
Polynomial Roots from Companion Matrix EigenvaluesAlan Edelman�H. MurakamiyJanuary 1, 1994AbstractIn classical linear algebra, the eigenvalues of a matrix are sometimes de�ned as the roots of the char-acteristic polynomial. An algorithm to compute the roots of a polynomial by computing the eigenvaluesof the corresponding companion matrix turns the tables on the usual de�nition. We derive a �rst ordererror analysis of this algorithm that sheds light on both the underlying geometry of the problem as well asthe numerical error of the algorithm. Our error analysis expands on work by Van Dooren and Dewilde inthat it states that the algorithm is backwards normwise stable in a sense that must be de�ned carefully.Regarding the stronger concept of a small componentwise backwards error, our analysis predicts a smallsuch error on a test suite of eight random polynomials suggested by Toh and Trefethen. However, weconstruct examples for which a small componentwise relative backwards error is neither predicted norobtained in practice. We extend our results to polynomial matrices, where the result is essentially thesame, but the geometry becomes more complicated.1 IntroductionComputing roots of polynomials may be posed as an eigenvalue problem by forming the companion matrix.The eigenvalues of this matrix may be found by computing the eigenvalues of this nonsymmetric matrixusing standard versions of balancing (very important for accuracy!!) [7] followed by the QR algorithm asmay be found in LAPACK or its precursor EISPACK. This is how the MATLAB command roots performsits computation.As Cleve Moler has pointed out in [6], this method may not be the best possible becauseit uses order n2 storage and order n3 time. An algorithm designed speci�cally for polynomialroots might use order n storage and n2 time. And the roundo� errors introduced correspond toperturbations in the elements of the companion matrix, not the polynomial coe�cients.Moler continues by pointing out thatWe don't know of any cases where the computed roots are not the exact roots of a slightlyperturbed polynomial, but such cases might exist.This paper investigates whether such cases might exist. Let r̂i, i = 1; : : : ; n denote the roots of p(x) =a0+ a1x+ : : :+ an�1xn�1+xn that are computed by this method. Further assume that the r̂i are the exactroots of p̂(x) = â0 + â1x+ : : :+ ân�1xn�1 + xn:�Department of Mathematics Room 2-380, Massachusetts Institute of Technology, Cambridge, MA 02139,edelman@math.mit.edu. Supported by NSF grant DMS-9120852 and the Applied Mathematical Sciences subprogram of theO�ce of Energy Research, U.S. Department of Energy under Contract DE-AC03-76SF00098.yQuantum Chemistry Lab., Department of Chemistry, Hokkaido University, Sapporo 060, Japan,hiroshi@chem2.hokudai.ac.jp. 1



What does it mean to say that p̂ is a slight perturbation of p? We give four answers, the best one issaved for last. In the de�nitions, O(�) is meant to signify a small though unspeci�ed multiple of machineprecision.1. The \calculus" de�nition would require that �rst order perturbations of the matrix lead to �rst orderperturbations of the coe�cients.2. A normwise answer that is compatible with standard eigenvalue backward error analyses is to requirethat max jai � âij = O(�)kCk;where C denotes the companion matrix corresponding to p, and � denotes the machine precision.3. A second normwise answer that would be even better is to require thatmax jai � âij = O(�)kbalance(C)k:Standard algorithms for eigenvalue computations balance a matrix C by �nding a diagonal matrix Tsuch that B = T�1CT has a smaller norm than C.4. The strongest requirement should be thatmax jai � âijjaij = O(�):This is what we will mean by a small componentwise