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where the supremum is taken over all such upper triangular U of dimension n.The quantity �(n) arises in Parlett's [4] perturbation theory of the Choleskydecomposition. The term UTU in the denominator would be neglected by �rst orderperturbation theory but, according to Parlett, it actually helps in the analysis.Consider perturbations �A to the identity matrix. (The analysis for perturbingany positive de�nite matrix can be reduced to this case through an appropriatechange of coordinates [4].) The Cholesky factorization isI + �A = (I + �U )T (I + �U );where �U is upper triangular, so that�A = �UT + �U + �UT �U:It follows that k�Ukk�Ak = � (�U ):Given k�Ak, it is natural to ask for the maximumvalue of k�Uk and hence we study�(n).We bound the quantity �(n) for both the Frobenius norm kAkF � qPa2ij �pP�2i and the 2-norm kAk2 = �max, where the �i denote the singular values of A.We will denote our supremum as �F (n) and �2(n) respectively for the Frobeniusnorm and the 2-norm. Section 2 discusses the bounds for the Frobenius norm whileSection 3 discusses the bounds for the 2-norm.Other approaches to this problem may be found in [1] and [5]. Our bounds aretighter and have shorter proofs. The results indicate quite a di�erence in asymptoticbehaviors as n!1:Frobenius norm bound:p2n� 1 � �F (n) < pn�1 +p1 + n�1=2� : (1)2-norm bound:0:22 log2(n� 1)� 0:362 < �2(n) < 2 log2 n+ 4: (2)2 The Frobenius norm's �F (n)Lower Bound: Let U be the n� n matrix de�ned byuij =8<: �1 j = i1 j = i + 10 otherwise:U has Frobenius norm p2n� 1 and UT +U +UTU has norm 1. Therefore �(n) �p2n� 1. 2



Upper Bound: Though not logically necessary, we will �nd it convenient at timesto make the change of variables R = I + U: We may then de�ne�(R) � � (R� I) = kI � RkFkI �RTRkF ;and ask for �(n) � suprii�0 �(R)where the supremum is over the set of n by n upper triangular matrices R withnon-negative diagonals rii, excluding the identity matrix.Our upper bound (1) is�(R) < pn�1 +p1 + n�1=2� : (3)for any upper triangular matrix R with rii � 0 and R 6= I. For n large, this isroughly 2pn.Given our expression for �(R), it is natural to study three cases: a large numera-tor, a small denominator, or neither a large numerator nor small denominator. Eachpossibility yields a bound for �(R). The three cases are indicated schematically inFigure 1.
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ΙΙFigure 1 Proof outline: I: R large, II: R � I, III: R in betweenNotice that if kRkF is very large, the quadratic term in the denominator of �(R)is roughly the square of the numerator. This is the beauty of Parlett's suggestion ofkeeping the quadratic term { it will allow us to bound �(R) for kRkF large. As Rtends to the identity I, a simple argument shows that �(R) � 2�1=2 suggesting theexistence of a small bound for �(R) when R is near the identity. If neither of thesetwo hypotheses is true, then we again obtain a bound because the numerator in ourexpression for �(R) is not too large, and also the denominator is not too small. Weproceed to quantify these ideas.� Case I: If kRkF is so large that kRkF > pn, then�(R) � pnkRkF �pn3



Proof: Jensen's inequality states that the square of an average is no bigger thanthe average of squares: ( 1nX�2i )2 � 1nX(�2i )2:Thanks to the singular value de�nition of the Frobenius norm1pnkRk2F � kRTRkF :Therefore, kI �RTRkF � kRTRkF � kIkF � 1pn (kRk2F � n) giving a bound for thedenominator.The triangle inequality bounds the numerator: kI � RkF � kRkF + kIkF =kRkF +pn, and the result follows upon division.� Case II: If kI � RTRkF = � for some 0 < � < 1, then�(R) < p2n� 1:Proof: If kI � RTRkF = �, then the upper left entry of I � RTR tells us that(1� r211)2 � �2, so (1� r11)2 � �2=(1 + r11)2 < �2since r11 � 0 and equality would violate � < 1.Let w1 be the row vector obtained by deleting r11 from the �rst row of R. The�rst row (column) of I�RTR with its �rst component deleted is r11w1 (transposed).Since kI � RTRkF = �, (1� r11)2 + 2r211kw1k22 � �2:We claim that kw1k22 < �2 for otherwise (1 � r211)2 � (1 � 2r211)�2, which impliesthat �2 � (1�r211)21�2r211 � 1, which would contradict the hypothesis � < 1.Since RTR is similar to RRT , we deduce that kI � RRTkF = kI �RTRkF = �.Let Rk be the submatrix of R obtained by taking rows and columns k throughn. The matrix in the corresponding position of I � RRT is I � RkRTk so thatkI �RTkRkkF = kI �RkRTk kF � �. Now the argument that we applied to the �rstrow of R may be applied to the �rst row of each Rk so that(1� rkk)2 < �2 and kwkk22 < �2;for every row k. Here wk denotes the row vector past the diagonal of R in row kfor k = 1; : : : ; n� 1. Add up the contributions from the rows of I �R to concludekI �Rk2F < (2n� 1)�2;yielding the upper bound for �(R) claimed in this case.We remark that, since this upper bound matches the lower bound obtainedearlier from an example U on the boundary of this case, the worst case cannot fall4



