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Abstract 

The direct method for solving N-body problems maps 
perfectly onto hypercube architectures. Unlike other hy- 
percube implementations, we have implemented a direct N- 
body solver on the Connection Machine CM-2 which makes 
optimum use of the full bandwidth of the hypercube. When 
N >> P, where P is the number of floating-point processors, 
the communication time of the algorithm is negligible, and 
the execution time is that of the arithmetic time giving a P- 

fold speed-up for real problems. To obtain this performance, 
we use “rotated and translated Gray codes” which result in 
time-wise edge disjoint Hamiltonian paths on the hypercube; 
We further propose that this communication pattern has un- 
explored potential for other types of algorithms. Timings are 
presented for a collection of interacting point vortices in two 
dimensions. The computation of the velocities of 14,099 vor- 
tices in 32-bit precision takes 2 seconds on a 16K CM-2. 

be performed initially, and afterwards, all the arithmetic can 
be performed locally. This type of communication in a hy- 
percube has been called all to all broadcasting [9] and 
multinode broadcast (61. 

We do not follow this strategy which wastes memory; in 
particular, we can interleave pieces of the computation with 
the communications and have no need to store the data for 
al1 the bodies at each node. Thus, we can use the idea of “ro- 
tated and translated Gray codes” described in [9]. Although 
this method has “limited potential for pipelining”, we show 
that it is just right for the N-body problem, and possibly 
many other as yet unexplored applications. ‘. 

1 Introduction 

The N-body algorithm is a critical kernel in a wide variety 
of application areas including astronomy, molecular biology, 
and fluid dynamics. The direct method (as opposed to local 
correction [l], hierarchical [2, 31, or multipole [8] methods) 
runs in O(N’) serial time for N bodies since all pairwise 
interactions are computed; the force on each body, Vi, is 
given by 

Force(vi) = C Fvj(Vi), 
j 

The idea of rotated and translated Gray codes is to pro- 
duce d2d time-wise edge disjoint Hamiftonian paths through 
the hypercube, d of them starting at each node. A Hamil- 
tonian path in a graph visits all the nodes in the graph 
only once. Time-wise edge disjoint means that, although 
the paths themselves share edges of the hypercube, no two 
paths traverse the same edge on the same communication 
step. Consequently, there is no contention for communica- 
tion channels. The data is circulated on these paths, but not 
retained, avoiding the memory waste. Furthermore, from 
a programming point of view, the “rotated and translated 
Gray codes” are very simple since one can take advantage 
of the symmetry of the hypercube. The combination of the 
simplicity and the optimal use of communication bandwidth 
makes this communication pattern one of the fastest which 
the Connection MachineB2 CM-2 3 can perform. 

where FQj(wi) is the force exerted on v; by vi* 

In this paper, we show how the direct method is ide- 
ally suited for the hypercube architecture. For non-direct 
methods on the hypercube, see [5, 7, 131. Our algorithm di- 
vides the N bodies evenly over the P = 2d processors of a 
d-dimensional hypercube. For simplicity, assume the num- 
ber of bodies in each node, NIP, is an integer multiple of 
d. To compute the N2 interactions, the data for each body 
must be transmitted to all of the other processors. If the 
processors have enough memory, then this transmission can 

In Section 2, we will describe the Connection Machine 
architecture, and the slicewise model of which we make use. 
Section 3 contains an explanation of how the Hamiltonian 
paths are generated as well as the data motion of the algo- 
rithm. More detailed implementation issues are discussed in 
Section 4, and Section 5 presents the timings for a sample 
application. 

‘See [lo] for one example 
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2 The Connection Machine Architecture 

The CM-2 is composed of a microsequencer and a maxi- 
mum of 64K single-bit processing elements. The processors 
run in SIMD mode with the instruction stream broadcast by 
the sequencer. The sequencer is controlled by an external 
front-end machine, usually a SUNo4, SYMBOLICSo Lisp 
Machine, or VAX@‘. 