perturbation. If ai = 0, then one often wants âito be 0 too, i.e., ideally one preserves the sparsity structure of the problem.It was already shown by Van Dooren and Dewilde [11, p.576] by a block Gaussian elimination argumentthat the calculus de�nition holds. Their argument is valid in the more complicated case of polynomialmatrices. It immediately follows that good normwise answers are available, though it is not clear whatexactly are the constants involved. We found that integrating work by Arnold [1] with Newton-like identitiesallows for an illuminating geometrical derivation of a backward error bound that is precise to �rst order.Our work improves on [11] in that we derive the exact �rst order perturbation expression which we testagainst numerical experiments. Numerical experiments by Toh and Trefethen [9] compare this algorithmwith the Jenkins-Traub or the Madsen-Reid algorithm. These experiments indicate that all three algorithmshave roughly similar stability properties, and further that there appears to be a close link between thepseudospectra of the balanced companion matrix and the pseudozero sets of the corresponding polynomial.2 Error Analysis2.1 Problem Statement and SolutionLet p(z) = a0+a1z+: : :+an�1zn�1+zn be any monic polynomial. The companion matrix of this polynomial,C = 0BBBBB@ 0 �a01 0 �a11 0 �a2. . . ...1 �an�1 1CCCCCA (1)has characteristic polynomial PC(z) � det(zI �C) = p(z).2



If E is a dense perturbation matrix with \small" entries, the natural error analysis question is thecomputation of PC+E(z) � PC(z) � �a0 + �a1z + : : : + �an�1zn�1. In MATLAB style notation, we arestudying poly(C +E)� poly(C) to �rst order.Our result isTheorem 2.1 To �rst order, the coe�cient of zk�1 in PC+E(z)� PC(z) isk�1Xm=0 am nXi=k+1Ei;i+m�k � nXm=k am kXi=1Ei;i+m�k; (2)where an is de�ned to be 1.In particular, we see that a small perturbation E introduces errors in the coe�cients that are linear inthe Eij. Since it is well known that standard eigenvalue procedures compute eigenvalues of matrices witha \small" backward error, we have a precise sense in which we claim that there is a polynomial near PC(z)whose exact roots are computed in this manner.For convenience, we state this result in a matrix times vector format. Letfk;d �Pki=1Ei;i+d andbk;d �Pni=k Ei;i+d:These are the forward and backward \plus-scans" or \pre�xes" of the dth diagonal of E. Our result is thatthe matrix-vector product0BBBBB@ �a0�a1�a2...�an�1 1CCCCCA = 0BBBBB@ b2;�1 �f1;0 �f1;1 : : : �f1;n�3 �f1;n�2 �f1;n�1b3;�2 b3;�1 �f2;0 : : : �f2;n�4 �f2;n�3 �f2;n�2... ... ... . . . ... ... ...bn;�(n�1) bn;�(n�2) bn;�(n�3) : : : bn;�1 �fn�1;0 �fn�1;10 0 0 : : : 0 0 �fn;0 1CCCCCA0BBBBBBB@ a0a1a2...an�1an = 1 1CCCCCCCA(3)is correct to �rst order. The n� (n+1) matrix above contains backward pre�xes in the lower triangular partand forward pre�xes in the upper triangular part. The last row of the matrix equation states that perturbingthe trace of a matrix perturbs the (negative of the) coe�cient of zn�1 by the same amount.If we further assume that the E is the backwards error matrix computed by a standard eigenvalueroutine, then we might as well assume that E is nearly upper triangular. There will also be elements onthe subdiagonal, and possibly on the next lower diagonal, depending on exactly which eigenvalue method isused.A result analagous to Theorem 2.1 for matrix polynomials may be found in Section 4.2.2 Geometry of Tangent Spaces and TransversalityFigure 1 illustrates matrix space (Rn�n) with the usual Frobenius inner product:(A;B) � tr(ABT ):The basic players arep(z) a polynomial (not shown)C corresponding companion matrixOrb manifold of matrices similar to CTan tangent space to this manifold = fCX �XC : X 2 Rn�ngNormal normal space to this manifold = fq(CT ) : q is a polynomialgSyl \Sylvester" family of companion matrices3
