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Abstract

Multiresolution analyses based upon interpolets, interpolating scaling functions in-
troduced by Deslauriers and Dubuc, are particularly well-suited to physical applications
because they allow exact recovery of the multiresolution representation of a function
from its sample values on a finite set of points in space. We present a detailed study
of the application of wavelet concepts to physical problems expressed in such bases.
The manuscript describes algorithms for the associated transforms which, for properly
constructed grids of variable resolution, compute correctly without having to introduce
extra grid points. We demonstrate that for the application of local homogeneous oper-
ators in such bases, the non-standard multiply of Beylkin, Coifman and Rokhlin[{] also
proceeds exactly for inhomogeneous grids of appropriate form. To obtain less stringent
conditions on the grids, we generalize the non-standard multiply so that communica-
tion may proceed between non-adjacent levels. The manuscript concludes with timing
comparisons against naive algorithms and an illustration of the scale-independence of
the convergence rate of the conjugate gradient solution of Poisson’s equation using a
simple preconditioning.

1 Introduction and Motivation

Wavelets offer a means of approximating functions that allows selective refinement. If regions
of an image or a signal have exceptionally large variations, one need only store a set of
coefficients, determined by function values in neighborhoods of those regions, in order to
reproduce these variations accurately. In this way, one can have approximations of functions
in terms of a basis that has spatially varying resolution. This approach reduces the memory
storage required to represent functions and may be used for data compression.

Physical applications often involve multiple physical fields which interact in space with
non-linear couplings. Efficient implementations must minimize not only storage to represent
the these fields but also the processing required to describe their interactions. It is highly
desirable to perform the needed operations with a fixed, limited number of floating point
operations for each expansion coefficient and to minimize the number of points in space at
which physical interactions must be evaluated.

As a concrete example of a realistic application, consider the computation of the quantum
mechanical electronic structure of a collection of atoms in three dimensions. For other
examples of physical applications, the reader may wish to consult [3], [B], [174], et al.. Arias
and coworkers [H],[Z], and other works which have appeared after the original submission of
this manuscript nearly one year ago [27],[26], have studied the use of multiresolution bases in
quantum mechanical computations. (For a review, see [I].) It is a consequence of quantum
physics that, near atomic nuclei, electronic wave functions vary rapidly and, that far from
the nuclei, the wave functions tend to be much more smooth. From this observation, one can
anticipate that the fine scale coefficients in a multiresolution analysis of the electronic wave
functions and associated physical fields will be significant only near the atomic cores, allowing
for truncation. This problem is thus an ideal candidate for multiresolution techniques.

Within density functional theory [1Y], the quantum physics of electrons and nuclei in-
volves two types of fields, the Schrodinger wave function {¢;(r)} for each electron ¢ and the



electrostatic potential ¢(r) arising from the average electronic density n(r) = >, [¢:(r)]*.
Within the local density approximation (LDA) [20], the solution for the correct values of
these fields is obtained at the saddle-point of lowest energy of the Lagrangian functional

Loalfes.d) = 537 [drIVam) + [ @ Viucrintr) + [ & eecln(riin(r)
— [ drotrinr) — o [ ErIvHwI (1

Here, we work in units & = m = e = 1, Vhuc(r) is the total potential which each electron
feels due to the presence of the atomic nuclei, and €,.(n) is a non-algebraic function known
only through tabulated values. (For a review of density functional theory, see [23].)

In practice, one finds the fields {¢;(r)}, ¢(r) by

o expanding the fields in terms of unknown coefficients within some basis set
Vilx) = D caibo(2) (2)
Hx) = 3 daba(w);

e evaluating Eq. (1) in terms of the unknown coefficients ¢ and d;

e determining analytically the gradients of the resulting Lp4(e, d) with respect to those
coefficients; and

e proceeding with conjugate gradients to locate the saddle point.

All follows directly once one has expressed the Lagrangian as a function of the expansion
coefficients.

In doing this, we note that each term represents a local coupling in space, but that one
coupling, ¢(r)n(r), is cubic in the field coefficients ¢ and d, and another, €,.(n(r))n(r), is
only known in terms of tabulated values. Expanding the product of two wavelets in terms of
wavelets on finer levels would make possible the treatment of the cubic coupling to some level
of approximation. (See, for example, [6].) However, this route becomes increasingly difficult
for higher order interactions and is hopeless for non-algebraic or tabulated interactions, such
as €;.(n(r)). For higher order interactions it is natural, and for non-algebraic and tabulated
interactions necessary, to evaluate the interactions at some set of points in space and then
recover expansion coefficients for the result. One then relies upon the basis set to provide
interpolation for the behavior at non-sample points.

The benefits of both truncated wavelet bases and interpolation on dyadically refined grids
are given by the use of interpolating scaling functions [16], [7], [8], [14], [15] (or interpolets
[28], [1]), which are functions with the following properties (from [L5], pp. 6-7).

Let ¢(x) be an interpolet, then

(INT1) cardinality: ¢(k) = do for all k € Z"
(INT2) two-scale relation: ¢(x/2) =3, c7n cyd(x — y)



(INT3) polynomial span: For some integer m > 0, any polynomial p(x) of degree m
can be represented as a formal sum -, 7 a(y)d(x — y).

Cardinality allows the fast conversion between uniform samples and interpolating scaling
functions and has subtle yet profound consequences for the resulting multiresolution basis.
In particular, as is evident from our algorithms below, the expansion coefficient for a ba-
sis function on a particular scale is independent of the samples of the function for points
associated with finer scales. Consequently, the expansion coefficients which we obtain for
functions maintained in our basis are identical to what would be obtained were function sam-
ples available on a complete grid of arbitrarily fine resolution. This eliminates all error in
the evaluation of non-linear, non-algebraic and tabulated interactions beyond the expansion
of the result in terms of a finite set of basis functions.

The ¢, in the two-scale relation are referred to as scaling coeflicients, and cardinality
actually implies that ¢, = ¢(y/2). The two-scale relation allows the resolution to vary
locally in a mathematically consistent manner.

The polynomial span condition captures, in some sense, the accuracy of the approxi-
mation. By cardinality, we actually have a(y) = p(y). We shall call m the polynomial
order.

Interpolets thus can be thought of as a bridge between computations with samples on
dyadically refined grids and computations in a multiresolution analysis. The former point
of view is useful for performing local nonlinear operations, while the latter is useful for the
application of local linear operators.

This manuscript explores O(N) algorithms that calculate transforms and linear operators
for grids of variable resolution but return, for the coefficients considered, exactly the same
results as would be obtained using a full, uniform grid at the highest resolution without the
need to introduce artificial temporary augmentation points to the grid during processing.
We thus show that with relatively mild conditions on the variability of the resolution pro-
vided by the grid, interpolet bases provided the ultimate economy in the introduction of grid
points: only as many samples in space need be considered as functions used in the basis. The
four transforms (forward, inverse, and the dual to each) mapping between coefficients and
functions samples which we discuss here are particular to interpolet bases. For the applica-
tion of operators in such bases, we show that the familiar non-standard multiply of Beylkin,
Coifman and Rokhlin[4] shares with the transforms the property of correctness without the
need to introduce additional grid points. Furthermore, we weaken the condition on grid vari-
ability by using a modification of the non-standard multiply. We generalize the non-standard
multiply so that communication may proceed between nearby but non-adjacent levels and
thereby obtain less stringent conditions on the variability of the grid. All of theoretical re-
sults in this manuscript are presented in a general d-dimensional space. Illustrative examples
for the purpose of discussion will be given in d = 1 and d = 2 dimensions. The examples
of applications in the final section will be in d = 3 dimensions. Our focus is entirely on
interpolet bases, and so it remains an open question whether these results hold true or can
be adapted to more general wavelet systems.

