Optimal Matrix Transposition and Bit Reversal on
Hypercubes: All-to—All Personalized Communication

Alan Edelman
Department of Mathematics
University of California

Berkeley, CA 94720

Key words and phrases: bit reversal, communication, Connection Machine, hypercube, matrix transpose,
parallel computing

Running head: All-to-all personalized communication.

Alan Edelman
Department of Mathematics
University of California
Berkeley, CA 94720
(510) 643-5695

Abstract

In a hypercube multiprocessor with distributed memory, messages have a street address
and an apartment number, i.e., a hypercube node address and a local memory address. Here
we describe an optimal algorithm for performing the communication described by exchanging
the bits of the node address with that of the local address. These exchanges occur typically
in both matrix transposition and bit reversal for the fast Fourier transform.

1 Introduction

Imagine the residents of N = 27 cities creating zoos each with N distinguishable speci-
mens of some native animal. The Sydney zoo might have N very different looking koalas,
the New Delhi zoo might have N identifiable elephants, while the Boston zoo might have
N automobile drivers. Assume these N cities are serviced by an airplane network forming
a d dimensional hypercube. What would be the most efficient way to use the air routes to
reorganize the zoo specimens so that now each zoo has one of every animal?

Consider the example of an N x N matrix A stored on a d-dimensional hypercube with
N = 2¢ nodes. A natural data structure stores a;; in node i and at local memory location
J. Denote this address by ¢|j. Matrix transpose requires that the N messages at node i
({il7:7=0,1,..., N—1}) be divided across the machine into the N’ memory locations with
local address ¢ ({j]i:j=0,1,...,N—1}).

As another example, let us calculate the FFT of a vector of length N? = 224, A natural
data structure splits the 2d address bits into a d bit node address and a d-bit local address.
As is well known (see [8], for example), the result of an FFT is in bit-reversed order, and a
separate communication is needed to reorganize the data. This simply means that the real
number located at (binary) address i24. .. 24|tq-1 .. .70 is swapped with the number at address
@0 ..-1g—1|tq...724. Thus bit reversal is similar to the matrix transpose: the N messages at
node ¢ need to be divided across the machine into the the N memory locations with local
address 1.

These two examples illustrate a communication pattern in which d node address bits
are interchanged with d local address bits. In this situation, each node wants to send a
different message to each other node, and thus this pattern is denoted all-to-all personalized
communication by the authors of [5, 6, 7] who noticed that these examples and others merit
implementing this type of communication as a programming primitive. The pattern is given

a different name, “total exchange” in [1], because all pairs of nodes trade (unique) data.

This is different from “all-to—-all (non—personalized) broadcasting” in which every message
is replicated and sent to every node ([6]). We consider only the personalized case.

The total exchange algorithm presented in [1] optimally solves the problem presented.
Optimal algorithms for the case when the number of messages for each pair of nodes is a
multiple of the cube dimension can be found in [6] and [9]; these algorithms are not optimal
for our situation. More recently, Johnsson and Ho have devised optimal algorithms for the
single packet case as well [4].

We have independently derived an optimal algorithm that takes advantage of the sym-
metry of the hypercube. We do this by computing a schedule whose computation time is
negligible compared to the communication time.

Our algorithm is based on performing one-to-all personalized communication ([6]) from
node 0. In “one—to-all personalized communication,” one node has a unique message for each
of the other nodes (see Figure 1). We construct an optimal algorithm for routing the data
from node 0 in such a way that if every other node performs the same sequence of actions
in its own relativized coordinate system, there will be no contention for communications
channels.