For performing floating-point computations, better per- 
formance is usually obtained by looking at the machine in 
what is referred to as the slicewise model. That is, we con- 
sider processing nodes on the machine to be the ensemble of 
a floating-point unit and the memory of 32 associated phys- 
ical processors of the CM-2. In the usual fieldwise model, 
the storage of a 32-bit word would be allocated in 32 sequen- 
tial bits of a physical processor’s memory. In the slicewise 
model, a word is stored in a 32-bit slice across the memories 
of the 32 processors in the node, i.e., l-bit per processor. 
From this viewpoint, a 64K processor CM-2 becomes 2048 

floating-point nodes connected as an 11-dimensional hyper- 
cube with two communication channels between connected 
nodes instead of one. 

It is with this model of the CM-2 that we implemented 
our fast direct N-body solver. On a CM-2 with 2d+5 physical 
processors, there are P = 2d slicewise floating-point nodes. 
We divide the data for the N bodies evenly among the nodes; 
each node will be responsible for accumulating the forces for 
N/P bodies. We are thus left with the problem of how to 
optimally transmit the data for the bodies at each node to all 
of the other nodes. In the next two sections, we wiII describe 
how that is done. 

3 Rotated and Translated Gray Codes 

A d-dimensional hypercube is a graph with 2d nodes labeled 
by the d-bit binary representation of the integers 0 to 2d - 
1. Each bit in the d-bit representation is associated with a 
different dimension of the cube. There is an edge between 
two nodes, i and j, in the hypercube if and only if their 
binary representations differ in only one bit. We can think of 
the edges as traversing different dimensions of the hypercube. 

A Gray code is a circuit of all binary d-tuples such that 
only one coordinate position changes at each step. Thus, a 
Gray code represents a Hamiltonian path on the hypercube. 
There are many ways to construct Gray codes, but the most 
famous is the binary reflected Gray code [ll]. To simplify 
the terminology, we will refer to this code as the Gray code. 
We define the transition sequence [ll] corresponding .to 
a Gray code as the list of positions which change at each 
step of the code or the list of dimensions traversed on the 
hypercube at each step of the circuit. In Figure 1, we show 
the binary reflected Gray code for d = 3, the corresponding 

4SUN is a trademark of Sun Microsystems, Inc. By taking all of the 2d possible translations of the d ro- 
sSYMBOLICS is a trademark of Symbol& Inc. tated Gray codes beginning at 0, we can generate a set, H, 
sVAX is a trademark of Digital Equipment Corporation of d2d Hamiltonian paths on the hypercube. This set H is 

transition sequence, and the associated Hamiltonian path on 
the cube. 

Given the Gray code beginning at 0, we can “translate” 
it to node i by taking the exclusive or of i with the d-tuples 
in the original code. The transition sequence of the trans- 
lated Gray code is identical to the original. Figure 2 shows 
the translated code starting at node 5 = 101. Furthermore, 
given the Gray code beginning at 0, we can “rotate” it by 
performing circular shifts of the bits in the original code. In 

000 
001 0 
011 1 
010 0 
110 2 
111 0 
101 1 
100 0 

Figure 1: The binary reflected Gray code, the correspond- 
ing transition sequence, and the associated Hamiltonian path 
originating at node 0 on a three dimensional cube. 
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Figure 2: The transition sequence of Figure 1 is used to 
generate a translated code to node 101 = 5 and the associated 
Hamiltonian path. 

the tables below, we list the three rotated Gray codes and 
the corresponding transition sequences when d = 3. Notice 
that in general, the transition sequence of the rotated code i 
is obtained by adding i modulo d to the transition sequence 
of the binary reflected Gray code. 