Our organization is as follows. In Sections 2 and 3, we explain how to manipulate and
construct interpolet expansions and some aspects of how well they perform. These sections
will present nothing new to the experienced wavelet user, but will explain our notational



conventions and recapitulates common theorems ([12], [24], [13], [25], et al.) for wavelet
novices. In Section 4, we describe how nonuniform bases can be conceptualized in the
framework of interpolet expansions and then use our results to develop algorithms for the
transforms. Section 5 details the algorithm for V? and other operators. Section 6 gives
some practical details for the reader interested in implementing these algorithms. Finally,
Section 7 compares, in three dimensions, timings of these implementations with the timings
of naive algorithms. This final section also explores the convergence of a preconditioned con-
jugate gradients algorithm in the solution of Poisson’s equation for the full three dimensional
electrostatic potential arising from the nuclei in the nitrogen molecule.

2 Introduction to Interpolets

There is a unique set of interpolets on R having symmetry and minimal support for a
given polynomial order m = 2/ — 1 (the Deslauriers-Dubuc functions [i14]). These are the
functions with which this article is primarily concerned (our results carry over to more general
interpolets, and no use will actually be made of minimal support or symmetry).

To determine the ¢,’s, one sets ¢z; = d,,0 and ¢, = ¢_,. One may solve the Vandermonde
system,

1 1 Ce 1 ] %
13 (201 cs 0
13t . (2—1) S

1 3%=2 ... (20 —1)¥? Col1-1 0

to obtain the remaining ¢,’s. These coefficients satisfy the conditions for polynomial order
20— 1.

The scaling coefficients for m = 1 are
C_1 = C = 0.5,00 == 1,

and for m = 3 (the example used for Figure 1.) they are
1

C_3 =C3 = ———

One may then take tensor products of ¢’s and ¢,’s to form interpolets in higher dimen-
sions.

2.1 Interpolet Multiresolution Analysis

We are concerned with recursive representations of functions from samples at integer points
on both uniform and refined grids. There are many definitions which make the exposition
more clear.

Definition 2.1 Fork >0, let Cp, =227, and let Dy, = Cy_1 —Cl. Fork <0, let Cp, = 27,
and Dy = .



We consider C}, to be the set of coarse lattice points on the lattice 281 Z" and Dy, the
detail lattice points, to be those points on 2¥~!Z" which are not coarse. Note: D} U C}, =
Cr_i,and 27" = CpL U DU Dy_y U---U Dy is a partition of Z".

Definition 2.2 We let §(y) = min(k, m) where m is the largest integer such that 2™ divides
all of the components of y. We call 0x(y) the level of the point y.

Given the partition 27" = C, U D, U Dp_q U ---U Dy, we have
o k, Yy € Ch
ek(y)_{ [—1, ye D,

Definition 2.3 Let S C Z". Let ¢(x) be an interpolet. Let T(¢,S) be the space of functions

=y )

given by formal sums of the form 3, csa(y)d( 7o)
2kl

Where ¢ and S are understood, we may simply write Z.

Definition 2.4 Let S C Z". Let Fi(S) be the vector space of R- or C- valued functions on
Z" which are zero at any point not in S (i.e. with support contained in S ).

Where S is understood, we may simply write Fj. Note: Fi(S) = Fir(S N Cy) & Fr(SN
Dk) D fk(S N Dk—l) S D fk(S N Dl).

The meaning of the k subscript will be established by the next definition, which will link
vectors in Fj with functions in Zy. It is for this reason that while the F’s are technically
identical, they are semantically different. In practice, the F’s are the actual data structures
being stored on the computer.

Definition 2.5 Let ¢(x) be an interpolet. Let Lf : S = Ti(, S) be defined by

=Y
2‘%(1/) '

Lfy =
This definition extends linearly to the mapping Lf : Fr(S) = Zi(9, S) defined by:

v =" v(y)(cly)

yeS

i.e.



The set S can be thought of as the set of points in a refined grid. The Lf identifications
allow one to think of S as a set of functions, {(Lfy) ly € S}, which form a basis of Z(¢, S). We
will sometimes refer to S as a refined grid and sometimes as a basis with this identification
understood.

One should think of the F}. as spaces of coefficients for function expansions in the corre-
sponding Tj spaces, in the basis S. The Lf simply associate a set of coefficients in Fj, with
a function in Zp. When ¢ is understood, we may write just ¢x.

We are now in a position to state the basic theorems of interpolet expansions on uniform
grids.

Theorem 2.6 Let ¢(x) be an interpolet on R*. Then each mapping v : Fr(S) = Zr(o, S5)
(k=1,2,...) is an isomorphism.

Proof: Since the map ¢ is surjective, it is only necessary to show that ¢4 is injective.
By the definition, (zv = 0 if and only if there exist v € Fy such that

0= > wyol(x—y)/2")+ > vlye(le—y)/2 )+ 4+ > v(y)é(r—y).

yeSNCY yESNDy yeESNDy

Let 2 € SNCy. By (INT1), we have ¢((z —y)/2%) = O(zmy)j2t,0 = Oy, for y € SN, and
also ¢((z—y)/2") =0, for y € SN D;. So, (txv)(2) = v(z),z € SNCy, therefore v(z) = 0, z €
S N Ck. This being so, one then has (¢;v)(2) = v(z),z2 € SN Dg, so v(z) =0,z € SN Dy.
Once again, (v)(z) = v(z),z € SN Di_1, thus we must have v(z) = 0,z € SN Dy_;.
Continuing in this manner, we deduce that v(y) =0,y € S, thus v = 0.

O

Corollary 2.7
Zr(S)=Z(SNCL) B Ze(SN D) & - B Zr(S N Dy)
Since the sum is direct, the expansion is unique.
This corollary is a consequence of observations in the above proof.
Theorem 2.8 Let ¢(x) be an interpolet on R". Then
Vi, Zi(p, Z") = Ly-1(, Z7).

Consequently,
Vi, ko, Iy (0, Z27) = Ty, (P, Z7).

Proof: To prove that T, C Zy_1 we note that Zy C Zy_; UZ,(Ck). Thus we just need
to show Zj(Ck) C Tj—1.
Translating by z € (. and inserting powers of 2 where appropriate, one can rewrite

(INT2) for ¢ as
$(x —2)/2") = o((x = 2)/2"" )+ D eymrd((x — 2z —y)/2"7).

yeDy,



The terms in the right hand side are elements Zy_;. Thus Z; C Zy_4.
To prove Z_1 C Iy note that any element of Zp_; can be expressed as:

fz) = ; a(y)d((z —y)/27") + ; a(y)d((x —y)/2"72) + -+ Zl; a(y)(z —y)

All the terms in this expansion but the first are elements of Z;. Since Cy_y = Cp U Dy we
may split the first sum up as,

> alyel(z—y)/27) = 3 aly)e((x —y)/2"7) + 3 aly)é((z —y) /2"

y€Ck_1 yeCy yeDy,

The second term is also an element of 7.

Rewriting (INT2) one has (y € Cy):
Al — 1)/2) = Bl = 9)/2) = X emandl(e — = — )2,

ZEDk

y € Cg,z € Dy, s0o y+ z € Dy, thus the right hand side is made up of elements of Z. Thus,
Tr1 CIy.
O

2.2 Interpolet Transforms

Corollary 2.9 Interpolet Decomposition
The set of isomorphisms ), induces a set of isomorphisms

‘]k17k2 :fkl — fkw
-1
‘]k17k2 = lp, Olk-

We refer to these isomorphisms as interpolet transforms. It is our convention to let J, = Jo
and J_j = Jyo. The reader will note that the J; are linear transformations on the coefficient
spaces, and are thus the primary object of computation.

