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This is not a conference summary of the meeting held from August ��� ���� to September �� ����� but
rather a short document whose goal is to extend the exciting interdisciplinary atmosphere that was generated
at the conference� Here we �	 commit to paper a brief introduction to QCD� and �	 write down suggestions
that were raised at the panel discussion� We consider the very existence of this note a sign of the success of
this conference 
 our two cultures could really meet and talk�

� QCD for the color�blind

We recognize that decoupling the physics from the numerical problem is a long term mistake� but the only
way to start a meaningful dialogue between the two groups is to begin with an oversimpli�ed cocktail party
version of the physical motivations without any equations� and then to present the numerical problem with
very little of the physics�

Quantum Chromodynamics �QCD	 is a theory meant to predict experimentally measurable physical
quantities� for example the mass of the proton and neutron� from the underlying interaction of quarks
and gluons through the socalled �strong� force�� Particle physicists walk around with pocket tables of
experimentally measured quantities whose values could� in principle� be computed from QCD theory� By
contrast� a simpler theory exists for electrons� which are not subject to the strong force�

So much for the physics� Now for the numerical problems� An important computational bottleneck in
QCD is the solution of a huge �n � �� ���� ���	 sparse system of linear equations� This system appears in the
inner loop of a Monte Carlo simulation so an e�cient solution is critical� The entire Monte Carlo simulation
computes certain in�nite dimensional integrals whose values can be extrapolated so as to obtain the physical
quantities of interest�

The �rst question a numerical analyst wants to know is what is the
matrix� The sparse linear operator is not so very di�erent from the
familiar �nite di�erence discretization of the Laplacian operator on a
�d grid�
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where the subscripts represent the grid value ��� and its north� east�
south� west neighbors� The diagram focuses on one lattice point and its
neighbors� but of course it is understood that the operator applies to
every lattice point and its neighbors�
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In QCD� the socalled Wilson action M is always applied on a four dimensional spacetime lattice�
usually with periodic boundary conditions and lattice volumes �grid sizes	 denoted L� � Lt� For purposes
of exposition� a �d version will be presented� On each site� the lattice variables � are not scalars� but
rather two index tensors� �a�i� ��x� matrices	 with �� components� the color �row	 index takes on � values
�a � �� �� �	 and the spin �column	 index takes on � values �i � �� �� �� �	� �Physicists usually prefer to write
� as a vector of length ���	 The operator is
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where
�i � C

��� the quark
Ui � C

��� the gluon� UHU � I� detU � �
Ci � C

��� transport matrices �built from Dirac matrices	
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where i � x� y��x��y� i�e�� east� north� west� and south� Here � is
a positive constant� The � by � �special	 unitary matrices live on the
links� and are randomly chosen from a probability distribution

P �Ui� � const � expf��S��U � � Trace�Log�MHM	� g�

Thus the sparse system may be thought of as a matrix problem� In the
above expression U denotes the totality of all the Ui�s at all of the sites�
The action term S��U � is the sum over all lattice squares ��plaquettes�	
of the corresponding product of Ui�s�
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Typical U matrices must be generated by a program or read in from a �le� The Ci are very simple rank
two matrices and are constant in the sense that over the whole lattice� Cx has the same value for every
Eastward link� and Cy has the same value for every Northward link� etc� The Ci are rank two projections�
The operator M would be Hermitian if reversing the ingoing and the outgoing links is equal to the complex
conjugate� In this case� the operator is nearly Hermitian in that reversing the link orientation amounts to
applying a permutation matrix �called ��	 to each of the spin indices of the Hermitian conjugate� From the
numerical point of view� this means that we can apply transpose free iterative methods towards the solution
of the problem�

To summarize the problem space� this matrix problem for QCD has � parameters�

� L and Lt which determine the overall size of the huge matrix problem that needs to be solved� n �
��L� � Lt�

� � �a constant	 is related to the condition number �which numerical analysts also often call �� but we
will not do that here	� The condition number diverges as � is increased from � to �critical

� � the coe�cient for a local smoothing term S��U � � large � implies smooth physics or large lattice
spacing�

� �sea the kappa for the TraceLog term in the probability distribution for the U �s� �The � for the sparse
system need not be the same as the one for the probability distribution�	