Transition Sequences 
Code 0 0 1 0 2 0 1 0 
Code 1 1 2 1 0 1 2 1 
Code 2 2 0 2 1 2 0 2 
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more elegantly described as the paths generated by applying 
a group of ~!2~ symmetries (rotations and translations) of the 
hypercube to the binary reflected Gray code’ starting from 
node 0. These symmetries are the subgroup of all the hyper- 
cube symmetries that rotate the dimension numbers modulo 
d. It is straightforward to verify that two distinct symme- 
tries from this subgroup transform a directed edge into two 
distinct directed edges. It follows that the collection of paths 
H have the nice property of being time-wise edge disjoint: 
i.e., if j f 1,2,. . . , 2d - 1, then there is no overlap among 
the jth edges of the paths in H. Because of this nice prop- 
erty, if we have d packets of information in each node of the 
hypercube, we can circulate the data, one packet to a Hamil- 
tonian path, in 2d - 1 communication steps. Furthermore, 
we can perform the arithmetic on the data in between each 
communication step eliminating the need for data storage. 

4 Implementation on the CM-2 

If we have d words at every node, and if we wish to circulate 
the data using the Hamiltonian paths described in the pre- 
vious section, one might expect that we would need either 
to attach some labeling information to be transmitted with 
the data or else, one might imagine some kind of look up 
table that specifies over which dimension data needs to be 
sent. Neither of these kinds of operations is without cost. 
In our implementation, as we shall now describe, we avoid 
both of these types of methods. In fact, the information in 
the transition sequence for the binary reflected Gray code is 
all that is needed. 

Using the slicewise model, the CM-2 architecture allows 
for the loading of as many as 2d words to be sent over the 
d dimensions simultaneously, two words in each dimension. 
Typically, one loads one set of d words for the d dimen- 
sions followed by another set of d words. For simplicity, we 
will concentrate on one set with the understanding that the 
other set follows exactly the same pattern. Another impor- 
tant feature of the CM-2 architecture is that it is particularly 
efficient to load consecutive words, or more generally, words 
with a constant stride, to be sent over consecutive dimen- 
sions. 

To illustrate how the CM-2 works, let us first imagine 
that we only have one word in each processor and each of 
these words will follow the Hamiltonian path specified by the 
transition sequence of the Gray code: g = (0, 1, 0,2,0,1,. . .}. 
Further imagine we have only one memory location (location 
0) in each node where the word is stored. Then the algorithm 
is simply: 

7The use of the binary reflected Gray code is merely for convenience; 
any other Hamiltonian path will suffice. 

For k = 1 2 , ,-a*, 2d- 1 

In each node, the data at location 0 is 

1. Loaded to be sent over dimension gk 

2. Transmitted 

3. Stored in location 0 

Now, if we have d words in each node at memory locations 
0 through d - 1, we can quite readily make sure that the 

word at location j in each node follows the jth transition 
sequence. The method is to store this word at location j as 
it passes through each node like a traveler who prefers the 
same hotel in each city. Then, at step k, we send the data in 
each node at location j over dimension gk + j (mod d). To 
take advantage of the Connection Machine’s ability to load 
consecutive words, we in fact use the algorithm in the box 
below. 

Fork=1,2,...,2d-l 

In each node 

1. Data at locations 0 through d - gk - 1 is loaded to 

be sent over dimensions gk through d - 1 respectively 

2. Data at location d - gk through d - 1 is loaded to 

be sent over dimensions 0 through gk - 1 respectively 

3. Data is transmitted. 

4. Data received over dimensions gk through d - 1 is 

stored at locations 0 through d - gk - 1 respectively. 

5. Data received over dimensions 0 through gk - 1 is 

stored at locations d - gk through d - 1 respectively. 

‘. 

Notice that steps 2 and 5 are vacuous if gk = 0, which is 
half of the time. The actual code to perform this operation 
is not much longer than the boxed pseudo-code. 

In the real algorithm, we assume there is a multiple of 2d 
bodies in each node, and each body may contain more than 
one word of information. In the example described in the 
next section, there are two words of coordinate information 
and also a coefficient, giving three words for each body. Since 
we can transmit 2d words simultaneously, we loop over all the 
data until it is all transmitted. After the data is transmitted, 
we perform a computation such as the one described in the 
next section, and then we repeat for k = 1,2,. . . , 2d - 1. 