For uses of this algorithm in FFTs and for index digit permutations, see [2], [3], and [9].
Our implementation on the Connection Machine is used in the bit reversal for the FFT and
other 10 reorderings, but we do not discuss this in detail here. We take the view that the
problem on the hypercube is interesting, even if no machine exists on which to implement

it.
2 Hypercubes

As is well known, a d dimensional hypercube (sometimes known as a Boolean d-cube)
consists of 27 nodes. Nodes j and k are nearest neighbors if the d-bit binary representations
of j and k differ in exactly one bit. Let j & &k be the bitwise exclusive OR of the binary

representations of j and k, and let Sum(j) denote the number of ones in the bitwise repre-

OO,
@6 © @

Sl
SIS
OI®
SIS
©
©

Figure 1: One-to—all personalized communication on a 2-cube and a 3-cube: Unique mes-
sages are sent from the leader to every other node.

sentation of j. The minimum path between nodes j and k has length Sum(y & k). It is then
obvious that the average distance between two random nodes is d/2 links.

There are d2¢~! non-directed edges or links in a d dimensional cube. In this paper, we
typically assume that each non-directed edge is replaced by two directed edges, so that there
are exactly d2? directed edges. At each node, there are d links for outgoing data and d links
for incoming data. Let outgoing or incoming link & be the link that changes bit k.

3 Basic Algorithm

In this section, we describe our optimal algorithm for performing the matrix transpose
described as our first example. Thus, we assume that we have a d-dimensional hypercube
with 2¢ local storage locations at each node, and that we have an N x N matrix, where
N = 24, that we wish to transpose. We begin by assuming that the message (32-bit word)
a;j is located at the address 7|7, i.e., node ¢« memory location j.

We also make use of a relative address of i|j:

Definition 3.1 The relative address of i|j =i & j.!

We immediately observe that the relative address of ¢|j and that of j|: are the same; i.e.,
the relative address of a message is preserved under transposition. Our method is to use the

links effectively to move the message from i|j to j|¢ while preserving the relative address:

Definition 3.2 A relative address preserving data movement is a communication

where at each intermediate step, the data preserve their relative addresses.

The relative address is a powerful tool as it captures the underlying symmetry of the
communication. With it, we can focus on one particular node, say node 0, with the assurance

that all the other nodes are performing the appropriate operations relative to their address.

IThe difference between matrix transpose and bit reversal is in this definition. For bit reversal, the
relative address is Reverse(i) @j. For arbitrary all-to-all personalized communication, the data in node ¢
destined for node j needs to be loaded into local memory location j.

Furthermore, a relative address preserving data movement allows the motion of data to
occur without storing any information regarding where the data was coming from or going
to. Thus no address bits need to be sent and the information is tied to the memory location.

We make some simple observations.

Lemma 3.1 The minimum number of links that the word at t|j needs to cross to reach jli is
exactly Sum(i @ j). Let L be the set of bits of i & j that are 1. If the word at t|j traverses all
the dimensions in L in any order, it will reach its destination. Moreover, if in each node the
word at relative address 1Dy marches through the same numbered dimensions simultaneously,

after Sum(e & j) steps, the words will all reach their destination.

As an example, let d=3, and consider the words in each node with relative address 5. In
all eight nodes, the word with relative address 5 needs to travel over links 0 and 2. If we
send all these words simultaneously first over link 0 and then over link 2, they will all arrive

at their destination in two communication steps.
Theorem 3.1 The transpose requires at least 271 communications steps.

Proof A lower bound is given by

total number of links that must be crossed

total number of links available

or
> Sum(i @ j) (d/2)(2*) _ 9d-1
d2? Cd2d T
since the average value for Sum(: & j) is d/2. (Other proofs of this result can be found in
1, 6].) O]

Theorem 3.2 An optimal schedule is given by a 247! by d array of numbers wy;, i =

0,1,...,2971 —1, 7 =0,1,...,d — 1 whose kth binary bit is denoted by wfj satisfying

1. Wire appropriateness: w¥ =1 for all ¢, k.
2. Row uniqueness: w;j, # w;j;,, if j1 # jo for all 2.

3. Column uniqueness: w;,; 7# w;,j, if 11 # 5.

Given such an array, the optimal algorithm is

For : =0,1,...,297' —1
In each node, the expression w;;® (node-address) specifies the local
memory location for the word sent over link j, (j =0,1,...,d —1).

