
A LINEAR-TIME ALGORITHM FOR EVALUATING
SERIES OF SCHUR FUNCTIONS

CY CHAN, VESSELIN DRENSKY, ALAN EDELMAN, AND PLAMEN KOEV

Abstract. We present a new algorithm for computing all Schur functions sλ(x1, x2, . . . , xn)
for all partitions λ of integers not exceeding N in timeO(n2KN), where KN ≡ #{λ| |λ| ≤ N}
is the number of those partitions.

In particular, this algorithm has optimal complexity for evaluating truncated series of
Schur functions such as the hypergeometric function of a matrix argument.

1. Introduction

We present a new highly efficient algorithm for computing the finite truncation (for k ≤ N)
of the hypergeometric function of a matrix argument X in the complex case:

(1) pFq(a1, . . . , ap; b1, . . . , bq; X) ≡
N∑

k=0

∑
κ`k

1

Hκ

· (a1)κ · · · (ap)κ

(b1)κ · · · (bq)κ

· sκ(x1, x2, . . . , xn),

where

(2) (a)κ ≡
∏

(i,j)∈κ

(a− i + j)

is the generalized Pochammer symbol, sκ is the Schur function [12], Hκ ≡
∏

(i,j)∈κ hκ(i, j) is

the product of all hook lengths hκ(i, j) ≡ κi + κ′
j − i− j + 1 of κ, and x1, x2, . . . , xn are the

eigenvalues of X.
The efficient evaluation of (1) is a central research problem in multivariate statistical

analysis [15] with a wealth of applications in wireless communications [1, 6, 7, 10, 13, 14, 16,
17, 21] as well as signal processing [20].

The challenge in evaluating (1) involves the evaluation of the Schur function sκ and has
proven extremely challenging primarily since, as a multivariate symmetric polynomial, it has
exponential number of terms—O

(
n|κ|) [4, 8, 11].

Currently, the best algorithm for evaluating (1) is mhg from [11] whose complexity is

O(nK2
N),

2000 Mathematics Subject Classification. Primary 05E05. Secondary 65F50; 65T50.
Key words and phrases. Schur functions, Fast Fourier Transforms.
The research of the second author was partially supported by Grant MI-1503/2005 of the Bulgarian

National Science Fund.
The research of the third and fourth authors was supported by NSF Grant DMS–0608306.

1

where KN ≡ #{κ| |κ| ≤ N} is the number of terms in (1).

An estimate of KN is Ramanujan’s asymptotic formula [9, p. 116] KN ∼ O
(
eπ
√

2N/3
)
,

which is subexponential in N .
In this paper, we present a new algorithm for computing (1) whose complexity is only

O(n2KN),

i.e., it takes only O(n2) per term instead of the O(nKN) cost per term of mhg.
To achieve that complexity, we follow the idea in [11]: The recursive formula [12]

(3) sλ(x1, x2, . . . , xn) =
∑

µ

sµ(x1, x2, . . . , xn−1)x
|λ|−|µ|
n

allows each Schur function in (1) to be computed at a cost not exceeding O(nKM). The
summation in (3) is over all partitions µ = (µ1, . . . , µn−1) such that λ/µ is a horizontal strip,
i.e.,

(4) λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ λn.

In this paper we improve on the result of [11] by observing that (3) represents a vector-
matrix multiplication

(5) s(n) = s(n−1) · Zn(xn)

where s(i) is an (appropriately indexed) row-vector of all Schur functions sκ(x1, x2, . . . , xi),

|κ| ≤ N and Zn(xn) ≡
(
εµ,λx

|λ|−|µ|
n

)
is a matrix with entries indexed with the pairs of

partitions (µ, λ), with εµ,λ = 1 if λ/µ is a horizontal strip and 0 otherwise.
Since the matrix Zn is dense, (5) costs O(K2

M), explaining the O(nK2
M) complexity of

mhg [11].
The key contribution of this paper is to recognize and exploit the structure of Zn to

perform the multiplication (5) in linear O(n2KM) time instead of quadratic O(nK2
M) time.

