 1 0 1n 0 1CCCCCCCCA :This matrix was dubbed \A Matrix of Mark Kac" by Taussky and Todd [18] who pointout that this matrix was studied by Sylvester, Schr�odinger, and many others. It also hasthe name \Clement matrix" in Higham's Test Matrix Toolbox for Matlab [10] because ofClement's [2] proposed use of this matrix as a test matrix. It is the matrix that describesa random walk on a hypercube as well as the Ehrenfest urn model of di�usion [3, 4].�Department of Mathematics Room 2-380, Massachusetts Institute of Technology, Cambridge, MA 02139,edelman@math.mit.edu.yArts and Sciences, Kapi`olani Community College, 4303 Diamond Head Road, Honolulu, HI 96816,kostlan@math.hawaii.edu. 1



2 Edelman and KostlanThe �rst surprise that this matrix has in store for us is that the eigenvalues are theintegers �n;�n + 2;�n + 4; : : : ; n � 2; n. Several proofs of this fact may be found in[18] along with interesting historical remarks such as that Schr�odinger could not �nd aproof that these eigenvalues are correct. Numerically the eigenvalues can be di�cult in amanner that reminds us of the Wilkinson matrix. Though the eigenvalues are integers inexact arithmetic, Matlab computes some non-real eigenvalues when eig(clement(120)) isexecuted.One of the proofs in [18] is denoted \mild trickery by Kac" in that Kac makes clever useof generating functions to obtain the eigenvalues of eigenvectors. We like to think that ifKac's proof was mild trickery, the following new proof might be considered major trickeryin that the reader would be unable to guess how we conjured up this proof.Theorem 2.1. The eigenvalues of Kacn are the integers 2k � n for k = 0; 1; : : : ; n.Proof. De�ne fk(x) � sinhk(x) coshn�k(x); k = 0; : : : ; n;gk(x) � (sinh(x) + cosh(x))k(sinh(x)� cosh(x))n�k; k = 0; : : : ; nIf V is the vector space of functions with basis ffk(x)g, then the gk(x) are clearly inthis vector space. Also, ddxfk(x) = kfk�1(x) + (n � k)fk+1(x), so that the Kac matrixis the representation of the operator d=dx in V . We actually wrote gk(x) in a morecomplicated way than we needed to so that we could emphasize that gk(x) 2 V . Actually,gk(x) = exp((2k�n)x) is an eigenfunction of d=dx with eigenvalue 2k�n for k = 0; : : : ; n.The eigenvector is obtained by expanding out the gk(x) in terms of the fk(x).3 The Kac-Matrix as Polynomial \Rotators"Perhaps a good magician never reveals his secrets, but we are mathematicians, and we cannot resist. Our secret is a certain understanding of nth degree polynomials in one variable.As usual, we will identify the set of polynomials of the form p(t) = a0 + a1t + � � �+ antn,with the vector space <n+1. Actually, it will be more convenient to \homogenize" thepolynomial so as to consider polynomials of the form p(x; y) = a0xn+a1xn�1y+ � � �+anynwhich we will not distinguish from the vector (a0; a1; : : : ; an)T .For each � 2 [0; 2�), we de�ne the \rotated" polynomialp(x; y; �) � p(x cos� + y sin �;�x sin � + y cos �):With all the sines and cosines around, it would be easy to lose sight of the fact that forthe coe�cients of the polynomial p(x; y; �) are linear functions of the coe�cients ai of p(x; y)even if they are complicated trigonometric functions in �. Since we are not distinguishinga polynomial from the vector of its coe�cients, we may say that there is an n + 1� n + 1matrix L� for which p(x; y; �) = L�p(x; y):We will demonstrate that the matrices L� are matrix exponentials of scalar multiplesof the Kac-like matrixAntiKacn � 0BBBBBBBB@ 0 n�1 0 n� 1�2 0 n � 2.. . . . . . . .�(n� 1) 0 1�n 0 1CCCCCCCCA :