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CFigure 1 Matrix space near a companion matrix� The curved surface represents the orbit of matrices similar to C. These are all the non-derogatorymatrices that have eigenvalues equal to the roots of p with the same multiplicities. (The dimension ofthis space turns out to be n2 � n. An informal argument is that only n parameters are speci�ed, i.e.,the eigenvalues. )� The tangent space to this manifold, familiar to anyone who has studied elementary Lie algebra (orperformed a �rst order calculation), is the set of commutators fCX �XC : X 2 Rn�ng. (Dimension= n2 � n.)� It is easy to check that if q is a polynomial, then any matrix of the form q(CT ) is perpendicular toevery matrix of the form CX �XC. Only slightly more di�cult [1] is to verify that all matrices in thenormal space are of the form q(CT ). (Dimension = n.)� The set of companion matrices (also known as the \Sylvester" family) is obviously an a�ne spacethrough C. (Dimension = n.)Proposition 2.1 The Sylvester space of companion matrices is transversal to the tangent space i.e. everymatrix may be expressed as a linear combination of a companion matrix and a matrix in the tangent space.This fact may be found in [1]. When we resolve E into components in these two directions, the formerdisplays the change in the coe�cients (to �rst order) and the latter does not a�ect the coe�cients (to �rstorder). Actually, a stronger statement holds: the resolution is unique. In the language of singularity theory,not only do we have transversality, but also universality: unique + transversal. We explicitly perform theresolution, and thereby prove the proposition, in the next subsection.In numerical analysis, there are many examples where perturbations in \non-physical" directions causenumerical instability. In the companion matrix problem, only perturbations to the polynomial coe�cientsare relevant to the problem. Other perturbations are by-products of our numerical method. It is fortunate inthis case that the error produced by an entire n2� n dimensional space of extraneous directions is absorbedby the tangent space. 4



2.3 Algebra { The centralizerLet us take a close look at the centralizer of C. This is the n dimensional linear space of polynomials inC, because C is non-derogatory. Taking the ak as in (1), for k = 0; : : : ; n� 1 and letting an=1, aj = 0 forj =2 [0; n], we de�ne matrices Mk � nXj=k ajCj�k:Clearly M0 = 0;Mn = I and the Mk, k = 1; : : :n span the centralizer of C.An interesting relationship (which is closely related to synthetic division) is thatp(t)(t� CI)�1 = nXk=1Mktk�1[2, p. 85, Eq. (32)]. The trace of the above equation is the Newton identities in generating function form; avariation on the above equation gives the exact inverse of a Vandermonde matrix [10].A more important relationship for our purposes is thatMk = CMk+1 + akI; k = 0; 1; 2; : : :from which we can inductively prove (the easiest way is backwards from k = n) thatMk = k n� k0BBBBBBBBBBBBB@ ak �a0ak+1 ak �a1 . . .... ak+1 . . . ... . . . �a0an=1 ... . . . ak �ak�1 . . . ...an=1 . .. ak+1 . . . .... . . ... �ak�1an=1 1CCCCCCCCCCCCCA :This is almost the Toeplitz matrix with (i; j) entry equal to �ak+i�j except that the left side of the matrixis lower triangular and the right side is strictly upper triangular.We are now ready to resolve any E into E = Etan +Esyl : (4)All we need is the relationship that expresses how Etan is perpendicular to the normal space:tr(MkEtan) = 0 for k = 1; : : : ; n:We therefore conclude from (4) that tr(MkE) = tr(MkEsyl) = Esylk;n: (5)Because of the almost Toeplitz nature of the Mk, the trace of MkE involves partial sums of elements ofE along certain diagonals. Writing out this trace we have that�Esylk;n = k�1Xm=0 am nXi=k+1Ei;i+m�k � nXm=k am kXi=1 Ei;i+m�k:The above expression gives the coe�cient of the perturbed characteristic polynomial correct to �rst order.(Since the coe�cients are negated in (1), we are interested in �Esylk;n.)Since Esyl is zero in every column other than the last, we may also use (4) to calculate Etan, should wechoose. 5