The �rst two parameters enter directly into de�ning the matrix M being inverted �actually of course
no matrix is being inverted� a system is being solved	 and the second two indirectly in�uencing the typical
values of the random link matrices U � In a truly selfconsistent �ie correct�	 simulation� �sea and � should
be the same� but in practice one often uses �sea � �� The example code will have �sea � �� thus removing
the TraceLog piece all together� �Physicists call this the quenched approximation� It always good to have
a nice name for committing an error�	

In solving the linear system there are two types of right hand sides �RHS	� One class typically represents
twelve �or more	 linear systems whose solutions we want simultaneously
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where Ei�a is the �� � tensor of the same character as � on one lattice site� �In other words� Ei�a is also a
� � � matrix�	 The twelve cases correspond to taking Ei�a to be the matrix who �i� a	th entry is � and the
other entries �� The second class of problems has for its RHS a dense random vector �precisely the RHS is
� � MHb where all n components of b are independent random Gaussian numbers�	 For a �xed value of the
RHS� one typically considers ��� inversion problems �normal equations	�
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generated in succession by slowly and continuously varying the U matrices at the links inM�
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The �rst question numerical analysts want to know is what is the distribution of the singular values or the
eigenvalues of these operators� This information is known and may be found in a number of papers� �Current
Best way to look is the Physics Papers web server found on http���xxx�lanl�gov�archive�hep�lat�	 An
important point is that the condition numbers are quite reasonable� perhaps only in the thousands in many
cases� What is needed is to take an already wellconditioned problem� and still �nd ways to make it converge
faster somehow�

The solution of this system enters into the Monte Carlo calculations� but we will not specify how in this
note�

� Suggestions for further research

It was generally agreed that successful technology transfer of recent improvements in itervate methods for
nonsymmetric linear systems has already occurred prior to the meeting�

Fast methods for obtaining the best answers in the usual Krylov spaces may well have reached the limits
of what is possible� The current best algorithm for the solution of the linear system taking into account the
storage requirements seems to be BiCGSTAB with the ILU RedBlack preconditioner� although the look
ahead Lanczos method is supposedly stabler and allows multiple � values to be computed simultaneously
from the same source� However� although the nonlookahead Lanczos can take advantage of the �� symmetry
to require the same storage as BiCGSTAB it is not stable� especially in the presence of the socalled clover
term�

Until recently the most commonly used algorithms were GMRES��	 �called minimum residual by the
lattice community	 and Conjugate Gradient using MHM in the lightquarkmass region where GMRES��	
failed to converge�

These best algorithms all use the ILU RedBlack preconditioning� because it not only provides a factor
of about ��� as a preconditining step but also reduces the arithmetic by a factor of �� It is known that the
ILU hyperplane preconditioner is better �with a preconditioning factor of about �	 but it does not reduce
the storage and is di�cult to program e�ciently on existing computers�

Many other preconditioners have been tried� notably FFT and multigrid techniques� Except on non
physical �for example� cold	 lattices� the FFT does not precondition as well as ILU RedBlack per unit
arithmetic�

Further improvements will have to be obtained by wandering out of the Krylov space and�or more
e�ectively applying information from previous iterations� One can imagine using information from the past
to pick an improved starting vector� or to create more e�ective preconditioners� The former is already
working in some codes� while nobody knows how to employ the latter�

Typically the solution is required for multiple right hand sides� One approach towards multiple right
hand sides is to use block methods with de�ation� Are there other methods that may be of use�

Since these operators so closely resemble the Laplacian� the multigrid idea comes to mind� Multigrid
has not been very successful in this �eld� in part because� unlike the Laplacian� the operators are not
discretization of smooth operators� The random U create a graininess that seems to interfere with multigrid�
An important numerical problem� then� is to �nd the right way to use multigrid in this context� possibly
taking into account the theory of renormalization groups�

There are also important parallel computing challenges that could be of interest to the numerical com
munity� Hyperplane preconditioners� etc�

� Conclusion

These notes are just a start� For other articles for the starting reader we wish to mention

� Monte Carlo simulations of lattice gauge theories by Philippe de Forcrand in Aspects of Computing

on Asynchronous Parallel Processors� M�H� Wright� ed�� Elsevier�

� Chapter ��� of Parallel Computing Works by G� Fox� R� Williams� and P� Messina�

We all agreed that the physicists and the numerical analysts were able to communicate and that the
physicists truly had challenging problems to solve�
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