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ABSTRACT
We streamline the treatment of the Jacobi ensemble from

random matrix theory by providing a succinct geometric char-
acterization which may be used directly to compute the Ja-
cobi ensemble distribution without unnecessary matrix bag-
gage traditionally seen in the MANOVA formulation. Al-
gebraically the Jacobi ensemble naturally corresponds to the
Generalized Singular Value Decomposition from the field of
Numerical Linear Algebra.

We further provide a clear geometric interpretation for the
Selberg constant in front of the distribution which may sensi-
bly be defined even beyond the reals, complexes, and quater-
nions. On the application side, we propose a new learning
problem where one estimates a β that best fits the sample
eigenvalues from the Jacobi ensemble.

Index Terms— Random matrix theory, Jacobi ensem-
ble, generalized singular value decomposition (GSVD), β-
ensemble, parameter estimation

1. INTRODUCTION

Suppose we have two Gaussian random matrices A (m1 × n)
and B (m2 × n) with m1 > n and m2 > n. For exam-
ple, A=randn(m1,n) and B=randn(m2,n) using com-
mon technical computing notation. The so-called MANOVA
matrix (Multivariate Analysis of Variance) is defined to be

(A′A+B′B)−1A′A (1)

or in the symmetric form (A′A + B′B)−1/2A′A(A′A +
B′B)−1/2. The eigenvalues are jointly distributed as [1]

c ·
∏

i<j

|λi − λj |β
n∏

i=1

λa1−pi (1− λi)a2−p, (2)

where a1 = β
2m1, a2 = β

2m2 and p = 1 + β
2 (n− 1),

c =
n∏

j=1

Γ(1 + β
2 )Γ(a1 + a2 − β

2 (n− j))
Γ(1 + β

2 j)Γ(a1 − β
2 (n− j))Γ(a2 − β

2 (n− j))
,
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where β = 1 for real matrices, β = 2 for complex matrices,
β = 4 for quaternion matrices, and general β is worth con-
sidering, as in [2] and also Section 4 of this paper. The eigen-
value distribution is known as the Jacobi ensemble, which was
first referred by name in [3]. However, the development of Ja-
cobi ensemble dates back to 1930’s, we encourage interested
readers to consult the wonderful piece of historical note by
Anderson [4].

In the current paper we streamline the derivation of the Ja-
cobi ensemble from random matrix theory by providing a suc-
cinct geometric characterization which may be used directly
to compute the Jacobi ensemble distribution without unneces-
sary matrix baggage traditionally seen in the MANOVA for-
mulation. Intimately linked to this formulation is the gener-
alized singular value decomposition (the GSVD) [5] from the
field of numerical linear algebra.

This allows us to directly view the Jacobi density as a Ja-
cobi Jacobian. There are three key ideas that facilitate the
derivation. The first idea is the representation of a point π on
the Grassmann manifold G(m,n) relative to m = m1 + m2

by an m× n matrix of the form

Wπ =

[
U

V

] [
C
S

]
=

[
UC
V S

]
, (3)

where U ∈ IRm1×n and V ∈ IRm2×n have orthonormal
columns, and we have the cosine matrix C ∈ IRn×n and sine
matrix S ∈ IRn×n such that C ′C + S′S = I.

The second key idea is that the Jacobian computation is
facilitated by constructing the completion ofWπ to an orthog-
onal matrix (with a sign change for convenience):

W⊥π =

[
−US U⊥

V C V ⊥

]
,

and recognizing that the wedge product of the differentials in
(W⊥π )′dWπ is exactly the Jacobian we need.

The last one, which is related to the complicated look-
ing constants in Selberg’s integral [6, 7, 8], is the recognition
of the geometric volumes underlying their existence. Ulti-
mately these volumes are recognizable as (potentially non-
integer dimensional) Stiefel and Grassmann manifolds, which
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all trace back to the formula for a (potentially non-integer di-
mensional) hypersphere.

We begin with a formulation of the Jacobi ensemble

Random Hyperplane Jacobi formulation: Choose an
n dimensional hyperplane in IRm (m > n) uniformly
at random. Take a fixed reference hyperplane of any di-
mension m1 ≥ n, the orthogonal projection of the unit
ball in the random hyperplane onto the reference hy-
perplane is a random ellipsoid with semi-axes of length
c1 ≥ c2 ≥ . . . ≥ cn. These n non-negative numbers are
the Jacobi ensemble in cosine format.