3 Numerical Experiments3.1 A pair of 2x2 examplesThe companion matrices A = � 0 �11 2k � ; and B = � 0 11 2�3k �for k not too small illustrate many subtleties that occur in 
oating point arithmetic. For convenience, weassume our arithmetic follows the IEEE double precision standard for which k = 27 is large enough toillustrate our point.To machine accuracy, the eigenvalues of A are 2k and 2�k. The eigenvalues of B are 1 and �1. LAPACKand MATLAB compute 2k and 0 for the eigenvalues of A, while the eigenvalues of B are computed to be1� 2�52 and �1. Neither of these matrices are a�ected by balancing. Both of these answers are consistentwith the error estimate in (2). Neither of these matrices gives answers with a small componentwise backwarderror. In the �rst case, the given product of the roots is 1 while the exact product of the computed rootsis 0. In the second case, the given sum of the roots is 2�81, while the exact sum of the computed roots is�2�52.However, MATLAB and LAPACK could be more accurate! Both packages compute the Schur form ofa 2 � 2 matrix using an algorithm that is more unstable for the smaller eigenvalue than is necessary. Wepropose that such high quality packages should compute the eigenvalues of a general 2� 2 matrix by solvingthe quadratic equation as accurately as possible given the rounded values of the trace and the determinant.If we have a 2� 2 companion matrix, then there will be no roundo� error in the trace and the determinant.The lesson of these examples is that the roots could be computed far more accurately than would be pre-dicted by our error bound (2), but currently LAPACK and MATLAB return eigenvalues that are consistentwith our bound. The other lesson is that without further assumptions it is impossible to require a smallcomponentwise backward error. Fortunately, these examples are rather pathological. As we will see in thenext subsection, in practice we do expect to compute roots with a small componentwise backwards error.3.2 A more \realistic" set of testsIn this subsection we use Theorem 2.1 to predict the componentwise backward error. We also performnumerical experiments to measure the componentwise backward error. Our results show that Theorem 2.1always predicts a small backward error and is most only pessimistic by one, two, or maybe three digits.To predict the error, we must model the backwards error introduced by the QR algorithm. We decided tochoose a model that is designed to compensate for pessimistic factors often found in rounding error analyses.Therefore, the model does not provide a rigorous bound, but at least in our test cases it seems to work wellin practice.What we do is consider an error matrix E with entries � = 2�52 in all entries (i; j) with j � i � �2. Forexample, when n = 6, E = 0BBBBBB@ � � � � � �� � � � � �� � � � � �0 � � � � �0 0 � � � �0 0 0 � � � 1CCCCCCA :This structure allows (with some overkill) for the possibility of double shifting in the eigenvalue algorithm.A dense perturbation matrix did not make a substantial di�erence in our test cases.6



