
Optimal Matrix Transposition and Bit Reversal onHypercubes: All{to{All Personalized CommunicationAlan EdelmanDepartment of MathematicsUniversity of CaliforniaBerkeley, CA 94720

Key words and phrases: bit reversal, communication, Connection Machine, hypercube, matrix transpose,parallel computing 1



Running head: All{to{all personalized communication.Alan EdelmanDepartment of MathematicsUniversity of CaliforniaBerkeley, CA 94720(510) 643-5695AbstractIn a hypercube multiprocessor with distributed memory, messages have a street addressand an apartment number, i.e., a hypercube node address and a local memory address. Herewe describe an optimal algorithm for performing the communication described by exchangingthe bits of the node address with that of the local address. These exchanges occur typicallyin both matrix transposition and bit reversal for the fast Fourier transform.

2



1 IntroductionImagine the residents of N = 2d cities creating zoos each with N distinguishable speci-mens of some native animal. The Sydney zoo might have N very di�erent looking koalas,the New Delhi zoo might have N identi�able elephants, while the Boston zoo might haveN automobile drivers. Assume these N cities are serviced by an airplane network forminga d dimensional hypercube. What would be the most e�cient way to use the air routes toreorganize the zoo specimens so that now each zoo has one of every animal?Consider the example of an N �N matrix A stored on a d-dimensional hypercube withN = 2d nodes. A natural data structure stores aij in node i and at local memory locationj. Denote this address by ijj. Matrix transpose requires that the N messages at node i(fijj : j = 0; 1; : : : ; N �1g) be divided across the machine into the N memory locations withlocal address i (fjji : j = 0; 1; : : : ; N � 1g).As another example, let us calculate the FFT of a vector of length N2 = 22d. A naturaldata structure splits the 2d address bits into a d bit node address and a d-bit local address.As is well known (see [8], for example), the result of an FFT is in bit-reversed order, and aseparate communication is needed to reorganize the data. This simply means that the realnumber located at (binary) address i2d : : : idjid�1 : : : i0 is swapped with the number at addressi0 : : : id�1jid : : : i2d. Thus bit reversal is similar to the matrix transpose: the N messages atnode i need to be divided across the machine into the the N memory locations with localaddress i.These two examples illustrate a communication pattern in which d node address bitsare interchanged with d local address bits. In this situation, each node wants to send adi�erent message to each other node, and thus this pattern is denoted all{to{all personalizedcommunication by the authors of [5, 6, 7] who noticed that these examples and others meritimplementing this type of communication as a programming primitive. The pattern is givena di�erent name, \total exchange" in [1], because all pairs of nodes trade (unique) data.3



This is di�erent from \all{to{all (non{personalized) broadcasting" in which every messageis replicated and sent to every node ([6]). We consider only the personalized case.The total exchange algorithm presented in [1] optimally solves the problem presented.Optimal algorithms for the case when the number of messages for each pair of nodes is amultiple of the cube dimension can be found in [6] and [9]; these algorithms are not optimalfor our situation. More recently, Johnsson and Ho have devised optimal algorithms for thesingle packet case as well [4].We have independently derived an optimal algorithm that takes advantage of the sym-metry of the hypercube. We do this by computing a schedule whose computation time isnegligible compared to the communication time.Our algorithm is based on performing one{to{all personalized communication ([6]) fromnode 0. In \one{to{all personalized communication," one node has a unique message for eachof the other nodes (see Figure 1). We construct an optimal algorithm for routing the datafrom node 0 in such a way that if every other node performs the same sequence of actionsin its own relativized coordinate system, there will be no contention for communicationschannels.For uses of this algorithm in FFTs and for index digit permutations, see [2], [3], and [9].Our implementation on the Connection Machine is used in the bit reversal for the FFT andother IO reorderings, but we do not discuss this in detail here. We take the view that theproblem on the hypercube is interesting, even if no machine exists on which to implementit.2 HypercubesAs is well known, a d dimensional hypercube (sometimes known as a Boolean d-cube)consists of 2d nodes. Nodes j and k are nearest neighbors if the d-bit binary representationsof j and k di�er in exactly one bit. Let j � k be the bitwise exclusive OR of the binaryrepresentations of j and k, and let Sum(j) denote the number of ones in the bitwise repre-4