The word arriving over link j takes its place.

Proof In Lemma 3.1, we observed that the relative address must have a 1 in the kth bit
for it to be appropriate to send the data over link k. Row uniqueness guarantees that
we do not move the same message over two different links at the same time step; column
uniqueness guarantees that we do not move any message twice over the same link (which
would be backtracking). These conditions guarantee that the relative address w appears
exactly Sum(w) times in the array, once in each column j for which w’ = 1. Thus, the data

at each relative address crosses all the appropriate links exactly once. L]

We now propose an inexpensive algorithm for computing an array with the three condi-

tions described in Theorem 3.2.

Direct algorithm: Let n; = 27 + 1 and n¥ be the kth bit in its binary representation.
Compute w;; by performing the following operations on n;: 1) complement bit j + 1 and 2)
interchange bit 0 and bit j. When 57 = d — 1, complementing bit 7 + 1 should be considered

a vacuous operation.

Proof The wire appropriateness condition is satisfied since w = n{ = 1. Row uniqueness

for w;, where k # d — 1 follows from the complementing. For £k = d — 1 a separate trivial

argument confirms row uniqueness once again. Column uniqueness follows from the clear

fact that column j is some permutation of the 2¢=! numbers with bit j equal to 1. L]

Figure 2 explicitly shows the data movement when d = 3. The data starting at node
¢ at location j is indicated by ¢/. The data starting at node 0 is denoted with a & to
facilitate tracking the data from one particular node. Though it is satisfying to see all the
data arriving at their destinations explicitly, we do not recommend this diagram as a means
for understanding our algorithm. Rather Table i contains the same information as Figure 2,
in a more compact manner.

Tables I, II, and III illustrate the schedule for d = 3,4, and 5. Note that the schedules
list the relative address of the data that is moved out of each node on a particular wire at
a particular time. The three conditions: wire appropriateness, row uniqueness, and column
uniqueness are readily observed in these tables. Also observe that each binary number w

appears exactly Sum(w) times in the array, once in each column k for which w*=1.

a0
40 &°

' S
44 45

a° 10
40 41

(X
44 54

Step 2

Step 4

A° Al A2 A 10 1t 12 13
A A A AT 1415|1817
20 Bl 92 93 30 31 32 33 Dimension 0
24 2526 27 3* 37 (3% 37
Dim 1
40 41 42 43 50 51 52 53 i
—{Start
44 45 6 47 54 55 6 57 Diml 2
60 1 62 63 70 1 72 73
6* 6° 6° 67 THT Tt T
Sk 1° 1' &° 13 w10 A% 12 XA SBE
AN ¥ 1 511837 49 &°602° 14 51 37!
20 0 22 23 21 1 32 33 20 0 22 32 21 1 23 33
A° 27 6% 2 317 |3¢ 7 42 W62 27 16 5% (3% 7°
60 4° 50 1% |52 7 —{Step 1 & 42t 6! 50 1570 3% ||
6 56 54 55 7 57 44 54 6 56 45 55 7 57
42 1 26 63 70 3 72 37 .6 3 26 63 52 7 72 37
6t 71 6° 67 6> 7° 76 77 6* 7t 6° 7° 6> 7° 67 77
0 2 1 1 3 1 0 0 0 0 1 1 1 1
2 1 A1l N3 A’ 1° 20 3 a1t 2t 3
6N3* 59 5 |25 Tt 49 59 6N 41 5N Tt
‘2 0 22 32 21 3 23 33 .2 2 22 32 .3 3 23 33
42 16 62 63 .7 53 72 73 42 52 62 72 43 53 63 73
2t 70 1 1°|6" 3° —{Step 3 w12t 3t N 1% 20 35 |
4 56 45 55 7 75 44 54 4 74 45 55 5 75
‘6 2 26 27 43 7 36 37 .6 6 26 36 .7 7 27 37
46 74 66 76 65 57 67 77 46 56 66 76 47 57 67 77