The standard algorithms balance the matrix by �nding a diagonal matrix T such that B = T�1AT has asmaller norm than A. Our model will be that the eigenvalue algorithm computes the exact eigenvalues of amatrix B +E0, where jE0j � E, i.e. each element of E0 has absolute value at most � above the second lowerdiagonal and is 0 otherwise. Therefore we are computing the exact eigenvalues of A + TE0T�1. To �rstorder, then, the error in the coe�cients is bounded by the absolute value of the matrix times the absolutevalue of the vector in the product (3), where the scans are computing using TET�1. This is how we predictthe �i. Further details appear in our MATLAB code in the Appendix.Following [9] exactly, we explore the following degree 20 monic polynomials:(1) \Wilkinson polynomial": zeros 1,2,3,...,20.(2) the monic polynomial with zeros equally spaced in the interval [�2:1; 1:9].(3) p(z) = (20!)P20k=0 zk=k!.(4) the Bernoulli polynomial of degree 20.(5) the polynomial z20 + z19 + z18 + � � �+ 1.(6) the monic polynomial with zeros 2�10; 2�9; 2�8; : : : ; 29.(7) the Chebyshev polynomial of degree 20.(8) the monic polynomial with zeros equally spaced on a sine curve, viz.,(2�=19(k+ 0:5)) + i sin(2�=19(k + 0:5)); k = �10;�9;�8; : : : ; 9.Our experimental results consist of three columns for each polynomial. To be precise, we �rst computedthe coe�cients either exactly or with 30 decimal precision using Mathematica. We then read these numbersinto MATLAB which may not have rounded the last bit or two correctly.1 Though we could have roundedthe result correctly in Mathematica, we chose not to do so. Rather we took the rounded polynomials storedin MATLAB to be our \o�cial" test cases.Column 1: Log Predicted Error: In the �rst columnwe model the predicted error from (2) in the mannerwe described above. First we compute the modeled �ai, and then display the rounded value of log10 j�ai=aij.Column 2: Log Computed Error: We computed the eigenvalues using MATLAB, and then translated theIEEE double precision numbers to Mathematica without any error. We then computed the exact polynomialwith these computed roots and compared the relative backward error in the coe�cients.Column 3: Pessimism Index: By taking the ratio of the computed error in column 2 to the predictederror described in column 1 and then taking the logarithm and rounding, we obtain a pessimism index.Indices such as 0,-1, and -2 indicate that we are pessimistic by at most two orders of magnitude; and indexof -19 indicates a pessimism of 19 orders of magnitude. (Since we are using negative numbers, perhaps weshould more properly call this an optimism index.)There are no entries where the polynomial coe�cient is zero. (The Bernoulli polynomial is a little funnyin that it has a z19 term, but no other odd degree term.) The computed relative error would be in�nite inmany of these cases. The top coe�cient is the log relative error in the determinant, i.e. the coe�cient ofthe constant term; the bottom coe�cient refers to the trace, i.e., the coe�cient of t19.1Try entering 1.00000000000000018, 1.00000000000000019, and 1.0000000000000001899999999 into MATLAB (�fteen zerosin each number). The results that we obtained on a SUN Sparc Station 10 were 1, 1+ 2�52, and 1� 2�52 respectively, thoughthe correctly rounded result should be 1+2�52 in all instances. Cleve Moler has responded that a better string parser is needed.7