v ---k3k1k2k0 k0 k1k2 k3
@@@@@ @@@@@ @@@@@@@@@@k4k0 k7k3k5k1 k6k2v ---k0 k1k4 k5k2 k3k6 k7@@@@@ @@@@@ @@@@@@@@@@

Figure 1: One{to{all personalized communication on a 2-cube and a 3-cube: Unique mes-sages are sent from the leader to every other node.5



sentation of j. The minimum path between nodes j and k has length Sum(j� k). It is thenobvious that the average distance between two random nodes is d=2 links.There are d2d�1 non-directed edges or links in a d dimensional cube. In this paper, wetypically assume that each non-directed edge is replaced by two directed edges, so that thereare exactly d2d directed edges. At each node, there are d links for outgoing data and d linksfor incoming data. Let outgoing or incoming link k be the link that changes bit k.3 Basic AlgorithmIn this section, we describe our optimal algorithm for performing the matrix transposedescribed as our �rst example. Thus, we assume that we have a d-dimensional hypercubewith 2d local storage locations at each node, and that we have an N � N matrix, whereN = 2d, that we wish to transpose. We begin by assuming that the message (32-bit word)aij is located at the address ijj, i.e., node i memory location j.We also make use of a relative address of ijj:De�nition 3.1 The relative address of ijj = i� j.1We immediately observe that the relative address of ijj and that of jji are the same; i.e.,the relative address of a message is preserved under transposition. Our method is to use thelinks e�ectively to move the message from ijj to jji while preserving the relative address:De�nition 3.2 A relative address preserving data movement is a communicationwhere at each intermediate step, the data preserve their relative addresses.The relative address is a powerful tool as it captures the underlying symmetry of thecommunication. With it, we can focus on one particular node, say node 0, with the assurancethat all the other nodes are performing the appropriate operations relative to their address.1The di�erence between matrix transpose and bit reversal is in this de�nition. For bit reversal, therelative address is Reverse(i) �j: For arbitrary all{to{all personalized communication, the data in node idestined for node j needs to be loaded into local memory location j.6



Furthermore, a relative address preserving data movement allows the motion of data tooccur without storing any information regarding where the data was coming from or goingto. Thus no address bits need to be sent and the information is tied to the memory location.We make some simple observations.Lemma 3.1 The minimum number of links that the word at ijj needs to cross to reach jji isexactly Sum(i� j). Let L be the set of bits of i� j that are 1. If the word at ijj traverses allthe dimensions in L in any order, it will reach its destination. Moreover, if in each node theword at relative address i�j marches through the same numbered dimensions simultaneously,after Sum(i� j) steps, the words will all reach their destination.As an example, let d=3, and consider the words in each node with relative address 5. Inall eight nodes, the word with relative address 5 needs to travel over links 0 and 2. If wesend all these words simultaneously �rst over link 0 and then over link 2, they will all arriveat their destination in two communication steps.Theorem 3.1 The transpose requires at least 2d�1 communications steps.Proof A lower bound is given bytotal number of links that must be crossedtotal number of links availableor Pi;j Sum(i� j)d2d = (d=2)(22d)d2d = 2d�1;since the average value for Sum(i� j) is d=2. (Other proofs of this result can be found in[1, 6].)Theorem 3.2 An optimal schedule is given by a 2d�1 by d array of numbers wij, i =0; 1; : : : ; 2d�1 � 1, j = 0; 1; : : : ; d� 1 whose kth binary bit is denoted by wkij satisfying7