This work was inspired by the idea of Cookey and Tukey [3] (and later generalized [2,
5, 18, 19]) that a matrix-vector multiplication by the character table of the cyclic group

of size n (i.e., by the Vandermonde matrix V ≡
(
e(i−1)(j−1) 2π

√
−1

n

)
) can be performed in

O(nlog n) instead of O(n2) time by exploiting the structure of the cyclic group to decompose
V recursively into a product of simpler structured matrices.

2. Theoretical grounds

In this section we fix also the positive integer N . For a fixed k = 1, . . . , n, we extend the
set of all partitions λ = (λ1, . . . , λk) with |λ| ≤ N , and consider the set Pk of partitions λ
satisfying the conditions

(6) λ1 − λ2 ≤ N, λ2 − λ3 ≤ N, . . . , λk−1 − λk ≤ N, λk ≤ N.

Clearly, the number of the λs from the class Pk is (N + 1)k. We order λ ∈ Pk in the reverse
lexicographic order with respect to the k-tuple (λ1 − λ2, . . . , λk−1 − λk, λk) and assume that

2

λ < ν, λ, ν ∈ Pk, if and only if λk < νk or, when λk = νk, λl−1 − λl = νl−1 − νl for
l = p + 1, . . . , k and λp−1 − λp < νp−1 − νp for some p.

We build inductively the row vectors Fk(x1, . . . , xk), k = 1, . . . , n,

(7) Fk(x1, . . . , xk) = (fλ(x1, . . . , xk) | λ ∈ Pk),

where the λs are ordered with respect to the above order. We define

F1(x1) = (1, s(1)(x1), s(2)(x1), . . . , s(N)(x1)) = (1, x1, x
2
1, . . . , x

N
1),

and, for k > 1,

(8) Fk(x1, . . . , xk) = Fk−1(x1, . . . , xk−1)Yk(xk),

where

(9) Yk(xk) =
(
εµ,λx

|λ/µ|
k

)
, λ ∈ Pk, µ ∈ Pk−1,

and εµ,λ = 1 if λ/µ is a horizontal strip and εµ,λ = 0 otherwise. (We denote the matrix by
Yk, celebrating Young because (5) expresses the Young rule which is a partial case of the
Littlewood-Richardson rule for calculating the product of two Schur functions.)

Lemma 2.1. If λ1 ≤ N for λ ∈ Pk, then

(10) fλ(x1, . . . , xk) = sλ(x1, . . . , xk).

Proof. If we delete the columns and the rows of the matrix Yk(xk) from (9) which correspond,
respectively, to partitions λ and µ with |λ| ≥ N and |µ| ≥ N , we shall obtain the matrix
Zk(xk) from (5). Since F1(x1) = S1(x1), the proof is completed by easy induction on k. �

Remark 2.2. Once we have an algorithm for a fast multiplication by Yk we will use it to
multiply by only those elements of Fk−1 corresponding to partitions of size not exceeding
N , which by the preceding lemma are exactly the Schur functions we want. Therefore even
though the size of Yk is exponential ((N + 1)k × (N + 1)k−1) it will only cost O(n2KN) to
multiply by Yk.

In what follows we denote by Im the identity m×m matrix and by Eij the matrix units
with 1 at (i, j)-position and zeros at the other places. The size of Eij will be clear from the
context. If P, Q are two matrices, then we denote by P ⊗ Q their Kronecker product. By
definition, if P = (pij) is an l ×m matrix, then P ⊗ Q is an l ×m block matrix with the
block pijQ at (i, j)-position. In particular, Im ⊗Q is a diagonal block matrix with m copies
of Q on the diagonal.

We fix the (N + 1)× (N + 1) matrix

(11) A = E12 + E23 + · · ·+ EN,N+1 =

0 1 0 . . . 0
0 0 1 . . . 0
...

...
.