Relative errors in the Coe�cients (log base 10)for eight di�erent degree 20 polynomialsKey to each panel in the table belowCol 1 Col 2 Col 3Predicted Observed PessimismRel Error Rel Error Index(1) (2) (3) (4) (5) (6) (7) (8)det! -12 -13 -1 -12 -12 0 -13 -14 -1 -13 -14 -1 -14 -14 -1 -8 -14 -6 -12 -14 -2 -13 -14 -2 z0-12 -14 -2 -13 -14 -1 -13 -14 -1 -13 -14 -1 -8 -14 -5 z1-12 -13 -2 -12 -12 0 -13 -14 -1 -13 -15 -2 -13 -14 -1 -9 -14 -5 -12 -14 -2 -13 -15 -2 z2-12 -13 -2 -13 -14 -1 -13 -14 -1 -13 -16 -3 -9 -14 -5 z3-12 -15 -3 -12 -14 -2 -13 -14 -2 -13 -14 -1 -13 -14 -1 -9 -14 -5 -12 -14 -2 -13 -15 -2 z4-12 -16 -4 -13 -14 -1 -13 -14 -1 -13 -14 -1 -10 -14 -4 z5-12 -14 -2 -13 -14 -1 -13 -14 -1 -13 -14 -1 -13 -14 -1 -10 -15 -5 -13 -14 -1 -13 -15 -2 z6-12 -15 -2 -13 -15 -2 -13 -14 -1 -13 -14 -1 -10 -14 -4 z7-12 -15 -2 -13 -15 -2 -13 -15 -2 -13 -14 -1 -13 -14 -1 -11 -15 -5 -13 -14 -1 -13 -15 -1 z8-13 -15 -3 -13 -15 -2 -13 -16 -3 -13 -14 -1 -11 -14 -3 z9-13 -15 -2 -13 -14 -1 -13 -15 -2 -13 -14 -1 -13 -14 -1 -11 -14 -3 -13 -15 -1 -13 -15 -1 z10-13 -15 -2 -13 -15 -1 -13 -15 -1 -13 -14 -1 -11 -14 -3 z11-13 -15 -3 -13 -14 -1 -13 -15 -1 -13 -14 -1 -13 -14 -1 -12 -15 -4 -14 -15 -1 -14 -15 -1 z12-13 -14 -1 -13 -14 -1 -13 -14 -1 -13 -14 -1 -12 -15 -3 z13-13 -14 -1 -13 -14 -1 -13 -14 -1 -14 -14 -1 -13 -14 -1 -12 -15 -2 -14 -15 -1 -14 -14 -1 z14-13 -15 -2 -13 -14 -1 -13 -14 -1 -13 -14 -1 -13 -14 -2 z15-13 -15 -2 -14 -14 -1 -13 -14 -1 -13 -15 -2 -13 -15 -1 -13 -16 -3 -14 -15 -1 -14 -15 -1 z16-13 -15 -2 -14 -14 -1 -13 -14 -1 -13 -15 -2 -13 -15 -2 z17-14 -16 -2 -14 -15 -1 -14 -14 -1 -14 -16 -3 -13 -14 -1 -14 -15 -1 -14 -15 -1 -14 -15 -1 z18trace! -14 -16 -2 -14 -14 0 -14 -14 -1 -14 -16 -2 -14 -14 0 -14 -16 -2 z19In all cases, we see that the computed backward relative error was excellent. With the exception ofcolumn (6), this is fairly well predicted usually with a pessimism index of one to three orders of magnitude.Column (6) is an exception, where the backward error is far more favorable than we predict.Why this might be possible was explained in the previous subsection. We know the determinant tofull precision (very rare when performing matrix computations!!). So long as our QR shifts and de
ationcriteria manage not to destroy the determinant, it will remain intact. In column (6) we see a case where thisoccurred. By contrast, in the previous subsection we illustrated a case where this did not occur.We suspect that for any companion matrix, it is often if not always possible to choose shifts and de
ationcriteria to guarantee high (backward relative) accuracy even with the smallest of determinants, but we havenot proven this.4 Generalization to Matrix PolynomialsA monic matrix polynomial has the formP (x) = A0 + A1x+ : : :+An�1xn�1 + Ipxn;where we assume that the coe�cients Ai (and An � Ip) are p � p matrices, and x is a scalar. It is ofinterest [3, 4, 5] to �nd the x for which det(P (x)) = 0 and the corresponding eigenvectors v(x) such that8



P (x)v(x) = 0. Such information may be obtained from the pn� pn block companion matrixC = 0BBBBB@ 0 �A0Ip 0 �A1Ip 0 �A2. . . ...Ip �An�1 1CCCCCA : (6)The Sylvester space now has dimension np2, while the tangent space to the orbit of C generically hasdimension n2p2 � np, though it can be smaller. It seems that if p > 1, we have too many dimensions! Wewill now show that we may proceed in a manner that is analogous to that of Section 2.3 to obtain what isroughly the same answer, but to do so we must carefully pick a natural subspace of the tangent space thatwill give a universal decomposition. This is not necessary when p = 1. The natural subspace of the tangentspace consists of all matrices of the form CX �XC where the last p rows of X are 0.Lemma 4.1 De�ne Mk � nXj=kCj�k(In 
Aj);where 
 denotes the Kronecker product and In is the identity matrix of order n. ThenMk = CMk+1 + In 
Akand Mk = k n� k0BBBBBBBBBBBBB@ Ak �A0Ak+1 Ak �A1 . . .... Ak+1 . . . ... . . . �A0An=Ip ... . . . Ak �Ak�1 . . . ...An=Ip . . . Ak+1 . . . .... . . ... �Ak�1An=Ip 1CCCCCCCCCCCCCA :Proof These statements are readily veri�ed by induction.We now introduce the p� p block trace of a matrx:De�nition 4.1 If Z is a pn� pn matrix whose p � p blocks are denoted Zij, then we de�netrp(Z) � nXi=1 Zii:Notice that trp(Z) is a p� p matrix, not a scalar.Theorem 4.1 Given the �rst n� 1 block columns of a pn� pn matrix Z, the condition that0 = trp(ZMk); k = 0; : : : ; n (7)is equivalent to the condition thatZ = CX �XC for some X with 0 bottom block row : (8)Moreover, either condition determines the �nal block column of Z uniquely given the remaining columns.9