1. Wire appropriateness: wkik = 1 for all i; k.2. Row uniqueness: wij1 6= wij2 , if j1 6= j2 for all i.3. Column uniqueness: wi1j 6= wi2j, if i1 6= i2.Given such an array, the optimal algorithm isFor i = 0; 1; : : : ; 2d�1 � 1In each node, the expression wij� (node-address) speci�es the localmemory location for the word sent over link j, (j = 0; 1; : : : ; d� 1).The word arriving over link j takes its place.Proof In Lemma 3.1, we observed that the relative address must have a 1 in the kth bitfor it to be appropriate to send the data over link k. Row uniqueness guarantees thatwe do not move the same message over two di�erent links at the same time step; columnuniqueness guarantees that we do not move any message twice over the same link (whichwould be backtracking). These conditions guarantee that the relative address w appearsexactly Sum(w) times in the array, once in each column j for which wj = 1. Thus, the dataat each relative address crosses all the appropriate links exactly once.We now propose an inexpensive algorithm for computing an array with the three condi-tions described in Theorem 3.2.Direct algorithm: Let ni = 2i + 1 and nki be the kth bit in its binary representation.Compute wij by performing the following operations on ni: 1) complement bit j + 1 and 2)interchange bit 0 and bit j. When j = d� 1, complementing bit j + 1 should be considereda vacuous operation.Proof The wire appropriateness condition is satis�ed since wkik = ni0 = 1. Row uniquenessfor wik, where k 6= d � 1 follows from the complementing. For k = d � 1 a separate trivial8



argument con�rms row uniqueness once again. Column uniqueness follows from the clearfact that column j is some permutation of the 2d�1 numbers with bit j equal to 1.Figure 2 explicitly shows the data movement when d = 3. The data starting at nodei at location j is indicated by ij. The data starting at node 0 is denoted with a � tofacilitate tracking the data from one particular node. Though it is satisfying to see all thedata arriving at their destinations explicitly, we do not recommend this diagram as a meansfor understanding our algorithm. Rather Table i contains the same information as Figure 2,in a more compact manner.Tables I, II, and III illustrate the schedule for d = 3; 4, and 5. Note that the scheduleslist the relative address of the data that is moved out of each node on a particular wire ata particular time. The three conditions: wire appropriateness, row uniqueness, and columnuniqueness are readily observed in these tables. Also observe that each binary number wappears exactly Sum(w) times in the array, once in each column k for which wk=1.

9



@@@@@ @@@@@ @@@@@@@@@@40 41 42 4344 45 46 4760 61 62 6364 65 66 6750 51 52 5354 55 56 5770 71 72 7374 75 76 77
�0 �1 �2 �3�4 �5 �6 �720 21 22 2324 25 26 2710 11 12 1314 15 16 1730 31 32 3334 35 36 37Start Dimension 0Dim 1Dim 2 -?@@@@@@@@R

@@@@@ @@@@@ @@@@@@@@@@�4 41 60 4344 45 46 5642 61 26 6364 74 66 6750 15 52 7154 55 47 5770 53 72 3765 75 76 77
�0 �1 �2 1240 �5 24 �720 30 22 23�6 25 62 2710 11 �3 1314 51 16 3521 31 32 3334 17 36 73Step 1 @@@@@ @@@@@ @@@@@@@@@@�4 41 24 6144 54 46 56�6 43 26 6364 74 66 7650 15 70 3545 55 47 5752 17 72 3765 75 67 77

�0 10 �2 1240 �5 60 2520 30 22 3242 �7 62 27�1 11 �3 1314 51 34 7121 31 23 3316 53 36 73Step 2
@@@@@ @@@@@ @@@@@@@@@@�4 �5 24 7044 54 64 56�6 52 26 2746 74 66 7614 15 61 3545 55 47 7543 17 36 3765 57 67 77