...
0 0 0 . . . 1
0 0 0 . . . 0

 ,

3

and define the matrices

B2 = AT =

0 0 . . . 0 0
1 0 . . . 0 0
...

.
...

...
0 0 . . . 0 0
0 0 . . . 1 0

 ,(12)

C2(x2) = IN+1 + x2A + · · ·+ xN
2 AN(13)

= (IN+1 − x2A)−1

=

1 x2 xN

2

0 1
. . . xN−1

2
...

.
...

0 0 . . . 1 x2

0 0 . . . 1

 ,

K2(x2) = IN+1 ⊗ C2(x2)(14)

=

 C2(x2) . . . 0
...

. . .
...

0 . . . C2(x2)

 .

Finally, we consider the (N + 1)× (N + 1)2 matrix

(15) Q2(x2) =
(
IN+1 |x2B2 | . . . |xN

2 BN
2

)
with entries indexed by pairs (µ, λ), where µ = (µ1) ∈ P1, λ = (λ1, λ2) ∈ P2.

Lemma 2.3. The following equation holds

(16) Y2(x2) = Q2(x2)K2(x2).

Proof. The matrix Y2(x2) consists of N + 1 blocks of size (n + 1)× (N + 1). The entry (p, q)
of the rth block, p, q, r = 0, 1, . . . , N , is indexed with the pair of partitions (µ, λ), where
µ = (p), λ = (q + r, r) and is equal to xq+2r−p

2 if r ≤ p ≤ q + r and to 0 otherwise. On the
other hand, the corresponding entry of the matrix Q2(x2)K2(x2) is equal to the (p, q)-entry
of the matrix xr

2B
r
2C2(x2). The equations (11), (12) and (13) give that

Br
2 = E1+r,1 + E2+r,2 + · · ·+ EN+1,N+1−r,

(Br
2C2(x2))pq = 0 if p < r and (Br

2C2(x2))pq is equal to the (p − r, q)-entry (C2(x2))p−r,q of

C2(x2). Hence (Br
2C2(x2))pq = x

q−(p−r)
2 if q ≥ p − r and (Br

2C2(x2))pq = 0 if q < p − r. In
this way, all entries of Y2(x2) and Q2(x2)K2(x2) coincide and this completes the proof. �

4

Now, for n ≥ 3 we define inductively the matrices

Un(xn) = I(N+1)n−1 + xn(A⊗Bn−1) + · · ·+ xN
n (AN ⊗BN

n−1)(17)

=
(
I(N+1)n−1 − xn(A⊗Bn−1)

)−1
,

Vn(xn) = Kn−1(xn) = IN+1 ⊗ Cn−1(xn),(18)

Cn(xn) = Un(xn)Vn(xn),(19)

Kn(xn) = IN+1 ⊗ Cn(xn),(20)

Bn = Bn−1 ⊗ IN+1 = B2 ⊗ I(N+1)n−2 ,(21)

Qn(xn) =
(
I(N+1)n−1 |xnBn | . . . |xN

n BN
n

)
.(22)

The following theorem generalizes Lemma 2.3 for any n ≥ 2.

Theorem 2.4. The following equation holds for any n ≥ 2

(23) Yn(xn) = Qn(xn)Kn(xn).

Proof. We mimic the proof of Lemma 2.3.
Consider the partitions

λ = (a1 + · · ·+ an, a2 + · · ·+ an, . . . , an);

µ = (b1 + · · ·+ bn−1, b2 + · · ·+ bn−1, . . . , bn−1).