5 Analysis and timings 

5.1 A sample application 

As an application example, we computed the velocities of 
a collection of interacting point vortices in two dimensions. 
This N-body problem is at the heart of the vortex method to 
solve the Navier-Stokes equation for incompressible viscous 
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flows [12]. A Lagrangian perspective of the vorticity-stream 
function formulation of the Navier-Stokes equation leads to 
the introduction of discrete vortex elements which interact 
according to a Biot-Savart type force law. To avoid potential 
numerical instability caused by very close encounters of par- 
ticles, finite size vortex elements should be used. However, 
in these timing runs, we have considered the interaction of 
point vortices. 

In two dimensions, the (u,v) velocity components of a 
point vortex at position (z, y) are given by the following 
formulae: 

u(i) = $(g!$)+, i = l,...,N 

i = ‘,-**, N 

comes a more significant portion of the total execution time. 
In fact, when f 5 1, i.e., the number of bodies is much 
smaller than the number of processors, another approach, 
which replicates data to increase processor utilization, be- 
comes more cost effective [4]. 

We performed several calculations as described in the pre- 
vious section for a varying number of particles on various 
machine sizes. Timing results are shown in Figure 3. Note 
that the runs were made on CM-2 configurations with 2d+S 
processors for d = 4,5,7,8,9, which were the only ones avail- 
able to us. Typically, 14,000 vortices imecact in 2 seconds on 
a 512 floating-point node machine (16K processors). Count- 
ing the divide operation as one operation, the execution rate 
is about 5.2 Gflops on a fully configured CM-2 (2048 nodes 
and 64K processors). ’ 

Keeping the number of bodies constant, the time to com- 
pute the velocity components appears inversely proportional 
to the number of floating-point nodes of the hypercube. This 

with Az(i,j) = n(j) - z(i) 

AY(;,$ = y(j) - ~(4 
Ar(;,j)” = Az(;,j)” + Ay(;,j)” 

and c(j) = circulation of point vortex j. 

5.2 Analysis and Timings 

The complexity analysis of our algorithm is straightforward. 
The computation time, Ta+ith, scales like N2/2d, where N 
is the total number of bodies and d is the dimension of 
the hypercube. The communication time, T,,,, scales like 

T$kiWd - 1). Here [zl denotes the ceiling of Z, i.e., the 
smallest integer greater than or equal to z. Since there are 
N/2d bodies per node and 2d wires leaving each node, the 

first factor in Tern,,, represents the number of communica- 
tion operations needed to empty a. node of data. The second 
factor just represents the length of the path through the hy- 
percube the data must traverse. 

Given a fixed value of N such that 5 >> 2d, T=,,,,,,,, is, 
at first, a linearly decreasing function of d. As the number 
of dimensions, d, increases, the number of required commu- 
nication operations decreases to one, and the second factor 
in the expression of Teomm will dominate. Because at least 
one such communication operation must be performed, even 
if there are less than 2d data items at a node, we see that as 
d-+m, 

T,,,(d) N 2d. 

The function Tern,,,, therefore, exhibits a minimum which 
occurs when the bandwidth, 2d, is roughly equal to the num- 
ber of bodies per node. As the number of bodies per node 
decreases, one is making less and less effective use of the 
communications bandwidth of the hypercube, and T,,, be- 

Figure 3: Total execution time for the direct interaction 
of N point vortices in two dimensions, with N = 1792, 3584, 
7168, 14336. The hypercube dimensions 4, 5, 7, 8, 9 corre- 
spond to 512, 1024,4096, 8192 and 16284 Connection Machine 
processors, respectively. 

is the kind of behavior we expect given the analysis above. 
We get a more accurate picture of what is going on from Fig- 
ure 4 which plots the actual speedup of the implementation 
against the optimal speedup of 2d (the number of proces- 
sors). We calculated the actual speedup by taking the ratio 
of Tar;th times the number of processors and the total exe- 
cution time of the calculation. Note that again the curves 
behave as predicted by the complexity analysis. For a fixed 
hypercube dimension, as the number of bodies increases the 
speedup approaches optimality. In particular, over the range 
of test cases we ran, T,,, varies from a few percent to thirty 
percent of the total execution time as the number of bodies 
approaches the number of processors. 