�0 10 20 1240 41 60 34�2 30 22 3242 16 62 63�1 11 �3 3150 51 25 7121 13 23 33�7 53 72 73Step 3 @@@@@ @@@@@ @@@@@@@@@@�4 14 24 3444 54 64 74�6 16 26 3646 56 66 76�5 15 25 3545 55 65 75�7 17 27 3747 57 67 77
�0 10 20 3040 50 60 70�2 12 22 3242 52 62 72�1 11 21 3141 51 61 71�3 13 23 3343 53 63 73Step 4

Figure 2: Data movement for all{to{all personalized communication (see text and compareTable i) 10



Table i: Schedule for d = 3. Dimension0 1 21 011 110 100Communication 2 001 111 110Step 3 111 010 1014 101 011 111

11



Table ii: Schedule for d = 4Dimension0 1 2 31 0011 0110 1100 10002 0001 0111 1110 10103 0111 0010 1101 1100Communication 4 0101 0011 1111 1110Step 5 1011 1110 0100 10016 1001 1111 0110 10117 1111 1010 0101 11018 1101 1011 0111 1111

12



Table iii: Schedule for d = 5Dimension0 1 2 3 41 00011 00110 01100 11000 100002 00001 00111 01110 11010 100103 00111 00010 01101 11100 101004 00101 00011 01111 11110 101105 01011 01110 00100 11001 110006 01001 01111 00110 11011 110107 01111 01010 00101 11101 11100Communication 8 01101 01011 00111 11111 11110Step 9 10011 10110 11100 01000 1000110 10001 10111 11110 01010 1001111 10111 10010 11101 01100 1010112 10101 10011 11111 01110 1011113 11011 11110 10100 01001 1100114 11001 11111 10110 01011 1101115 11111 11010 10101 01101 1110116 11101 11011 10111 01111 11111

13



AcknowledgementsI thank Lennart Johnsson for several interesting discussions, and for introducing meto this problem and related work. Without his motivating me to attack this problem, Inever would have worked on it. I further thank Ching{Tien Ho for relating previous workin this area. I also acknowledge Mark Bromley, Steve Heller, Mike McKenna, and WalterMascarenhas for all of their help implementing this and related algorithms on the ConnectionMachine.BiographyAlan Edelman received his Ph.D. degree in mathematics from the Massachusetts Instituteof Technology in 1989, and the BS and MS degrees in mathematics from Yale University in1984.He is currently a Morrey Assistant Professor at the mathematics department at theUniversity of California at Berkeley after �nishing an NSF-Nato postdoctoral fellowship atthe CERFACS computing center in Toulouse, France.Alan's research interests include numerical linear algebra, parallel computing, eigenvaluesof random matrices, and approximation theory. He recently shared the Gordon Bell prizefor parallel computing and the Householder prize for numerical linear algebra.

14



References[1] D.P. Bertsekas, C. Ozveren, G.D. Stamoulis, P. Tseng, and J.N. Tsitsiklis, Optimalcommunication algorithms for hypercubes, J. Parallel Distributed Comput., to appear.[2] P.M. Flanders, A uni�ed approach to a class of data movements on an array processor,IEEE Transactions on Computers. C-31 (1982), 809-819.[3] D. Fraser, Array permutation by index-digit permutation, J. ACM 22 (1976), 298-308.[4] C.T. Ho, personal communication, August 1, 1990.[5] S.L. Johnsson, Communication e�cient basic linear algebra computations on hypercubearchitectures, J. Parallel Distributed Comput. 4 (1987), 133{172.[6] S.L. Johnsson and C.T. Ho, Optimum broadcasting and personalized communication inhypercubes, IEEE Transactions on Computers. 38 (1989), 1249-1268.[7] S.L. Johnsson and C.T. Ho, Algorithms for matrix transposition on Boolean N -CubeCon�gured Ensemble Architectures, SIAM J. Matrix Anal. Appl. 9 (1988), 419{454.[8] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes:The Art of Scienti�c Computing, Cambridge University Press, Cambridge, 1986.[9] P.N. Swarztrauber, Multiprocessor FFTs, Parallel Computing 5 (1987), 197-210.
15