We now turn to a study of the J’s. It is clear from the definition that for k; < ko,
Ty ke = Jhy—1h © Jky—2ky—1 © =+ © Jpy k41, and similarly for ky > k. Thus, we need only
study the Ji p41 and Jyp4q ; mappings.

Theorem 2.10 Computation Theorem
Letv € Fk(Zn)

v(y), y & Drpa
J _
( k,k+1v)(y) { /(y)7 y € Dyt
where v'(y) = v(y) — > eCha c(y_z)/ka(z).

(Jep1,60)(y) = { U/(yy);7 z i gZJ:

where U/(y) = U(y) + ZzeOkH c(y—l—z)/QkU(Z)‘



Proof: For v € F) we have

wv =3 v(W)d((x—y)/2) + 3 vz —y)/27 )+ + 3 v(y)o(z —y)

yeCy yeDy, yeD,

expanding the first term,

wo= > vz —y)/2)+ 3 vz —y)/2" )+ D v(y)o((x —y)/27") + -

YyECL 41 YyED k41 yEDy

using (INT2), ¢((x — 2)/2%) = &((z — 2)/2FY) = Syep,,, (s 2r(z —y)/27),

wo= Y v(y)o((x—y)/2")+ D0 V(y)e((x—y)/2") + 3 vly)dl((x —y) /27 )+

YyECL 41 YyED k41 yEDy

v D

where 0(y) = 0(y) — Tecc s Clgmnyartl(2).

The proof for Ji4q  is similar.

O

Similar to what one might get with wavelets, we see that we can compute the coefficients
of interpolet expansions on uniform lattices by a pyramid algorithm. Computationally,
this procedure can be carried out by first computing the D; coeflicients with Jg 1, then by
computing the Dy coefficients from the C; data with J; 5, and so on. In this sense, it is no
different from standard multiresolution decompositions.

A feature of the interpolet decomposition is that the transformations all have a particular
lower triangular form. That is, if we write v € Fj as a vector with its Cx4q components first,
its Dyyq components second, and the rest of its components third, then the transformation
takes the form,

I 00 0 0 VO
M I 0 0 0 VDyts
Jk7k+1v = 0 0 I 0 0 UDy
0 0 0 I 0
0o 0 0 0 I
The inverse, Jy41 k., 1s obtained by replacing M with —M.

3 Accuracy of Interpolet Approximation

Given a function f(x) on R", one can form an interpolet approximation to f by the formula:

)~ Y fy)é(z —y) = of,

y€Co

where f on the right hand side is thought of as a function restricted to Cy = Z™ (a more cum-
bersome but more precise notation is to{f(y)}|yezn). This approximation has the property

that («of)(2) = f(2),z € Z™.



Starting from the expansion wof € Zo(¢, Z") one can construct equivalent expansions,
te(Jif) € (¢, Z™). The coefficients Ji f are referred to as the interpolet transform of the
function f.

If f(x) is sufficiently smooth, then we can expect that the coefficients (Ji. f)(y),y € Dy, <
k, will be small. This statement is captured rigorously by the following lemma and theorem.

Lemma 3.1 Let ¢ be an interpolet with polynomial order of m then

p(z) € In(¢.Cn)
for any integer, N, and any polynomial, p, of degree m.

Proof: p(2Vz) is a polynomial of degree m. By (INT3), p(z) can thus be represented by a
formal sum in Zo(¢, Cy), namely

p(2Na) = 3 p(2Yy)o(x — y).

yeLm

By changing variables, we may rewrite this as

p(z) = Y p(2Vy)e(x/2V —y)

yeLm

= 3 p2¥y)al(e —2Vy)/2")
= 3 sz =y)/2")
= X pw)dlle —y)/2P0),

a

Theorem 3.2 (Residual Theorem)
Let f(x) be a polynomial function of degree m. Let ¢ be an interpolet with a polynomial

order of m. Then
C
B ={ 3 ey

Proof:

By (INT3), f(x) € Zo(¢,Co). By the lemma, we also have f(x) € Zy(¢,Cy). Recalling
that Jif gives the unique expansion coefficients of f(x) in the decomposition of Zy(¢, Co)
given by Zy(&, Cr) & Li(p, Di) & - - - & Li(@, D1), we see that the Zy(¢, D;) coefficients must
vanish, while the Z;(¢, Cy) coefficients are given by the lemma, namely f(y) for y € C}.

O

The coefficients (J,f)(y),y € D;,l < k, are called residuals. The Residual Theorem
suggests that the magnitude of the residual coefficients (Ji.f) at a point y € D; are expected
to be proportional to the (m + 1)th derivative of f(x) at y. See Figure 2.
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4 Truncated Bases

Typically, one truncates an expansion by eliminating elements of a basis, setting their coef-
ficients to 0. One then said to be working in a truncated basis when one works within the
subspace formed by the remain basis elements. In the notation of this paper, this corresponds
to taking expansions in Zy(¢, S) with coefficients in Fy(.5).

One may also view a truncated basis as the set of expansions one gets when the coefficients
of some of the basis elements have been set to “don’t care” values. Mathematically, this is
accomplished by quotienting out the “don’t care” elements.

Definition 4.1 Let
I = Ti(, 2°) [ Ti(, 2" = 5)

and

Fi=Fu(ZM)|Fr(Z™ = S).

When the identification of F}(S) with F¥ can be made will be dealt with later in this paper.
For now, one may view these definitions as a trick to make the proofs less complicated and
for understanding exactly why and in what sense the algorithms are correct. Once again, we
think of F3 as a grid on which the elements outside of S have “don’t care” values, and F(S)
as a grid on which the elements outside of S vanish. The ¢; continue to be isomorphisms
(since (x(Fr(Z2" = S)) = Ir(o, 2™ — 5)).

However, it is not necessarily true that Igl = 1'52. When this condition fails, then it is
no longer possible to define Jy, 5, = L,;l O L.

To be sure, one could still define some sort of Ji, 5, by setting the elements in Z" — 5
to zero, then applying the full grid version of Jj, x,, and then considering only the elements
in S of the answer. This definition by itself has some drawbacks. Mathematically speaking,
this is the same as Ji, 4, = po L,;l o, or, where r : .7:51 — Fi,, is some lift to the full
grid, and p : Iy, — Ii is the standard projection operator onto the quotient. Generally, if
one follows this approach one will no longer have Ji, r, = Jiy—1.4, © Jhy—2,kp—1 © =+ © Jiy k141
because Z7 are not all equal. In terms of diagrams, where we once had

—1

Fo BT, =T, 2 Fy,

we now have
-1

fgl g Isl ; 152 Lg fg2
What one needs is a condition on S such that Zy (7" — 5) = I}, (Z" — S). If this were

true, then the definition of the operator as Ji, 4, = L,;l o1, would actually be independent
of the values of the elements of Z” — 5. In that case the quotient spaces are identical.

Definition 4.2 We say that the set S is a good basis when it satisfies the condition ¥Yky, ka, Ty, (7" —
S) =Ty, (2" = S), and thus I}, =T}, .

11



To get a handle on this definition, one sees that this is achieved when Z,(Z2" — 9) =
Ty41(Z" — S). For this to be so, whenever y € Z" — S| every z such that qb(:z;/QeN(Z) —z) is

in the two-scale expansion for qb(:z;/ZeN(y) — y), must also be a member of 7" — S.
This can be captured in the following table (in which we let 0;(y) = 0x(z) + 1).

in expansion? ‘ z€S zezZr=S5
yes ok ok
ye " -5 not ok ok

The good basis condition for fast synthesis and reconstruction has also been discovered by
Cohen and Danchin (see S-trees in a coming work[1(]) which appeared after the original
submission of our manuscript.