son the 32&t floating point unit of the CM-2, a divide operation 
requires the explicit implementation of two Newton-Raphson iterations 
of the initial value which is provided by an internal look-up table. This 
amounts to a total of six atomic operations which we count as one. 
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Figure 4: Speedup on the CM-2 for the direct interactionof 
N point vortices in two dimensions, with N = 1792,3584,7168, 
14336. The speedup is defined as the ratio of the execution time 
using one floating point processor and the execution time using 
zd processors to solve the same problem; d is the dimension 
of the hypercube and a logarithmic scale is used. The dashed 
curve is the optimal speedup, i.e., the number of processors 2d. 

6 Summary 

We have designed and implemented a hypercube algorithm 
for direct N-body solvers on the Connection Machine CM-2. 
The algorithm is optimal in the sense that, as long as there 
is sufficient data, it uses the full communication bandwidth 
of a hypercube of any dimension. When the number of bod- 
ies per node is large enough, the communication time for 
the implementation is negligible, i.e., less than 2%. In par- 
ticular, this means that we obtain close to optimal speedup 
in this regime. This level of performance has enabled us to 
take advantage of the implementation for a relevant physical 
application [12]. 

References 

111 Anderson, C.R. A method of local corrections for com- 
puting the velocity field due to a distribution of vortex 
blobs. SIAM J. Numer. Anal. 22, (1986), 413-440. 

[2] Appel, A. An efficient program for many-body simula- 
tion. SIAM J. Sci. Stat. Comput. 6, (1985), 85-103. 

[3] Barnes, J. and Hut, P. A hierarchical O(N log N) force 
calculation algorithm. Nature 324, (1986), 446-449. 

[4] Brunet, J-Ph., Edelman, A., and Mesirov, J.P. Two Hy- 
percube Algorithms for Direct N-body Solvers, in prepa- 
ration. 

[5] Barnes, J. and Hillis, W.D. Programming a highly par- 
allel computer. Nature 326, (1987), 27-30. 

[S] Bertsekas, D.P., Ozveren, C., Stamoulis, G-D., Tseng, 
P., and Tsitsiklis, J.N. Optimal communication algo- 
rithms for hypercubes. To appear. 

[7] Fox, G.C., Hipes, P., and Salmon, J. Practical parallel 
supercomputing: examples from chemistry and physics. 
Proceedings Supercomputing ‘89. ACM Press, Reno, 
NV, 1989, pp. 58-70. 

[8] Greengard, L. and Rokhlin, V. A fast algorithm for par- 
ticle simulation. J. Comp. Phys. 73, (198’7), 325-348. 

[9] Johnsson, S.L. and Ho, C.T. Optimum broadcasting 
and personalized communication in hypercubes. IEEE 

Transactions on Computers 38, (1989), 1249-1268. 

[lo] Johnsson, S.L. and Ho, C.T. Multiplication of arbitrar- 
ily shaped matrices on boolean cubes using the full 
communications bandwidth. Yale University Tech. Rep. 
YALEU/DCS/TR-721, Yale University, Dept. of Com- 
puter Science, New Haven, 1989. 

[ll] Reingold, E.M., Nievergelt, J., and Deo, IV. Combina- 

torial Algorithms, Prentice-Hall, Englewoods Cliffs, NJ, 
1977. 

[12] Sethian, J-A., Brunet, J-Ph., Greenberg, A., and 
Mesirov, J.P. Two-dimensional, viscous, incompressible 
flow in arbitrary geometries on a massively parallel pro- 
cessor. To appear. 

[13] Zhao, F. and Johnsson, S.L. The parallel multipole 
method on the Connection Machine. Thinking Machines 
Corporation Tech. Rep. CS89-6, Thinking Machines 
Corp., Cambridge, MA, 1989. 

752 