Even more succinct are commands for the numerical com-
putation of the Jacobi ensemble in technical computing pack-
ages containing a command for the gsvd (the generalized sin-
gular value decomposition). The Jacobi ensemble may be
generated in Julia [9] with the command

svdvals(randn(m1,n),randn(m2,n))

which computes the Jacobi ensemble in cotangent format.
One may also obtain the sometimes preferred cosine, sine for-
mat by typing

, , ,C,S, =svd(randn(m1,n),randn(m2,n)).

We believe that if the Jacobi ensemble can be described
simply as the generalized singular values of normally dis-
tributed matrices, then the underlying mathematical treatment
is compelled to follow along.

Traditionally the Jacobi ensemble is presented in cosine
squared format as the eigenvalues of a MANOVA matrix [1,
10], or in terms of the eigenvalue density. The MANOVA
format was intended for applications to the multivariate anal-
ysis of variance, thus the name. The treatment we describe
in this paper provides a streamlined approach that gets to the
geometrical core of Jacobi by working directly on the Grass-
mann manifold of random hyperplanes. For example, the Ja-
cobi density reveals itself properly geometrically, as a GSVD
Jacobian, rather than as an accident of a random matrix dis-
tribution.

We also present the notion that the (cosine, sine) format
corresponding to the GSVD is more natural in many settings
than the cosine square format of the eigenvalues. This is anal-
ogous to the Laguerre ensemble situation where the SVD of a
matrix of independent standard normals can be more natural
than the squared setting of eigenvalues of Wishart matrices.

2. GRASSMANNIAN, THE TANGENT SPACE AND
DIFFERENTIALS

Let π be an n dimensional subspace of IRm, n 6 m and also
suppose that we have two reference axis subspaces X and
Y = X⊥, of dimensions m1 and m2 respectively. (Without
loss of generality, we takeX and Y to be the spans of the first

m1 and last m2 columns of Im and m = m1 + m2.) Any
unit vector w in π can be projected onto X and Y giving a
cosine and sine pair. Generalizing this fact, the entire unit ball
in π projects orthogonally onto an ellipsoid in X and also an
ellipsoid in Y. Let U (m1×n) and V (m2×n) be unit vectors
in the directions of the axes of these respective ellipsoids, the
actual axes may be written UC and V S, where C and S are
diagonal n×n matrices of cosine, sine pairs such that C ′C+
S′S = In.

The m × n matrix Wπ in (3) is a good representation
for the subspace π capturing the projection onto X and Y.
The set of all n-dimensional subspaces π of IRm is known as
the Grassmann manifold G(m,n). Every point in the Grass-
mann manifold where the corresponding cosines are unique
may be represented uniquely by (3). If two or more axes
have the same length, then the Grassmann points are multi-
ply covered. This is analogous to eigenvectors degenerating
into eigenspaces when a matrix has a multiple eigenvalue.
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Fig. 1. Ellipses in Jacobi ensemble: the diagonal plane has a
green unit circle centered at 0, the random hyperplane, which
projects “downward” and leftward into the “horizontal” and
“vertical” planes which serve as block coordinate axes. The
projection downward leads to the Cosine Ellipse and leftward
to the Sine Ellipse. The X and Y multiaxes are the span of
[Im1

; 0m2
] and [0m1

; Im2
] respectively.

We identify n-dimensional subspaces of IRm (the Grass-
mann manifold) with matrices of the form (3), noting there is
an irrelevant coordinate breakdown corresponding to cosines
with multiplicity greater than 1. We also note that there are
n phases to the columns of U and V which will be divided
out later. The tangent space to the matrices Yπ consists of
matrices

dWπ =

[
dUC + UdC
dV S + V dS

]
=

[
dUC − USdΘ
dV S + V CdΘ

]
.

It is useful to complete U , V, and Wπ to square orthogonal
matrices, Ũ = [U U⊥] and Ṽ = [V V ⊥], and

W̃π = [Wπ W
⊥
π ], W⊥π =

[
−US U⊥

V C V ⊥

]
,
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with W⊥π broken into three block columns each having
n, m1 − n, m2 − n columns. We then may calculate

(W⊥π )′dWπ =



−SU ′dUC + CV ′dV S + dΘ

(U⊥)′dUC
(V ⊥)′dV S


 , (4)

where the block multiplication is viewed as (2 × 3)T (2 ×
1). Notice U ′dU and V ′dV are anti-symmetric differential
matrices.

We recall that the Grassmann manifold is (m − n)n di-
mensional. The (m−n)×nmatrix in (4) captures the dimen-
sionality of the manifold. We ignore the n×n antisymmetric
matrix of differentials W ′πdWπ as it corresponds to a direc-
tion where Wπ → WπQ for some orthogonal matrix which
does not change the span.