For some of the algorithms presented, we may employ additional conditions based on the
supports of the functions themselves (not just the support of their expansions).

Definition 4.3 We say that functions f and g touch whenever supp{f} N0 supp{g} has
NONZETo Measure.

For p > 0 we say that S has the p-level touching property when it satisfies the condition,
that fory € 7" — S, z € 7™, 0,(2) < 0x(y) — p, and txy touches txz implies z € 7" — S.

A less formal way of phrasing this definition for the case of 1-level touching is that if a
level [ point,y, is a member of Z” — S then any point, z, at level [ — 1 or lower for which ¢4y
touches ¢z must also be in Z” — 5. For 2-level touching, one only considers any points at
level [ — 2 or lower, and so on for p-level touching.

The allowed touching possibilities can be summarized the following table (in which we

let 0,(y) > 0k(z) + p).

touch? ‘ZES ze /" =5
yesS ok ok
y € Z"— 5 | not ok ok

One example of a 1-level touching good basis for one dimensional 3rd order interpolets
the ones being used as an example) is the set of interpolets centered at the points
g p p p

n—1
S=C,U (U{—?-2’,—5-2’,...,5-2’,7-2’})

(=0

The support of the interpolet on level 0 at y is [—3 4+ y, 3 + y], the union of all the supports
of the interpolets in S on level 0 is [—10, 10]. The support of an interpolet on level 1 at y is
[—6 4 y,6 + y], thus the only interpolets on level 1 which touch the interpolets on level 0 are
precisely those ones at points —14,...,14, which are precisely the ones included in 5. No
interpolet not included on level 1 touches an interpolet included on level 0 so the definition
is satisfied. The argument proceeds similarly on higher levels. In three dimensions, this
example corresponds to nested concentric cubes of size 15 --- 2! at each level [ < n.

12



An example of a 2-level touching good basis for 3rd order is the set of interpolets centered
at the points

n—1
S=C,U (U{—5-21,—3-21,...,3-21,5-21}) .
=0
Note (for n > 2) that this set is not 1-level touching since the level 1 interpolet centered at
y = 12 is not included, while an interpolet it touches, namely the level 0 interpolet centered
at y = 5, is included.
Also, the set of points

n—1
S=C,U (U{—3-2’,—1-2’,1-21,3-2’}).

(=0

forms a good basis, but is not 1-level touching or 2-level touching (it is 3-level touching,
though).

The above examples are meant to suggest that the good basis and the p-level touching
definitions can be thought of, informally, as conditions telling one how quickly one can change
from one resolution to another. Essentially, any nested set of refined regions can satisty these
conditions so long as the margins around the set of points at a given resolution are wide
enough.

JFrom a computational point of view, what these conditions do is ensure that data-paths
which carry coefficient information between different resolutions are not broken by zeroed
coefficients at intermediate levels.

It is clear from the preceding discussion, in a good basis, one has Ji x, = Ji,—1,k, ©
Jky—2.kp—1 © *++ © Ji, k41 We may now generalize the computation theorem to a truncated
basis.

Theorem 4.4 Good Basis Computation Theorem
Let S be a good basis. v € Fr(9), y € S

and ¥ is any member of the equivalence class of v

~ v y)v ye S — Dk-l-l
J -
(Jek10)(y) { v'(y), y € Dyy1

where v'(y) = v(y) — ZzeSnOkH C(y_z)/QkU(Z).

yE S—Dk+1
yEDk+1

(Jea1,40)(y) = { Z((yy))

where v'(y) = v(y) + ZZ€SmOk+1 C(y+z)/2kU(Z).

Proof:
In a good basis, the computations of all Ji, , are independent of the representative.
Thus, this algorithm computed on © gives a member of the same class as would be computed

on v.
O
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Thus, the pyramid algorithm of the uniform basis, Z”, has a counterpart in a good basis
S, allowing the computation of the expansion coefficients in Fj(S5) from the values of the
function in Fo(S) (and also has the lower triangular structure).

In a good basis, one thus has the ability to perfectly reconstruct the multiscale coefficients
of a function for the basis functions associated with the points of the refined grid S by simply
applying the pyramid algorithm on zero-lifts at each stage of the algorithm. The above
theorem establishes this as true, even though we do not necessarily expect the data zeroed
during the lift to be small. (The function may have significant sample values throughout
the domain of the representation). Also, with exact recovery of sample values, it is easy to
perform local nonlinear point-wise operations of the form f(z) — G(f(z)) (e.g. /™), or
point-wise multiplication (i.e. f(x),g(x) — f(a)g(x)), despite the truncation.

The reader may note that this result is ”analysis-free” in that we have sparsified the com-
putation, not by proving that the coefficients vanish outside of the truncation for some class
of functions, but by showing the the coefficients we wish to compute have no dependency on
the coefficients we omitted. Computationally, this means the data-structure in the computer
requires no intermediate augmentations (contrast with [18]).

The advantages conferred by the additional the p-level properties are seen in the context
of operator evaluation, and will be the subject of the next two sections.

5 Multilevel Algorithms for V2 and Other Operators

Given v,w € Fy(Z"), we may compute the stiffness matrix of a model operator, V2,

<Lkv|V2|Lkw> = /(Lkv)(x)vz(%w)(x)d”x

by changing the expansions,

<L0J_kv|V2|L0J_kw> = Z (J_kv)(y)(J_kw)(z)/qb(x —y)Vi(z — 2)d"z.

Y,2E€ELT

This reduces the computation to the computation of the matrix elements (¢(x — (y — 2))|V?|d(2))
which can be done by solving the associated eigen-problem obtained by applying (INT2).
In particular, let L) = (¢(z — y)|V?[¢(x)), then

Ly= Y cc <¢(2:1; —2y—z1 + 22)|V2|¢(2x)>

21,220€2"

ng Z 227", ., L9

2y+21 —22
21,22€Z4™

which we solve by standard methods (found in [25], for example). In subsequent sections
of this article, we will also define L = (¢(x — y)|V?|p(2/2)), LIt = (¢p(z — y)|V?|d(x/4)),
L7 = (8((x - 9)/2IV16(2), and Lz~ = (6((z - y)/1)[V2}6(2), which can be computed
from L° by employing (INT2). Although it is true by Hermiticity that L, = L} and
L;= = L}, we will make no use of this fact.
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One can write a matrix expression ((;v|V?ipw) = v'JL, LJ_yw, where the L is the
Toeplitz matrix with coefficients Lg. In practice, one typically formulates the preceding as
a computation of u = J', DJ_jw for some w € Fj(Z"). Then (,xv|V?iw)= viu. u may be
thought of as an element of Fj(Z")*, the dual space of Fr(Z"). The task is then to compute
the coefficients u(y),y € Z" = C,® Dy - --@ Dy. Any algorithm for computing ' Ay can be
adapted to an algorithm for Ay, and for purposes of making proofs, it is somewhat easier to
keep thinking of the computation as (txv|V?|e w), which is the point of view we shall take.

However, computing (¢, 0|V?|egw)= 0'J' LJ_yw, by just applying the transforms, and
the Toeplitz matrix is problematic, since this process makes it necessary to either represent v
and w on a uniform grid, or to compute a matrix element between each pair of functions in the
truncated expansion which touch. In the first case, one ends up with an O(NN) computation
for (typically) a very large N. In the second case, one chooses between extremes which are
O(N) and quite complicated or simple and O(N?).