Proof The (n; k) block entry of Mk is Ip and this determines Zkn uniquely from (7). If X has 0 as itsbottom block row, it is easy to verify that the map from X to the �rst n � 1 block columns of CX � XChas a trivial nullspace. Thus Z is uniquely determined by (8).What remains is to show (8) implies (7). Suppose that Y has a zero bottom block row. Then trp(CY ) =trp(Y C) =Pn�1i=1 Yi;i+1. Therefore, if X has a zero bottom block row, then trp(CXMk) = trp(XMkC) bychoosing Y = XMk. Finally trp(XCj(In 
 A)C � XCjC(In 
 A)) = 0 for any p � p matrix A, because(In 
 A)C � C(In 
 A) is 0 except for the last block column. Therefore XMkC = XCMk, from which weconclude that trp(CXMk) = trp(XMkC) = trp(XCMk).We now summarize the geometry.Corollary 4.1 In the n2p2 dimensional space of np� np matrices, the n2p2 � np2 subspace of the tangentspace of the orbit of C de�ned either by (7) or (8) is transveral at C to the np2 dimensional Sylvester spaceconsisting of block companion matrices.We may now resolve any perturbation matrix E intoE = Etan +Esyl : (9)as in (4), except now Etan must be in this n2p2 � np2 dimensional subspace, and Esyl is 0 except in the�nal block column. Because trp(ZMk) 6= trp(MkZ), the correct result is that�Esylk;n = k�1Xm=0( nXi=k+1Ei;i+m�k)Am � nXm=k( kXi=1 Ei;i+m�k)Am:The above expression gives the block coe�cient of a perturbed matrix polynomial correct to �rst order.
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A MATLAB program used in experimentsThe numerical part of our experiments was performed in MATLAB, while the exact component of theexperiments was performed with Mathematica. We reproduce only the main MATLAB code below for thepurpose of specifying precisely the crucial components of our experiments. The subroutines scan and scanrcompute the plus-scan and the reversed plus-scan of a vector respectively.% Predict and compute the componentwise backward error in the eight% polynomial test cases suggested by Toh and Trefethen.% --- Alan Edelman, October 1993% Step 1 ... Run Mathematica Program to Compute Coefficients.% Output will be read into matlab as the array% d1 consisting of eight columns and% 21 rows from the constant term (det) on top% to the x^19 term (trace), then 1 on the bottom% (Code not shown.)% Step 2 ... Form the eight companion matricesfor i=1:8,eval(['m' num2str(i) '=zeros(20);']);eval(['m' num2str(i) '(2:21:380)=ones(1,19);']);eval(['m' num2str(i) '(:,20)=-d1(1:20,' num2str(i), ');']);end% Step 3 ... Obtain an "unbalanced" error matrix.e=eps*ones(20);e=triu(e,-2);for i=1:8,eval(['[t,b]=balance(m' num2str(i) ');']);ti=diag(1./diag(t));eval(['e' num2str(i) '=(t*e*ti)*norm(b);']);end% Step 4 ... Compute the first order perturbation matrix: er.for j=1:8,eval(['e=e' num2str(j) ';']);forw=zeros(20);back=zeros(20);er=zeros(20,21);for i=1:19forw = forw + diag(scan(diag(e,i-1)),i-1);back = back + diag(scanr(diag(e,-i)),-i);ender(1:19,1:19)=back(2:20,1:19);er(:,2:21)=er(:,2:21)-forw;eval(['er' num2str(j) '=er;']);end% Step 5 ... Compute the predicted relative errors in the coefficientspredicted = zeros(20,8);for i=1:8,eval(['predicted(:,' num2str(i) ')=abs(er' num2str(i) ')*abs(d1(:,i));']);endpredicted=abs(predicted./d1(1:20,:));% Step 6 ... Compute the exact relative errors in the coefficients% using Mathematica and finally display all relevant% quantities by taking the base 10 logarithm. (Code not shown.)12