Then the entry in Yn corresponding to (µ, λ) should equal

xa1+2a2+···+nan−b1−2b2−···−(n−1)bn−1
n

if λ/µ is a horizontal strip, i.e., if

a1 + · · ·+ an ≥ b1 + · · ·+ bn−1 ≥ a2 + · · ·+ an ≥ · · · ≥ an−1 + an ≥ bn−1 ≥ an,

and 0 otherwise.
Since Yn(xn) = Qn(xn)Kn(xn) =

(
I(N+1)n−1 | xnBnCn(xn) | · · · | xN

n BN
n Cn(xn)

)
, the (µ, λ)

entry of Yn(xn) is in the (1, an) block of Yn, i.e.,

xan
n Ban

n Cn(xn)

Call this matrix Tn. Since Bn = B2 ⊗ I(N+1)n−2 , we have Ban
n = Ban

2 ⊗ I(N+1)n−2 and

Tn = xan
n Ban

n Un(xn)Vn(xn)

= xan
n Ban

n Un(xn)(IN+1 ⊗ Cn−1(xn))

= xan
n Ban

n

(
IN+1 ⊗ I(N+1)n−2 + xnA⊗ (Bn−1Cn−1(xn))

+x2
nA

2 ⊗ (B2
n−1Cn−1(xn)) + · · ·+ xN

NAN ⊗ (BN
n−1Cn−1(xn))

)
= xan

n

(
Ban

2 ⊗ I(N+1)n−2 + xnB
an
2 A⊗ (Bn−1Cn−1(xn))

+x2
nB

an
2 A2 ⊗ (B2

n−1Cn−1(xn)) + · · ·+ xN
n Ban

2 AN ⊗ (BN
n−1Cn−1(xn))

)
.

5

The (µ, λ) entry of Yn is thus in the (bn−1, an−1) block of Tn, which equals the (bn−1, an−1)
block of

xan
n

(
xan−1+an−bn−1

n Ban
2 Aan+an−1−bn−1 ⊗ (B

an−1+an−bn−1

n−1 Cn−1(xn))
)

,

i.e.,

xan−1+2an−bn−1
n B

an−1+an−bn−1

n−1 Cn−1(xn),

if an−1+an ≥ bn−1 ≥ an and 0 otherwise. The inductive step is thus clear and we continue by

induction to conclude that that the (µ, λ) entry of Yn equals x
a1+2a2+···+nan−b1−2b2−···−(n−1)bn−1
n

if λ/µ is a horizontal strip and 0 otherwise. �

3. The Algorithm

3.1. Computing only the desired Schur functions. As mentioned in Remark 2.2, a
straightforward implementation of Yn(xn) would yield Schur functions corresponding to the
entire set of partitions Pn. The number of such functions is (N + 1)n. However, we only
wish to compute the Schur functions over the partitions of size at most N , and Pn contains
many more partitions than those.

In the algorithm presented in this section, we devise a method that leverages the struc-
ture explored thus far, but only to compute the Schur functions on the desired partitions.
The way we do this is by keeping track of the indices of the desired partitions within the
vectors Fk(x1, . . . , xk) for k = 1, . . . , n, and only maintaining the Schur functions over those
partitions. Whenever we do a multiplication by a matrix, we do only the work necessary to
compute the next set of desired Schur functions.

The key reason we are able to do so efficiently is that the structured matrix Yk(xk) requires
us only to reference partitions that are smaller than the ones being processed during com-
putation. Thus, by maintaining all partitions up to a certain size, we guarantee the ability
to proceed in computing the solution.

3.2. Pseudocode notation. We will use psedo-code based on MATLAB notation. Data
arrays are indexed with parentheses “()” and are 1-indexed. Note that this is different from
the indexing of partitions in the set Pn, which will be 0-indexed, as this is more elegant
mathematically. Further, the use of the colon “:” in the notation array(index1:index2)

indicates taking all values in array between index1 and index2, inclusive.