The following sections outline the design of multilevel algorithms for V? for both 1-level
and 2-level touching bases. Both algorithms are derived according to the following format:

break up the expansion of (¢;v|V?|exw) into a decomposition over elements at the same
level and adjacent levels.

rewrite the expansions in terms of the matrix elements between elements of those levels
and the transforms of higher/lower level elements.

implement the algorithm by computing those terms separately.

establish correctness in a p-level truncated basis.
Although only the 1-level and 2-level algorithms have been explored in any detail, this
same process will generally work to produce O(N) p-level algorithms for any p.

5.1 V?in 1-level decomposition
The 1-level decomposition of {(txv|V?|exw) is
+ 0 -
<Lkv|V2|Lkw> = <Lkv|V2|Lkw> + <Lkv|V2|Lkw> + <Lkv|V2|Lkw> )
where

<Lkv|V2|Lkw>0 = > <ka|V2|Lkz> v(y)w(z)

Orw)=0x()

<Lkv|V2|Lkw>+ = > <ka|V2|Lkz> v(y)w(z)
AONAC)

<Lkv|V2|Lkw>_ = > <ka|V2|Lkz> v(y)w(z).
Orw)>05(2)

That is, we express the product as contributions from levels to the same level, higher levels,
and lower levels. We will now investigate each of these terms individually. In the language
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of matrices, these respectively correspond to diagonal, above diagonal, and below diagonal
blocks of the V2 matrix.

- e e f
T Al I R R
R

5.1.1 Diagonal blocks: <|>0

For some fixed [,0 <[ < k a term of the form

S {ellx = y) 2V e((x — 2)/2)) v(y)w(z)

contributes to (|)°.

However, (6((x — y)/2)|V2]é((x — )/2)) = 207D (g(a — )| V2|p(x — 2)) = 20D L0,

Thus we have o
<Lkv|V2|Lkw> => 2l(n=2) LY u(y)w(z).
!

5.1.2 Super-diagonal blocks: (|)*
For some fixed [,0 <[ < k a term of the form
> (Al = )2V 6((x = 2)/2")) v(y)e(z)
0.(z)='>1=0 . (v)

contributes to (|)7.

Applying the inverse transform (Jg ;41 ) to the w coefficients in the sum allows us to write

this term as

> ($(x = y)/2HIV[((z = 2)/271)) v(y) (Jrapaw)(2),

Thus we have

(0[P a) " = 20D ST LE o) (i) (2).
I

5.1.3 Sub-diagonal blocks: (|)~

For some fixed [,0 <[ < k a term of the form

S (= p)/2)Vel(x — 2)/2)) v(y)w(z)
0x(z)=t<t'=0(y)

contributes to (|)”.
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This time applying the inverse transform (Jj 1) to the v coefficients in the sum allows
us to write this term as

> ($((x =) 2"V |6((x = 2)/2)) (Jkagrv) (w)w(2).
0. (x)=i1<i+1=0 ;. (v)

Thus we have

<Lkv|v2|Lkw>_ = Z (n—2) ZL (Jri110)(y)w(z).

l

5.1.4 Implementations

The above observations demonstrate the correctness of the following algorithm:
input: v,w € Fi(Z")
output: ans = (4yv|V3|yw) € R
Let wtmp = w, let vimp = v, let ans =0
for =0 to k
ons e ans £ 20N T g1 lel)
end for
for [ =k — 1 down-to 0
ns ans+ 20Ty g L el et
wtmp  Ji1,(wtmp)
end for
for [ =k — 1 down-to 0
ans «— ans + 21(n=2) Zel+1(y):l+170k(2):l L;_yvtmp(y)w(z)
vtmp < Jip1(vtmp)
end for
Note, we have made use of the fact that Jy; = Ji41;- -+ Jy k-1 so that at the beginning of
each iteration in the second (last) loop witmp = Jy 1w (vimp = Ji 1410).
We observe that this algorithm is O(/N) in time and space.
We may adapt this to an algorithm to compute u € Fr(Z")* such that u(v) = ((zv|V?|epw) .
input: w € Fi(2")
output: u such that u(v) = (tv|V?|epw)
Let wtmp = w, let u =0 € Fp(Z™)*, let utmp =0 € Fo(Z")*
for =0 to k
uly) = uly) + 207 Sy oy e L0(2)
end for
for [ =k — 1 down-to 0
u(y)  uly) + 202 Zek(y)zl,levelm(z):l-l—l Lt wtmp(z)
wtmp < Jipq,wtmp
end for
fori=0tok—1
utmp < Jf_l_uutmp

utmp(y) < utmp(y) + 2!°=2) 29“,1 1410, ()= Lo w(2)
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end for

u 4+ u—+utmp

The third loop is the result of transposing the linear operator Ji4q,; in the last loop in
the previous algorithm. We have also used the fact that J; = J;,_, --- Ji,;, to ensure that
at the beginning of each iteration in the third loop, utmp € F1(Z2")*.

It is easy to check that this is an O(N) algorithm in both time and space. It is very
important for atomic structures computation that this algorithm scales linearly with the
number of atoms. Without such a scaling, one can only compute electronic configurations
for small molecules.

The reader may note a similarity between this algorithm and other matrix-vector mul-
tiplies used to apply operators in a uniform wavelet basis. In fact, the 1-level algorithm
presented above is identical to the nonstandard multiply found in [4] and developed for or-
thonormal wavelet bases. The nonstandard multiply was introduced by Beylkin, Coifman,
and Rokhlin to sparsify integral operators whose kernels were smooth or vanishing off the
diagonal, while keeping a uniform basis.

However, in contrast to that program of sparsification, interpolets allow one to sparsify the
basis, and, with out introducing additional grid points, still be able to apply the nonstandard
multiply routines, with any local operator. With interpolets, we remove any elements from
the expansion that we believe will be insignificant, still having a good approximation to
our function at the points we retain. Beylkin et al. [4] express the matrix elements of the
operator itself in a nonstandard orthonormal basis and then remove those matrix elements
which are determined to be very small to produce a sparse matrix.

The use of interpolating scaling functions has achieved some degree of simplicity and con-
venience in carrying out fast point-wise operations. Although there is no associated difficulty
in electronic structure calculations[l], for other applications, the loss of orthogonality might
be too great an expense. In those cases, one might consider employing compactly supported
approximations to orthogonal interpolating functions found in [§]. It appears that with some
additional complexity one might be able to extend the present algorithms to other wavelet
bases. The additional complexity of other schemes and the need for fast point-wise opera-
tions in our applications are the chief reasons we do not consider doing this in the present
work. Finally, there is a large body of work the reader may wish to consult ([6], [17], [11],
[21)], and [22]) for adaptive refinement techniques when, in contrast to the case of electronic
structure calculations, the behavior of the needed refinement is not known a priori.

5.1.5 Correctness in a 1-level touching good basis

The above decomposition of the product and the associated algorithm is what we seek to
extend to a good truncated basis. In practice, one takes the zero-lift representatives of v
and w € F? and computes (1,0|V?|ix). By the computation theorem of good truncated
bases, the value of (Ji, 1,?)(y),y € F7 is independent of the representative (likewise for w),
however, we must also address the issue that (Jy, 4,0)(y) # 0,y € S (Le. Jy 10 # Jiy 4,0),
and thus y ¢ S may have a contribution to the decomposition above, requiring us to augment
S in order to get the right answer.

Theorem 5.1 If one replaces Z™ with S everywhere in the Multilevel algorithm for (1v|V?|ipw),
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then the algorithm computes

<Lkﬁ|v2|bk7jj> .

Proof: Asmentioned in the remarks, the multilevel algorithm requires Ji; = Ji41- -+ Ji 51,
which is true in a good bases.