We refer readers to [11] where, for example, in Table 2.2
we have the equation W ′∆ = 0, with ∆ being the tangent di-
rections, (or Y ′∆ = 0 in the notation of that paper) to indicate
that we do not care aboutW ′dW.We also explain the quotient
space language of horizontal and vertical spaces of differen-
tial geometry to understand the significance of the horizontal
direction (W⊥π )′dWπ. For readers uninterested in the jargon
of differential geometry, suffice it to say that directions that
spin the basis of a subspace, but do not move the subspace are
treated as a zero tangent on the Grassmann manifold.

3. JACOBIAN COMPUTATION

We simply wedge together the differentials that are the matrix
entries on both sides of (4) to directly get the answer:

((W⊥π )′dWπ)∧ =
∏

i<j

(c2i − c2j )
n∏

i=1

cm1−n
i

n∏

i=1

sm2−n
i

× (dΘ)∧(Ũ ′dU)∧(Ṽ ′dV )∧.

(5)

We have introduced the notation ()∧ to denote the wedge
product of the enclosed differentials. This is nothing but a
shorthand for a determinant. We sometimes omit the wedge
between multiplicands understanding its presence. In the case
of (5), we have the determinant of an (m− n)n by (m− n)n
matrix that is entirely diagonal or block diagonal 2 × 2 ma-
trices. For example, the wedge product of the (j, i) and (i, j)
entries of (−SU ′dUC + CV ′dV S + dΘ) is

(sjci(U
′dU)ij − cjsi(V ′dV )ij)

∧ (−sicj(U ′dU)ij + cisj(V
′dV )ij)

= (s2jc
2
i − s2i c2j )(U ′dU)ij(V

′dV )ij .

We then simplify (s2jc
2
i − s2i c

2
j ) = (c2i − c2j ). Notice that

U ′dU and V ′dV are anti-symmetric matrices, thus wedging
the diagonal entries simply yields (dΘ)∧.

Geometric Interpretation of the Jacobian: A small
perturbation to subspace π can shift weight between sub-
spaces X and Y, as well as rotate the projected ellipsoids.

Correspondingly (dΘ)∧ measures the weight shift, (Ũ ′dU)∧

measures the rotation of the X ellipsoid, and (Ṽ ′dV )∧ mea-
sures the rotation of the Y ellipsoid. The term

∏
i<j(c

2
i −

c2j )
∏n
i=1 c

m1−n
i

∏n
i=1 s

m2−n
i indicates a repulsion away

from multiple cosines, and if the exponents are positive,
repulsion from X and Y as well.

4. GENERALIZATION TO β = 2, 4 AND BEYOND

There is nothing particularly special about having worked
in real geometrical space. We could work in complex, and
quaternion space, or even general β-dimensional space (for-
mally) [2].

A β-dimensional volume takes linear measurements to the
power β. Furthermore, unlike the real case, the general β
skew-symmetric matrix has β − 1 parameters on the diag-
onal. For example, a real anti-symmetric matrix has zeros
on the diagonal, while complex anti-Hermitian matrices have
pure imaginary diagonals (one dimension!). The quaternion
case, of anti-self dual matrices consists of the “purely” imag-
inary quaternions which is a dimension 3 (i, j, k) subspace of
the quaternions. We infer that a β-dimensional object with
zero real part, the “purely” imaginary “ghosts” [2], ought to
have dimension β − 1, which is consistent with the general
formulas. The generalization is thus simply a Jacobian of the
form
∏

i<j

(c2i − c2j )β
∏

i

c
β(m1−n)+(β−1)
i

∏

i

s
β(m1−n)+(β−1)
i

× (dΘ)∧(Ũ ′dU)∧(Ṽ ′dV )∧.

(6)

We believe that this “cosine squared” form, while traditional,
obfuscates more than it reveals.

5. VOLUMES OF β GEOMETRIC OBJECTS

The sequence 2, 2π, 4π, 2π2, 8π2/3, . . . may be familiar to
many readers. This is the volume (surface area) of the unit
hypersphere in n real dimensions:

Vsphere(n;β = 1) = 2πn/2/Γ(n/2).

Our “ghost” view of the world [2] is that this is also the vol-
ume of the unit hypersphere in 1 β dimension:

Vsphere(n = 1;β) = 2πβ/2/Γ(β/2).

The obvious generalization suggests the definition

Vsphere(n;β) = 2πβn/2/Γ(βn/2).