in Case II. We suspect that �(R) achieves its maximum �(n) for some R = I + Usimilar to the example, but slightly outside Case II.� Case III: If kI �RTRkF > 1 then�(R) < kRkF +pn:Proof: The triangle inequality.�Final Assembly If kRkF > pnp1 + n�1=2 apply Case I. If kI � RTRkF � 1apply Case II, possibly taking the limiting case of � = 1 by continuity. OtherwisekRkF � pnp1 + n�1=2 and Case III applies completing the proof.3 The 2-norm's �2(n)Lower Bound: We are indebted to Roy Mathias [3] for the realization that anexample of Kahan [2] serves as a lower bound for the 2-norm. The discussion thatfollows is a reformulation and enhancement of Mathias' observation.We begin with the observation that if U is any non-zero upper triangular matrix,then lim�!0 � (�U ) = kUk2kUT + Uk2 :Therefore �2(n) � sup kUk2kUT + Uk2 ;the supremum taken over all non-zero upper triangular matrices.Kahan [2] shows that the upper triangular matrix W 2 IRm�m withWij = � 1j�i j > i0 j � isatis�es kW + W Tk2 > 2 logm + 12 � 2 log 2 + 1m > 2 logm � 0:8863. ThereforekWk2 > logm� 0:44315 by the triangle inequality.Kahan also shows kW �W T k2 < � for all m. De�ne a 2m by 2m matrixY = � 0 W�W 0 � :It follows that kY k2 = kWk2 > logm�0:44315 and that kY+Y Tk2 = kW�W T k2 <�. Performing a perfect shu�e1 n the rows and columns of Y produces a 2m by2m strictly upper triangular matrix U for whichkUk2kU + UT k2 > 1� log(m) � 0:44315� :1A perfect shu�e rearranges the numbers 1; : : : ; 2n into 1; n+ 1;2; n+ 2; 3; n+ 3; : : : ; n; 2n.5



Replacing 2m with n or n� 1 depending on whether n is even or odd, numericallycomputing (0:44315+log2)=�, and switching to base 2 logarithms, we may concludethat there exists an n� n strictly upper triangular matrix U 0 such that� (U 0) > 1� log(n� 1)� 0:362 > 0:22 log2(n � 1)� 0:362:Upper Bound: In the following analysis we always assume that U is not the zeromatrix.Theorem 3.1 If U 2 IR2k�2k is upper triangular, with uii � �1 for 1 � i � 2k,then � (U ) = kUk2kU + UT + UTUk2 < 2k + 2:Furthermore, if U 2 IRn�n with the same hypotheses,� (U ) < 2 log2 n+ 4:Proof: The second statement follows from the �rst by adding rows and columnsof zeros so that 2k is the smallest power of 2 bigger than n. The proof of the �rststatement is a divide and conquer style argument by induction on k, the log2 ofthe dimension of U . The theorem is true for k = 0 since for 1 � 1 matrices withu11 � �1, � (U ) = j u11 jj 2u11 + u211 j = 12 + uii � 1 < 2� 0 + 2:Now let us assume that the theorem holds for dimension 2(k�1). Take a 2k � 2kmatrix U satisfying the hypotheses of Theorem 3.1. We once again take the samestrategy as in Section 2. We �rst consider the case that the numerator in � (U )is large, and then second that the denominator is not too small. The only non-trivial part of the argument is the case when the denominator may be small, butthe numerator is not large. We chose two convenient numbers for large and small: 3and 3=4 respectively. Slightly better bounds may be obtained with di�erent choices.If kUk2 � 3 thenkUT + U + UTUk2 � kUTUk2 � kUTk2 � kUk2 = kUk2 (kUk2 � 2) � kUk2:Therefore, if kUk2 � 3 then � (U ) � kUk2=kUk2 = 1 < 2k + 2. On the other hand,if kUk2 < 3, k � 1 and kU + UT + UTUk2 � 3=4, then � (U ) < 4 � 2k + 2.We have only left the case kU +UT +UTUk2 < 3=4 and kUk2 < 3. In this casewe write U = � X Y0 Z � = � X 00 Z �+ � 0 Y0 0 � (4)where each block X;Y; Z has dimension 2(k�1). The X and Z may be thought ofas the easy part of the divide and conquer, while the Y is more of a nuisance termthat needs to be handled gingerly. 6