The <|>0 computation proceeds identically for either Z" or 5, so the first loop will con-
tribute correctly the term (14| V2|ex)°.

To check the () contribution, one observes that the necessary term is

(| V) = ;21(”_2) > Loy (Jra1®) (y)i(2).

yEZ",ZEZ":&H_l (y):l—l—l,ek(z):l

Suppose that Jy ¢ S and z € S such that L}  # 0. This implies that supp{ti11y} N
supp{exz} has nonzero measure. Since supp{¢; 41y} C supp{ery} we conclude that supp{ezy}n
supp{exz} has nonzero measure. This cannot be so if S is 1-level touching, and since
w(z) =0,z ¢ S we may restrict the sums over y and z in the contribution,

9l(n—2) Z L7 (Jrpa0)(y)i(2).

yES,ZES:eH.l (y)=l+17(9k(2):l

The proof for (])™ is identical with v’s and w’s reversed.
O

Immediately we have the following:

Corollary 5.2 If one replaces Z™ with S everywhere in the Multilevel algorithm for u such
that u(v) = (4v|V3|ew), then the algorithm computes

u € (F) u(v) = <Lkﬁ|v2|%w>.

The computation of (¢,v|V?|ezw) serves as a template for another common computation
one may wish to perform, namely (iv|gw) = [(g0)(2)(gw)(x)d"x, i.e. the L*(R™) inner
product of ¢zv and ¢ w.

5.2 Computing Other Operators

To compute (140[ex10), one simply replaces L°, L*, and L~ with GY) = (¢(x — y)|é(z)), G
(d(z —y)|p(x/2)), and G, = (¢((z —y)/2)|¢(x)), and then replaces the factors of 24
with 2%, After that, the algorithms and theorems for V2 carry over directly.

The above procedure can be used for creating a multilevel algorithm for any operator,

O, which is

local :supp{Of} C supp{f}
translation invariant :Of(x + a) = (Of)(x + a)

+
Y
n—

L]
~—
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homogeneous :O f(sz) = s*(Of)(sx)
by forming the appropriate coefficients, (’);0"'"_}, and inserting appropriate factors of 21244,

However, locality is the only property which is really required for O(N) multilevel algo-
{07+7_}

rithms so long as one can compute Oy, """ efficiently.

As an example of a local, homogeneous, but not translationally invariant operator, we
shall discuss the coefficients for the multilevel algorithm for the #; operator in two dimen-
sions.

U

lmm
A = larm) 2 o) 2 o =2 a2

Eis = [ Ol(r = m)[2)6((2 = ma)/D)rs( (01 = mh)[2)0( (w2 = mb)/2)dad,
Fitp = [ l(ar—m)/2)6((

We first consider the coefficients 74 given by

2o —my) /221 d((x1 — m}) /2 )o((22 — miy) /21 )day day
@MW==/M@rwmﬂmwwm—mwwﬂwm%—mwfw@rw@mwﬁm}

Separating the x; and x5 integrations, we see from this that we may write :1;11{ S

DGO x o)

(m1— ) /21N Lz o where

X0 = [ (e = m)[20)ag((@ - n)/20)da

and (' is defined above. The problem of computing the #; coefficients has been reduced to
computing the X coefficients and then doing a multiply with the already known G' coeffi-
cients.

In addition, one has

[ Sl = m) 2 )((e = n) 2o = [ S+ 0= m) 200 b /200 ) dat

[ 6l +n—m) 2 )ao(a /2 da
and thus

[ #l(e = m) /2 0)ao((w = n) 2 e = n2' G 4 2250,
where
s = [o v)da
sfo= [ e —ypo :1;/2)
Sy = /¢ (x — y)/2)ad(x)dz

Thus we see that for the #; operator,

Frf = 2G0T 2 GO 27 ST,

1 mmn

giving an efficient means to compute the multilevel coefficient for this operator.
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5.3 V? in 2-level decomposition

The previous algorithm for 1-level touching good bases can be expanded to 2-level touching
good bases. One may wish to do this because one finds that the 1-level touching property
is too stringent and requires one to augment one’s basis set far too much to be practical
computationally.

Much of the reasoning for the 2-level case can be found in the details of the 1-level case,
so the exposition here will be more compact. The resulting algorithm will be correct for
2-level touching good bases.

The 2-level decomposition of (0| V?|ipw) is

(ev| V2] ) = (00| V2w 4 (e V2] pw0) T + (00| V2w

(x| V2| epw) T (0| V2 pw) ™

where

(o) = 32 )
(wol Vo) = 52 | )
(ol Vi9mw) = X (VP uz) vly)w(z)
(ol haw) " = B | )
(ol Vi) = 32 )

The key idea is to evaluate the diagonal and first off diagonal blocks of the V2 matrix and
then to compute the other blocks above and below the tridiagonal through the transforms.

5.3.1 (), ()7, (D7, ()™, and ()"

The definitions for the contributions in the decomposition proceed just as they did for the
1-level case.

0 —
<Lkv|V2|Lkw> = ZI:ZM 2)0 Zg: L, v(y)w(z).
k(2)=U5(y)=1
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<Lkv|V2|Lkw>+ = 221(”_2) > LI o(y)w(z).
! 0(2)-1=0,.(y)=l

(olViuw) =320 3T L u(y)w(z).
! 01 (2)=0.(v)-1=1

++
(olVPluw) ™ = 3221070 3T L () () (2)-

<Lkv|V2|Lkw>__ = 221(”_2) Z L7, (Jrig2v) (y)w(2).

5.3.2 Implementations

input: v,w € Fi(Z")
output: ans = (4yv|V3|yw) € R

Let wtmp = w, let vimp = v, let ans =0

for { =0 to k
s ans + 2075y, g 2 elel)

end for

for{=0tok—1
ans ans £ 20N Ty g o)l

end for

for{=0tok—1
ans - ans + 20D Ty gy L))

end for

for { = kK — 2 down-to 0
ans - ans 420Dy o T (yetmp()
wtmp < Jipq,wtmp

end for

for { = kK — 2 down-to 0
ans «— ans + 21n=2) 291+2(y):l+2,(9k(z):l L;:yvtmp(y)w(z)
vtmp  Jig1 vtmp

end for

We adapt this algorithm to compute u € Fr(Z™)* such that u(v) = (4v|V?|pw) .
input: w € Fi(2")
output: u such that u(v) = (tv|V?|epw)
Let wtmp = w, let u =0 € Fp(Z™)*, let utmp =0 € Fo(Z")*
for [ =0 to k
uly) = uly) +207 2, ()20, 9= Loy (2)
end for

forl=0tok—1
uly) < uly) + 20 g, b, e Lyw(z)
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end for
for[=0tok—1
u(y) = u(y) + 21(n=2) Zek(y):l+1,0k(2):l LZ_—yw(Z)
end for
for [ = k — 2 down-to 0
u(y) — u(y) 4 9l(n—2) Zek(y):l,(91+2(z):l+2 Lj_"'ywtmp(z)
wtmp < Jipq,wtmp
end for
for (=0 tok—2
utmp  Ji, jutmp
Utmp(y) — Utmp(y) + 21(n_2) 201+2(1/)=l+2,(9k(2)=l LZ_—_Z/w(Z)
end for
u 4+ u—+utmp

6 Efficient Implementation

We have produced a very successful 3D implementation of all of the above algorithms for the
interpolet used as this paper’s example (m = 3). Implementation details are given in this
section. The ideas used to make this implementation efficient for all of the above algorithms.

The purpose of this section is to give additional information to readers who wish to
implement these algorithms themselves.