3.3. Algorithm and analysis.

3.3.1. Helper functions. Let Φ(N, n) be the set of partitions of size at most N that use at
most n rows. Let φ(N, n) = |Φ(N, n)|. We define a function computeIndices(N,n) that
finds the (0-indexed) indices of Φ(N, n) within the list of partitions in Pn (sorted, as before,
in reverse lexicographic order). Note that all indices generated by computeIndices(N,n)
must be less than (N + 1)n since that is the number of partitions in Pn.

computeIndices(N, n)
6

partitions ← enumeratePartitions(N,n,0)
for m← 1 to length(partitions) do
indices(m) ← partitionToIndex(partitions(m),N)

end for
Return indices

enumeratePartitions(N,n,min)

for m← min to bN/nc do
if n = 1 then

Add (m) to partitions

else
subPartitions ← enumeratePartitions(N −m,n− 1,m)

Add m to the nth position of all partitions in subPartitions

Add subPartitions to partitions

end if
end for
Return partitions

partitionToIndex(partition,N,n)

index ← partition(n)
for m← (n− 1) down to 1 do

index ← index · (N + 1) +
(
partition(m) − partition(m + 1)

)
end for
Return index

The function enumeratePartitions enumerates all partitions in the set Φ(N, n) in reverse
lexicographic order. It works by stepping through possible values for the last element and
recursively enumerating the rest of the partition. To analyze its complexity, we simply
observe that a constant amount of work is done per recursion level per partition enumerated.
Thus, the running time of enumeratePartitions(N,n,0) is simply O(n · φ(N, n)).

The function partitionToIndex takes a partition and returns its index within the sorted
set Pn. It simply takes the difference between consecutive elements and interprets the result
as an (N +1)-ary number with the elements increasing in significance from first to last. This
function clearly takes O(n) time per partition, so its running time on φ(N, n) partitions is
O(n · φ(N, n)). Thus, computeIndices(N,n) also takes O(n · φ(N, n)) time. Note that the
output of computeIndices is sorted in ascending order.

3.3.2. Matrix functions. In this section we will describe five matrix functions mulY, mulQ,
mulK, mulC, and mulU, which simulate multiplication with the matrices Yn(xn), Qn(xn),
Kn(xn), Cn(xn), and Un(xn), respectively.

7

We first present an algorithm mulY that simulates multiplication by Yn(xn) = Qn(xn)Kn(xn),
but that only computes the Schur functions corresponding to partitions in Φ(N, n). Suppose
Yn(xn) contains a non-zero element at (i, j). Recall from (9) that this implies the ith parti-
tion in Pn−1, call it µ, is a subpartition of the jth partition in Pn, call it λ. Thus, |µ| ≤ |λ|,
and if λ is in Φ(N, n), then, µ must be in Φ(N, n− 1).

From the above argument, we see that the partitions in Φ(N, n) will only depend on par-
titions in Φ(N, n− 1), so we only need to simulate a very sparse part of the original Yn(xn)
matrix. mulY takes as input the Schur functions over Φ(N, n− 1), the indices of Φ(N, n− 1)
in Pn−1 (as computed by computeIndices(N,n − 1)), and xn. mulY outputs the Schur
functions over Φ(N, n) (as well as their indices).

mulY(input,inputIndices,x,n,N)

(output,outputIndices) ← mulQ(input,inputIndices,x,n,N)

output ← mulK(output,outputIndices,x,n,N)

Return (output,outputIndices)

mulQ(input,inputIndices,x,n,N)

blockLength ← (N + 1)n−1

offset ← (N + 1)n−2

compute the indices in the output
outputIndices ← computeIndices(N,n)
H ← constructHashTable(outputIndices)

for m← 1 to length(outputIndices) do
curIndex ← outputIndices(m)

if curIndex < blockLength then
this works because the input and output indices less than (N + 1)n−1 match
output(m) ← input(m)

else if curIndex (mod blockLength) < blockLength − offset then
output(m) ← x · output(H(curIndex − blockLength + offset))

end if
end for
Return (output,outputIndices)

mulY simply runs mulQ and mulK. From (22), we designed mulQ to process its input in blocks
of length (N +1)n−1. The first block is simply copied from the input. Note that since Φ(N, n)
is a superset of Φ(N, n − 1), and the partitions are ordered in reverse lexicographic order,
the first φ(N, n− 1) entries of outputIndices are exactly equal to inputIndices. For the
remaining blocks, we note that each block is a shifted (by offset) version of the previous
block multiplied by xn. Since we need to lookup values in output based on their indices,

8

we place all of the indices into a hash table so we can do constant time lookups within the
output array. The function constructHashTable(outputIndices) just constructs a hash
table that maps each index to its location within the array outputIndices.