Our partition of U leads toUUT = � X Y0 Z �� XT 0Y T ZT � = � XXT + Y Y T Y ZTZY T ZZT � ; (5)B � U + UT + UUT = � ? Y (I + ZT )? Z + ZT + ZZT � ; (6)and B0 � U + UT + UTU = � X +XT +XTX ?? ? � : (7)The question marks indicate matrix elements that are of no immediate interest tous. Since (I +U )(I+U )T is similar to (I +U )T (I +U ), we learn that the B and B0de�ned in (6) and (7) are similar symmetric matrices. In particular, kBk = kB0k.The same holds if U is replaced with Z or X.The proof follows from the three claims below:� Claim 1: kXk2 < 2k kBk2.� Claim 2: kZk2 < 2k kBk2.� Claim 3: kY k2 < 2 kBk2.In fact, if these claims are true then from (4),kUk2 � maxf kXk2; kZk2 g + kY k2 < (2k + 2) kBk2;completing the induction.Let us now prove the three claims above. Since Z+ZT +ZZT is the lower rightcorner of B in (6) we can use the induction hypothesis to conclude thatkZk2 < (2(k � 1) + 2) kZ + ZT + ZZTk2 � 2k kBk2:Analogously, Since X +XT +XXT is the upper right corner of B0 ,kXk2 < (2(k � 1) + 2) kX +XT +XXT k2 � 2k kB0k2 = 2k kBk2;and we have proved the �rst two claims.Now the proof of the third claim. Using (6) and standard norm inequalities weobtain, kBk2 � kY (I + ZT )k2 � kY k2k(I + ZT )�1k2 = kY k2k(I + Z)�1k2 (8)So as to obtain information about (I + Z)�1, we look at the partition(I + U )�1 = � ? ?0 (I + Z)�1 � ;7



from which it is clear thatk(I + Z)�1k2 � k(I + U )�1k2: (9)Finally, the assumption that k(I + U )T (I + U ) � Ik2 < 3=4 means that all theeigenvalues of the positive de�nite matrix (I + U )T (I + U ) are greater than 1=4,from which it readily follows thatk(I + U )�1k2 < 2: (10)Claim 3 is a direct consequence of (8), (9), and (10). This completes our proof.4 Concluding RemarksWe suspect more precise bounds for �(n) are obtainable. Indeed there is evidencethat �F (n) may be p2n asymptotically as it was in our Case II. We can also slightlyimprove the 2-norm bound. We satisfy ourselves here with the bounds (1) and (2)as they are tight enough to demonstrate Parlett's point that keeping the quadraticterm helps produce better bounds.AcknowledgementsWe would like to thank Beresford Parlett for inviting us to work on this prob-lem while one author was visiting the other author at Berkeley during May of 1992.We would further like to thank Velvel Kahan who served as a not very anonymousreferee suggesting many valuable improvements including the observation that ouroriginal upper bound for �F (N ) of 2:7pn could be reduced to a quantity that isroughly 2pn. This work was supported by the Applied Mathematical Sciencessubprogram of the O�ce of Energy Research, U.S. Department of Energy underContract DE-AC03-76SF00098.References[1] Z.Drma�c, M.Omladi�c, K.Veseli�c, On the perturbation of the Cholesky factoriza-tion, November 1992, preprint.[2] W. Kahan, Every n � n matrix Z with real spectrum satis�es kZ � Z�k �kZ + Z�k(log2 n+ 0:038), Proc. Amer. Math. Soc. 39 (1973), 235{241.( On page 238 the term (log n+ 14 � 12 log 2 + 1=2n) that appears on Line 3 of Section1 should be (log n+ 14 � log 2+1=2n). On the next line, the term 0:92 log2 n should be0:44 log2 n, while the log 2 factor on line -2 of page 238, should be 2 log 2. The authoracknowledges these corrections.) 8
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