6.1 Data Structures

The interpolet data and function samples are kept in a sequence of blocks at various levels.
Each block at level £ contains the points of a rectangular subset of Cj_;. Since Dy =
C-1 — C}, we use the collection of blocks at level & < p (p being the top level) to represent a
rectangular subset Oy, ignoring the ' points of each of these blocks. In our implementation,
these extra (' points hold the value 0 in between operations and take on useful intermediate
values during operations. Since we are working in 3 dimensions, this multiplies the storage
required by a factor of about %, which we found an acceptable cost for its advantages.

The coefficients for the transforms and operators are kept in various 3D arrays. Al-
though it is possible to build the coefficients upon demand from a set of 1D arrays of
coefficients, we have found that the arithmetic cost of doing this is much greater than the
cost of storing them (about 10 flops are required for each V?* coefficient, while the 3D ar-
rays are still small enough to be stored in cache). We have (in Fortran notation) the filters
¢s(0:3,0:3,0:3), SAMELEVEL(0:5,0:5,0:5), ONELEVEL(0:8,0:8,0:8), and (for 2-level algo-
rithms) TWOLEVEL(0:14,0:14,0:14) (note: we have made use of the fact that our operators
are symmetric to cut the size of these arrays by a factor of é and use ONELEVEL and
TWOLEVEL for both upward and downward inter-level communication).
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6.2 Implementation Overview

The blocks described in the previous section are used as the fundamental objects for manip-
ulation. The computation proceeds by employing block-to-block subroutines for the various
operations, having every block at a level send data to every block at the same level, one level
up or down, or (for 2-level algorithms) two levels up or down.

The number of blocks at each level is not very large, and if a subroutine determines
that the intersection of two blocks is empty (which it does by examining the bounding
rectangles), then it returns immediately. Thus, while this algorithm is to be O(B?) where B
is the number of blocks, it remains O(N) where N is the number of actual points, because
B is much smaller than N.

6.3 Dblock-to-block Subroutines

The block-to-block subroutines are all designed to take two blocks (source and destination)
and a set of filter coefficients and place the result of convolving the filter with the source
block in the overlapping points of the destination block. There is a block-to-block subroutine
for the interpolet transform, its transpose, its inverse, and its inverse transpose, as well as
operator application routines for the same-level operator, up-one-level operator, down-one-
level operator, up-two-level operator, and the down-two-level operator.

All of these routines precompute the bounding box for the points in the destination
block which are in the range of influence of the source block and, for each point in this
sub-block, the bounding box for the points in the source block in the domain of influence
of the destination point. The result of this precomputation is that the only data values of
the source (destination) which are accessed are the ones which are read (modified). This
decreases the number of data accesses in our test problems by a factor of 7.

Additionally, blocking the computation generally increases the locality of access for the
data. More data requests hit the cache than would occur in a more arbitrarily arranged
construction.

7 Results and Conclusions

With interpolets, it is possible to carry out O(N) computations in truncated bases, where
N is the number of elements retained in the truncation, without having to augment the
grid of points associated with the functions maintained in the basis. Along with allowing
one to compute common linear physical operations, interpolet algorithms also allow one to
transfer between function values and multiscale expansion coefficients on grids of variable
resolution recovering the same results as one would obtain working with data on a full grid
of arbitrary resolution but without introducing additional grid points into the calculation.
This allows local nonlinear couplings to be computed quickly without the introduction of
additional sample points and without the introduction of additional approximations which
must be controlled.

These algorithms have been implemented in Fortran90 and have subsequently been
adopted for use in electronic structure computations as described in the introduction. Prior
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to this, we had been using very simple, naive O( N?) algorithms which implement each trans-
form and operator as multiplication by the multiscale representation of the corresponding
matrix. These multiplies check all points for being within interaction range and then con-
struct the appropriate matrix element as needed. This is required in the naibe approach
because the variety of inter-scale matrix elements is too wide to store in table of reasonable
size. This algorithm ultimately scales quadratically with the number of refinement levels for
our application. This is because, as described in the introduction, basis functions are kept
in the basis whenever they contain an atomic nucleus within their support. All functions
in this subset of significant size of the basis functions associated with each atomic center
therefore touch one another, and the multiscale matrices contain dense blocks connecting
all of these elements of a given center with one another. Because the number of functions
associated with a given center grows linearly with the number of refinement scales k, the
number of operations required in the naive approach of multiplying directly by these dense
matrices scales quadratically with the number of functions in the basis. For reference, a typ-
ical number of refinement levels in electronic structure calculations of the lighter elements
would be k =5, as employed in the carbon atom [2] and the nitrogen molecule [i].

A comparison with the previous implementation in Fortran90 on the same processor
(Superscalar SPARC Version 9, UltraSPARC) demonstrates the speed improvements and
scaling which can be achieved with the new approach. The “time” axis is the CPU time
taken by one application of the V? operator. The “k” axis represents the number of levels
of refinement made in the basis and is proportional to the number of points in 5.

Figure 9 compares the runtimes of V? in three dimensions on a 1-level touching good
basis with 3rd order interpolets consisting of concentric cubes of size 15° centered about one
atomic nucleus, as would be appropriate for the calculation of the electronic structure of a
single atom. Although there is initially a significant O(N) contribution, as a function of the
number of refinement levels k, the times for the naive approach show the constant increments
in slope characteristic of a quadratic function. The new approach compares very favorably
and is about thirty times faster for typical values of k. (Note the difference in vertical scale
between the two figures.)

Although the comparison in Figure 9 is quite favorable for the new algorithm, one must
bear in mind that given the typical decay in the interpolet expansion coefficients about an
atom[Z], [il], the functions which are appropriate to maintain in the expansions tend to have
the 2-level touching property, not the 1-level touching property. Figure 10 compares the
runtimes of V? in three dimensions on a 2-level touching good basis of concentric cubes of
size 9%, where the speed up just as dramatic as before, now by approximately a factor of 40.

Figure 11 compares the runtimes of V? in three dimensions on a 2-level touching good
basis of two refinement centers, with refinements now consisting of cubes of size 9° (similar
to figure 5). This situation arises in the the calculation of the electronic ground state of the
nitrogen molecule, Ny. Note that with the introduction now of two atomic centers the times
are again consistent with the scalings described above: The runs times only double in the
multilevel algorithm but quadruple in the naive algorithm.

Having considered the efficiency of the algorithms, we next turn to the use of these
algorithms in the solution of Poisson’s equation to determine electrostatic fields, which was
the rate limiting step in the calculations carried out in [2] and [1]. From those calculations,

1
=
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we were aware that the combination of conjugate gradients with the simple preconditioning
consisting of just applying the inverse of the diagonal elements of the Laplacian matrix leads
to an algorithm requiring very few iterations. It was the application of the operator within
each conjugate gradient iteration which limited the efficiency of those earlier calculations.

Figures 12-14 illustrate results for varying levels of refinement in the two different systems.
The first system consists of refinements centered about a single atomic center within a
cubic super cell of side 15 Bohr radii with periodic boundary conditions. (One Bohr radius
is approximately 0.529 Angstroms.) The second system contains two refinement centers
separated at a distance of 2 Bohr radii, approximately the inter-nuclear separation in the
nitrogen molecule. This latter system resides within a rectangular supercell of dimensions
(15 Bohr)?x (17 Bohr). In both cases, the spacing of the grid at the coarsest scale is 1 Bohr,
and the finest spacing is 27% Bohr. At k = 22, the greatest refinement considered in our
numerical experiments, the finest grid spacing is approximately 0.24 x 107%A. A full grid
at this resolution would contain 2.8 x 10%? points. Our truncated basis contains only about
60,000 functions in this case.