For a partition λ = (λ1, λ2, . . . , λn) at curIndex in Φ(N, n), we know we will never
miss on a hash table lookup in the for loop because the partition located at curIndex

− blockLength + offset is just λ† = (λ1, λ2, . . . , λn−1, λn − 1). This fact can be derived
from the reverse lexicographic ordering. Since |λ†| < |λ|, we know that λ† is also in Φ(N, n).

As argued before, computeIndices(N, n) takes O(n·φ(N, n)) time. Constructing the hash
table costs linear time in the number of entries, or O(φ(N, n)). The for loop of mulQ takes
time O(φ(N, n)) since hash table look-ups take constant time, therefore the total time to
multiply by Qn(xn) using mulQ is O(n · φ(N, n)).

The following function simulates multiplying its input by Kn(xn) = IN+1⊗Cn(xn), which
simply multiplies each of its input’s (N +1) blocks of size (N +1)n−1 by Cn(xn). The values
in each block are found by scanning pointers across the indices array, which is sorted in
ascending order.

mulK(input,indices,x,n,N)

blockLength ← (N + 1)n−1

minPointer ← 1
maxPointer ← 1
for blockIndex ← 0 to b max(indices) / blockLength c do

figure out which indices are in the current block
curIndicesMin ← blockIndex · blockLength
curIndicesMax ← curIndicesMin + blockLength − 1

scan pointers forward
Scan minPointer to point at the smallest index in indices that is at least curIndicesMin
Scan maxPointer to point at the largest index in indices that is at most curIndicesMax

extract the data for the current block
curData ← input(minPointer:maxPointer)

extract the indices for the current block and subtract the block offset
curIndices ← indices(minPointer:maxPointer) − curIndicesMin

run mulC on block of data
output(minPointer:maxPointer) ← mulC(curData,curIndices,x,n,N)

end for
Return output

Since mulK, mulC, and mulU are called recursively on inputs of varying length, we will analyze
their complexity in terms of the number of input elements. Let l be the length of the input

9

to a call to mulK, and let li be the number of input indices in the ith block of the for loop.
Note

∑N
i=0 li = l. Excluding calls to mulC, multiplying by Kn(xn) using mulK takes O(l)

time for pointer scanning and data manipulation. If we let TC(n, l) denote the time taken
to multiply a vector of length l by Cn(xn) using mulC, then the time to multiply by Kn(xn)

is O(l) +
∑N

i=0 TC(n, li).

We define mulC to simulate multiplying by Cn(xn) = Un(xn)Kn−1(xn) by calling mulU and
mulK. Note that K1 is the identity matrix, so we can skip the mulK step when n = 2.

mulC(input,indices,x,n,N)

output ← mulU(input,indices,x,n,N)

if n > 2 then
output ← mulK(output,indices,x,n− 1,N)

end if
Return output

Finally, we define mulU:

mulU(input,indices,x,n,N)

blockLength ← (N + 1)n−2

if n = 2 then
offset ← 0

else
offset ← (N + 1)n−3

end if
H ← constructHashTable(indices)

for m← 1 to length(input) do
curIndex ← indices(m)

if curIndex ≥ blockLength AND curIndex (mod blockLength) < blockLength −
offset then
output(m) ← x · output(H(curIndex − blockLength + offset)) + input(m)

else
output(m) ← input(m)

end if
end for
Return output

The function mulU simulates multiplication by Un(xn) by computing a linear time backsolve
using Un(xn)−1. Suppose we are given vector v and wish to compute w = v · Un(xn) ⇐⇒
v = w ·Un(xn)−1. Let w = (w1, w2, . . . , w(N+1)n−1) and v = (v1, v2, . . . , v(N+1)n−1), where each
vector is split into (N + 1) blocks of length (N + 1)n−2. Recalling (17), we see that the first