Figure 2: Data movement for all-to—all personalized communication (see text and compare

Table 1)

10

Table i: Schedule for d = 3

1

Communication 2

Step

3
4

11

Dimension

0

1

2

011
001
111
101

110
111
010
011

100
110
101
111

Table ii: Schedule for d = 4

Communication
Step

O -1 O U =~ W DN —

0

Dimension

1

2

0011
0001
0111
0101
1011
1001
1111
1101

0110
0111
0010
0011
1110
1111
1010
1011

1100
1110
1101
1111
0100
0110
0101
0111

1000
1010
1100
1110
1001
1011
1101
1111

12

Communication
Step

Table iii: Schedule for d = 5

O -1 O U =~ W DN —

Ne)

11
12
13
14
15
16

0

1

Dimension

2

3

4

00011
00001
00111
00101
01011
01001
01111
01101
10011
10001
10111
10101
11011
11001
11111
11101

00110
00111
00010
00011
01110
01111
01010
01011
10110
10111
10010
10011
11110
11111
11010
11011

01100
01110
01101
01111
00100
00110
00101
00111
11100
11110
11101
11111
10100
10110
10101
10111

11000
11010
11100
11110
11001
11011
11101
11111
01000
01010
01100
01110
01001
01011
01101
01111

10000
10010
10100
10110
11000
11010
11100
11110
10001
10011
10101
10111
11001
11011
11101
11111

13

Acknowledgements

I thank Lennart Johnsson for several interesting discussions, and for introducing me
to this problem and related work. Without his motivating me to attack this problem, I
never would have worked on it. I further thank Ching—Tien Ho for relating previous work
in this area. I also acknowledge Mark Bromley, Steve Heller, Mike McKenna, and Walter
Mascarenhas for all of their help implementing this and related algorithms on the Connection

Machine.

Biography

Alan Edelman received his Ph.D. degree in mathematics from the Massachusetts Institute
of Technology in 1989, and the BS and MS degrees in mathematics from Yale University in
1984.

He is currently a Morrey Assistant Professor at the mathematics department at the
University of California at Berkeley after finishing an NSF-Nato postdoctoral fellowship at
the CERFACS computing center in Toulouse, France.

Alan’s research interests include numerical linear algebra, parallel computing, eigenvalues
of random matrices, and approximation theory. He recently shared the Gordon Bell prize

for parallel computing and the Householder prize for numerical linear algebra.

14

References

[1] D.P. Bertsekas, C. Ozveren, G.D. Stamoulis, P. Tseng, and J.N. Tsitsiklis, Optimal

communication algorithms for hypercubes, J. Parallel Distributed Comput., to appear.

[2] P.M. Flanders, A unified approach to a class of data movements on an array processor,

IEEE Transactions on Computers. C-31 (1982), 809-819.
[3] D. Fraser, Array permutation by index-digit permutation, J. ACM 22 (1976), 298-308.
[4] C.T. Ho, personal communication, August 1, 1990.

[5] S.L. Johnsson, Communication efficient basic linear algebra computations on hypercube

architectures, J. Parallel Distributed Comput. 4 (1987), 133-172.

[6] S.L. Johnsson and C.T. Ho, Optimum broadcasting and personalized communication in

hypercubes, IEEE Transactions on Computers. 38 (1989), 1249-1268.

[7] S.L. Johnsson and C.T. Ho, Algorithms for matrix transposition on Boolean N-Cube
Configured Ensemble Architectures, STAM J. Matrix Anal. Appl. 9 (1988), 419-454.

[8] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes:
The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986.

[9] P.N. Swarztrauber, Multiprocessor FFTs, Parallel Computing 5 (1987), 197-210.

15