The Road From Kac's Matrix to Kac's Polynomials 3Indeed by di�erentiating such terms as ak(x cos� + y sin �)n�k(�x sin � + y cos �)k withrespect to �, we see that dd�L� = AntiKacnL� ;which has the solution L� = exp(�AntiKacn).If we let Dn = diag(1; i; i2; : : : ; in), then D�1n KacnDn = iAntiKacn. So the eigenvaluesof AntiKacn are the integers �n;�n+2; : : : ; n� 2; n multiplied by i. The reader may wishto return to the de�nition of the rotated polynomials to see why the eigenvalues \had to"be integers times i.Of course the matrices Kacn and AntiKacn are really the same. The di�erence is justthe di�erence between sinh and sin, it all depends on which way you are facing in thecomplex plane.4 The symmetrized Kac matrix and Random PolynomialsThe matrix Kacn (or AntiKacn) may be symmetrized (anti-symmetrized) by a diagonalmatrix containing square-roots of the binomial coe�cients: Bn = diag(f�nk�1=2gnk=0) Thesymmetrized or version of the matrix contains the numbers pk(n+ 1� k) on the superand sub-diagonals; the anti-symmetrized is the same except that the subdiagonal entrieshave minus signs.Let us to go back to our de�nition in Section 3 and say that we will now identifyP ak�nk�1=2xn�kyk with the vector (a0; a1; : : : ; an)T . This is a scaling of the coordinate axesof our n+1 dimensional space. If we were to follow our de�nitions, the matrices L� are nowexponentials of anti-symmetric matrices, i.e. they are orthogonal. In other words, we maycompute the coe�cients of p(x; y; �) by applying an orthogonal matrix to the coe�cientsof p(x; y): In this coordinate system, rotating the homogeneous arguments of p induces arotation of the coe�cient vector of p! As � sweeps through [0; 2�), the coe�cient vectorof the polynomial sweeps out a path in <n+1 that is con�ned to a sphere centered aroundthe origin. In general, this path will be non-planar. One interesting degenerate case is thepolynomial (x2+y2)n=2 de�ned for even n. Rotating this polynomial does not move it; thispolynomial is the eigenvector corresponding to the eigenvalue 0. Other degenerate casesthat do lead to planar paths (circles centered about the origin), may be obtained from theeigenvectors corresponding to �ki.What if p(x; y) = Pakxn�kyk is a random polynomial with coe�cients ak taken fromindependent and identically distributed standard normal distributions? It is well knownthat the distribution of a vector of independent standard normals is spherically symmetric.Since L� is orthogonal, we see that the distribution of the vector of coe�cients of p(x; y; �)is the same as that of p(x; y). The probability distribution of the coe�cients of our rotatedpolynomials is the same as that of our original polynomials!Therefore, the probability distribution of the roots of the polynomials is invariant underrotation. Remembering that if (x; y) is a root of the homogenized polynomial, then t = y=xis a root of the unhomogenized polynomial, we see that arctan(t) is uniformly distributedon [��=2; �=2).We therefore conclude Theorem 4.1. If p(t) = Pak�nk�1=2tk is a random polynomialwith normally distributed coe�cients, then the distribution of the real roots of p(t) = 0 hasthe Cauchy distribution, i.e. arctan(t) is uniformly distributed on [��=2; �=2).



4 Edelman and Kostlan5 A Curve Length Counts How Many Random Roots are RealLet fk(t); k = 0; 1; : : : ; n be a collection of recti�able functionsv(t) = 0BBBB@ f0(t)f1(t)...fn(t) 1CCCCA ;and let (t) = v(t)=kv(t)k so (t) is on the unit sphere. We showed in [8] that the expectednumber of real roots t in the interval [a; b] to the random equation Pnk=0 akfk(t) = 0, akindependent standard normals, is 1=� times the length of the curve (t) that is swept outon the sphere as t runs through [a; b]. A proof of this statement using mostly precalculuslevel mathematics may be found in the reference.Kac [11, 12] considered the �rst question that might come to a reader's mind: fk(t) = tk .As n! 1 the expected number of real roots is asymptotic to 2� log n+ 0:6257350972 : : :+2n� + O(1=n2) as n ! 1. (Kac knew the leading behavior 2� logn; his derivation wasalgebraic, not geometric.)Here, we wish to focus on a random polynomial question introduced by Kostlan [14]that is more closely connected to the Kac matrix: fk(t) = �nk�1=2tk. We may build thevector v(t), and then normalize to the unit sphere. Letting t = tan � simpli�es the answerwhich is (tan(�)) = 0BBBBBBB@ �n0�1=2 cosn ��n1�1=2 cosn�1 � sin ��n2�1=2 cosn�2 � sin2 �...