Figure 12 compares, as a function of the number of refinement levels k, the condition
number of the Laplacian represented in a truncated interpolet basis (the “stiffness matrix”
for the basis) and in an untruncated orthogonal basis at the corresponding resolution. The
figure also shows the effect on the condition number of the interpolet stiffness matrix of the
simple diagonal preconditioner described above. The condition numbers for the truncated
interpolet bases were determined numerically using the operators implemented as described
above. The curves indicate results for the system with a single atomic center, and the
symbols indicate results for the two atom system. Comparing the results for the one and
two atom cases suggests that apart from some transient behavior for small k, the condition
number is not sensitive to the number of atoms and depends primarily on the number of
refinement levels k.

Although finite basis representations of the Laplacian constructed from orthogonal func-
tions at a given resolution should all have similar condition numbers, the fact that the
interpolet basis is not orthogonal allows the condition numbers of multiscale interpolet oper-
ators to be quite different that their single-scale counter parts. Compared to an orthogonal
basis, the condition number in the interpolet representation is already over two orders of
magnitude superior at the typical & = 5 levels of refinement. This comparison continues
to improve with increasing scale. The orthogonal condition number scales inversely as the
square of the spacing on the grid of maximum resolution whereas the interpolet condition
number scales inversely with approximately the 5/4 power of the resolution, as determined
from the slope in the figure. The interpolet basis itself therefore provides an intrinsic form of
preconditioning. Figure 12 shows that our simple explicit, diagonal preconditioner improves
the scaling of the condition number, which now scales merely as the inverse of the resolution.
(Note the lower slope of the lower curve.) At k =5 levels of refinement the improvement is
only a factor of three but becomes more significant as the number of refinements increases.
We extrapolate, based upon the observed scaling behavior, that the improvement is by a fac-
tor of sixty at k& = 22 levels of refinement, the greatest refinement considered in the examples
below.

Figure 13 shows the convergence of the preconditioned conjugate gradient algorithm
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in the solution of Poisson’s equation. As a simple example, we solve for the electrostatic
potential which arises from the two nuclei in a nitrogen molecule. In this calculation we use
k = 8 levels of refinement, a somewhat higher level of resolution than would be employed in
calculations of the Ny molecule. For this calculation, the charge density of each nucleus is
modeled as a three dimensional Gaussian of root mean square width ¢ along each direction
equal to the spacing on the finest scale. After an initial phase of about twenty iterations, the
convergence becomes nearly perfectly exponential. This procedure reduces the magnitude of
the residual vector by ten orders of magnitude in one hundred iterations. This is very good
performance for a system consisting of 14,000 degrees of freedom with a Laplacian operator
with a nominal single-scale condition number of about 65,000 at this level of resolution.
The slope of this exponential portion of the convergence curve corresponds to a reduction
in error at each iteration by 25%. One would obtain the same error reduction in a simple
weighted iterative Jacobi algorithm (with the inverse of the maximum eigenvalue as the
weight) applied to an operator with condition number ¢ ~ 4. The quantity ¢, the inverse
of the fractional improvement in the magnitude of the residual, we define as the effective
condition number for the algorithm.

Figure 14 shows this effective condition number ¢ for the conjugate gradient algorithm
with simple diagonal preconditioning as a function of the number of refinement levels & for
the solution of Poisson’s equation for the nuclei in the nitrogen molecule. In all cases the
extent of the nuclei o is again set to the spacing of the finest grid. We note that after
about six refinements, the effective condition number is essentially constant. The example
from Figure 13 is therefore representative of the typical rate of convergence attained. These
results indicate that, regardless of the amount of refinement, a constant number of iterations
will suffice to produce a result of a given accuracy, even as the nominal condition number
for an orthogonal stiffness at the corresponding resolution approaches 1.8 x 10'% at k = 22.
Because the computational work involved in each iteration is linear in the number of points
in the basis, this approach appears to produce the solution to Poisson’s equation in O(N)
time for these multiresolution bases.
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A Notation

Ch 2k . 77 for k> 0, Z" for k < 0.
Dy Cyq1 — C for k > 0, for k < 0.
0 min(k,m) where m is the largest integer such that 27 divides all the components of y.

Fr(S) the space of functions over S C Z".
Zi(¢,S) the space of linear combinations of ¢( g_y ) fory e S CZn.
2

k()
Lf the mapping from S — Zy(¢, S) which takes y — ¢( 22;5;) ), and linearly extended to a map fr.
Va Fr(Z™)|Fr(Z" = S).
Ii(¢)  Ti(¢, 2")|Tu(é, 2" = 5).
v the zero-lift representative of v € F3, i.e. & € Fy, such that o(y) = v(y),y € S and d(y) = 0,1
V= the dual space of the vector space V.
Ik ey the map, Fy, — Fk,, given by Ji, 1, = L,;l O Lk, -
Ji short for Jo .
J_p short for Jj .

(flOlg) the matrix element [ f(x)Og(x)d" .
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Figure 1: (a) shows ¢(x/2) = I—é (x —3)+ %qb(:z; — 1)+ o(x)+ %qb(:z; +1)+ I—é (x +3).
(b) shows the functions THo(x — 3), £o(x — 1), ¢(x), =z + 1), THd(x + 3).

Figure 2: (a) the smooth function f(x) = (%+3)3€_(%)4. (b) the approximation to f(x) in
Zo(Z). (c¢) component of the approximation in Z;(C4). (d) component of the approximation
in Zy(Dy).

Figure 3: Approximation of the function f(z) = eIl with interpolets centered at the
tick marks: (a) a graph of e~1#l. (b) the cardinal approximation constructed from interpolets
centered at the knots of a uniform grid. (c¢) and (d) cardinal approximations from local
refinements of the uniform grid. The additional levels of refinement near the singularity
increase the accuracy.

Figure 4: (left) a graph of the £* relative error for k levels of local dyadic refinement.
(right) a graph of the £ relative error for k levels of local dyadic refinement.

Figure 5: An example of a truncation one might wish to use for a diatomic molecule (two
atomic cores). In black are shown those points in S C Z" whose residual values might be
significant.

Figure 6: A visual summary of the 1-level touching condition. Solid plots represent
functions centered at points in S. Dotted plots represent functions centered at points in
7" — 5. Tick marks delimit the overlap of the two functions.

Figure 7: Our example of the 1-level touching good basis in one dimension. Note that
the two functions plotted do not touch.

Figure 8: A generic example of a truncation which meets our definitions of good and
1-level touching.

Figure 9: The previously used implementation is on the left, and the implementation
employing a 1-level touching algorithm is on the right. (Note the difference in scale on the
vertical axes.)

Figure 10: The previously used implementation is on the left, and the implementation
employing a 2-level touching algorithm is on the right. (Note the difference in scale on the
vertical axes.)

Figure 11: The previously used implementation is on the left, and the implementation
employing a multilevel algorithm is on the right. (Note the difference in scale on the vertical
axes. )

Figure 12: The condition number of the Laplacian operator represented in truncated
multiresolution interpolet basis as a function of the number of refinement levels & with
and without simple diagonal preconditioning and compared with the condition number in
an orthogonal basis with the same resolution. Lines indicate results for bases with a single
atomic center of refinement and points represent results for two atomic centers corresponding
to the nitrogen molecule.

Figure 13: Convergence of the solution to Poisson’s equation for the nuclear potential in
a nitrogen molecule in an interpolet basis with & = 8 levels of refinement about each nucleus.

Figure 14: Effective condition number of Poisson’s equation for the nuclear potential in
a nitrogen molecule with simple diagonal preconditioning as a function of k the number of
levels of refinement about each nucleus.
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