We introduce the generalized idea of a ghost “phase.” Readers
may think of a complex number on the unit circle, or a unit
quaternion, or even the “signs” ±1. The content of a collec-
tion of n ghost phases may be defined as

Vphases(n, β) = Vsphere(1;β)n.
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The real Stiefel manifold is the collection ofm×n orthogonal
matrices Y with Y TY = I. Numerical linear algebra has long
represented such matrices in compact form as products of so
called “‘Householder” reflectors, each one of which may be
thought of as having one direction on a unit sphere of the right
size. Generalizing to ghosts, we have

VStiefel(m,n;β) =
n∏

i=1

Vsphere(m− i;β), m ≥ n.

Finally we may interpret the quotient manifold volume with
ghost geometry as

VGrassmann(m,n;β) = VStiefel(m,n;β)/VStiefel(n, n;β).

Then integrating out the U and the V in (6) results in
VStiefel(m1, n;β)VStiefel(m2, n;β). The integral of this
quantity gives the volume of the Grassmann mainfold mul-
tiply covered by the n phases. Dividing by thie volume of
the phases we get a formula for the volume of the Grassmann
manifold. Dividing further by the Grassmann volume yields
a probability density (i.e., integrates to 1)

VStiefel(m1, n;β)VStiefel(m2, n;β)

Vphases(n;β)VGrassmann(m,n;β)

×
∏

i<j

(c2i − c2j )β
∏

i

c
β(m1−n)+(β−1)
i

∏

i

s
β(m1−n)+(β−1)
i dθi,

with θ1 ≤ . . . ≤ θn. While we used our intuition to obtain
a “ghost” formula, the Selberg integral confirms that density
integrates to 1, hence is a true probability density.

6. RELATED WORK

It is useful to compare our Wπ format (3) to some closely
related formats. Suppose Wρ is an m × m1 matrix whose
columns form an orthonormal basis for a reference hyper-
plane ρ of dimension m1. Also let Wπ be any m × n matrix
whose columns form an orthonormal basis for the random hy-
perplane π of dimension n. The cosines of the canonical an-
gles are the svd of W ′ρWπ. If either π or ρ is random with
uniform measure then the cosines are the Jacobi ensemble in
cosine format. Furthermore, the singular values ofW ′ρWπ are
the same as those ofW ′ρWπW

′
π. These singular values are the

square roots of the eigenvalues of WπW
′
πWρW

′
ρWπW

′
π =

PπPρPπ, where P denotes the symmetric projector onto the
subspace. This is the format favored by Collins [12].

Starting with Collins format, we can recover our favored
format by letting Wρ = WX be the first m1 columns of Im.
We then can take U and C to be the left singular vectors and
the singular values of W ′XWπ. Analogously, V and S are the
left singular vectors and singular values ofW ′YWπ,whenWY

are the last m2 columns of Im.

The exact distribution of the largest angle between ran-
dom subspaces may be found in [13]. Statistical applica-
tions of the largest roots of the Jacobi ensemble with a com-
putation of the Tracy-Widom asymptotics may be found in
[10]. A beta-Jacobi model may be found in [14]. Concen-
tration of the linear statistics of the Jacobi ensemble through
combinatorial computations may be found in [15] . The
Jacobi corner process for general β is introduced in [16].
Non-central wishart based MANOVA ensemble distributions
with zonal polynomials may be found in [17] A general beta
with general covariance sampling method is presented in [18].
Other notable works include a series of seminal papers by For-
rester [19, 20, 21, 22] and of course his encyclopedic mono-
graph [23].

7. WHAT IS MY β?

We conjecture that the β parameter ought to be valuable for
machine learning problems. The first beta estimator applica-
tion was proposed in 2005 by the first author and Chan for
estimating β for the sample eigenvalue spacings and set up
as an interactive web application [24]. In this section, we
propose a novel learning problem for the Jacobi ensemble.

Suppose we are given a sample λi ∈ [0, 1]n, i =
1, · · · , N from the eigenvalues of (1) where the underly-
ing (unobserved) N independently and identically distributed
(iid) data matrix pairs (Ai, Bi) with Ai ∈ IRm1×n and
Bi ∈ IRm2×n are thought of as β-Gaussian models, Our goal
is to estimate the β that best describes the underlying data
generating process (i.e., the generative model of A,B).

To this end, we resort to the standard approach of maxi-
mum likelihood estimation and find the optimal β that mini-
mizes the negative loglikelihood (NLL). Figure 2 shows the
NLL vs. β for m1 = m2 = 20, n = 10 with N = 50 and the
true generating β’s can be recovered at the minimum of the
corresponding curves. Standard optimization routines such as
Gradient descent could be used to find an optimal β.

Fig. 2. Loglikehood of the β-Jacobi ensemble. The blue line
corresponds to the real case (β = 1) and the orange one is the
complex case (β = 2.)
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