�nn�1=2 sinn � 1CCCCCCCA ;i.e. k(�) = �nk�1=2 cosn�k � sink �; where the dimension index k runs from 0 to n. Thebinomial expansion of (sin2 � + cos2 �)n = 1 checks that our curve lives on the unit sphere.If we di�erentiate, (tan(�)) with respect to � the anti-symmetrized AntiKacn matrixappears. The curve on the sphere traced out by (�) is the same curve traced out byp(x; y; �), when p(x; y) = xn. Though � varies, the velocity vector always has the samelength as the �rst column of the anti-symmetrized AntiKacn matrix, which is pn. We mayconclude. Theorem 5.1. If p(t) =Pnk=0 ak�nk�1=2tk is a random polynomial with normallydistributed coe�cients, then the expected number of real roots to the equation p(t) = 0 isexactly pn.Proof. As � runs through [��=2; �=2), we trace out the curve (tan(�)) of length �pnbecause the speed of the curve at every point is pn. Dividing the result by � yields theresult.In conclusion, we changed Kac's question a little by asking for the roots of the randomequation 0 =P k = 0nak�nk�1=2tk, and we found that a small variation on Kac's matrix maybe found everywhere in the analysis.6 AcknowledgmentsWe would like to thank Beresford Parlett for introducing us to the Kac matrix on a staircasein Evans hall at UC Berkeley. Without this fortuitous discussion we would never have known



The Road From Kac's Matrix to Kac's Polynomials 5that the matrix we were studying in the context of Kac's problem also was named for Kac.References[1] A.T. Bharucha-Reid and M. Sambandham,Random Polynomials, Academic Press, New York,1986.[2] P.A.Clement, A class of triple-diagonal matrices for test purposes, SIAM Review, 1 (1959),50{52.[3] P. Diaconis, Group Representations in Probability and Statistics, Institute of MathematicalStatistics, Hayward, CA, 1988.[4] P.Diaconis, R.L.Graham, and J.A.Morrison, Asymptotic analysis of a random walk on ahypercube with many dimensions, Random Structures and Algorithms, 1 (1990), 51{72.[5] A. Edelman, Eigenvalues and condition numbers of random matrices, SIAM J. Matrix Anal.Appl. 9 (1988), 543{560.[6] A. Edelman, Eigenvalues and Condition Numbers of Random Matrices, PhD thesis, Depart-ment of Mathematics, MIT, 1989.[7] A. Edelman, E. Kostlan, and M. Shub, How many eigenvalues of a random matrix are real?,J. Amer. Math. Soc. 7 (1994), 247{267.[8] A. Edelman and E. Kostlan, How many zeros of a random polynomial are real?, preprint.[9] A. Edelman, The circular law and the probability that a random matrix has k real eigenvalues,preprint.[10] N. Higham, The Test Matrix Toolbox for Matlab, Numerical Analysis Report No. 237,University of Manchester, England, December 1993.[11] M. Kac, On the average number of real roots of a random algebraic equation, Bull. Am. Math.Soc. 49 (1943), 314{320 and 938.[12] M. Kac, On the average number of real roots of a random algebraic equation (II), Proc. LondonMath. Soc. 50 (1949), 390{408.[13] M. Kac, Random walk and the theory of Brownian motion, Bull. Amer. Math. Soc. 54 (1947),369{391.[14] E. Kostlan, On the distribution of roots of random polynomials, Chapter 38 (pp. 419-431)of From Topology to Computation: Proceedings of the Smalefest edited by M.W. Hirsch,J.E. Marsden and M. Shub, Springer-Verlag, New York, 1993.[15] A.M. Odlyzko and B. Poonen, Zeros of Polynomials with 0,1 Coe�cients, J. L'Enseign. Math.,to appear.[16] L.A. Santal�o, Integral Geometry and Geometric Probability, Volume 1 of Encyclopedia ofMathematics and Its Applications, Addison-Wesley, Reading, 1976.[17] M. Shub and S. Smale, Complexity of Bezout's Theorem II: Volumes and Probabilities, inComputational Algebraic Geometry, F. Eyssette and A. Galligo, eds, Progress in Mathematics,v 109, Birkhauser, 1993, 267{285.[18] O. Taussky and J. Todd, Another look at a matrix of Mark Kac, Linear Algebra Appl. 150,(1991), 341{360.