10

block of v is equal to the first block of w, and then within each remaining block, we have the
relation vi = wi−x ·wi−(N+1)n−2+(N+1)n−3 if i is in the first (N +1)n−2− (N +1)n−3 elements
of the block, and vi = wi otherwise. Rearranging terms, we have

(24) wi =

{
x · wi−(N+1)n−2+(N+1)n−3 + vi , if property A is satisfied
vi , otherwise

,

where property A is satisfied if and only if i is not in the first block, and i (mod (N +1)n−2) <
(N +1)n−2− (N +1)n−3. The above pseudocode for mulU precisely implements (24), yielding
a linear time algorithm for multiplication by Un(xn).

Again, we know that the hash table will always hit on lookup because it will always be
looking for a partition smaller than the current one being processed in the for loop. If a
partition is in the set being processed, all partitions smaller than it must also be in the set.

The complexity analysis for mulU is similar to that for mulQ. Assuming the length of the
input is l, constructHashTable takes O(l) time, and the for loop takes O(l) time since it
does constant work per input element. Thus, the total running time of mulU is O(l), which,
combined with the running time for mulK, implies that the running time of mulC is

(25) TC(n, l) =

{
O(l) , if n = 1

O(l) +
∑N

i=0 TC(n− 1, li) , otherwise
.

Clearly, for each level of recursion (each value of n), a linear amount of work is done in the
size of the original input. Thus, solving this recurrence yields:

(26) TC(n, l) = O(nl).

Finally, this implies that multiplying by Yn(xn) takes O(n · φ(N, n)) + O(φ(N, n)) + O(n ·
φ(N, n)) = O(n · φ(N, n)) time.

To compute the Schur functions for (1) from scratch, note that Φ(N, 1) is just the set of
partitions {(0), (1), . . . , (N)}, and the vector of Schur functions over those partitions is just
(1, x1, x

2
1, . . . , x

N
1), which takes O(N) time to compute. Then, computing the Schur functions

over Φ(N, k) for k = {2, 3, . . . , n} requires multiplication by Y2(x2), Y3(x3), . . . , Yn(xn), which
takes time at most

(27)
n∑

k=2

O (k · φ(N, k)) < O
(
n2 · φ(N, n)

)
.

As mentioned in the introduction, φ(N, n) ≤ φ(N, N) = KN = O(eπ
√

2N/3) [9, p. 116], so

the running time can also be bounded by O(n2KN) = O(n2eπ
√

2N/3).

References

1. G.J. Byers and F. Takawira, Spatially and temporally correlated MIMO channels: modeling and capacity
analysis, IEEE Transactions on Vehicular Technology 53 (2004), 634–643.

2. Michael Clausen and Ulrich Baum, Fast Fourier transforms for symmetric groups: theory and imple-
mentation, Math. Comp. 61 (1993), no. 204, 833–847. MR MR1192969 (94a:20028)

11

3. James W. Cooley and John W. Tukey, An algorithm for the machine calculation of complex Fourier
series, Math. Comp. 19 (1965), 297–301. MR MR0178586 (31 #2843)

4. J. Demmel and P. Koev, Accurate and efficient evaluation of Schur and Jack functions, Math. Comp.
75 (2006), 223–239.

5. Persi Diaconis and Daniel Rockmore, Efficient computation of the Fourier transform on finite groups,
J. Amer. Math. Soc. 3 (1990), no. 2, 297–332. MR MR1030655 (92g:20024)

6. H. Gao, P.J. Smith, and M.V. Clark, Theoretical reliability of MMSE linear diversity combining in
Rayleigh-fading additive interference channels, IEEE Transactions on Communications 46 (1998), 666–
672.

7. A.J. Grant, Performance analysis of transmit beamforming, IEEE Transactions on Communications 53
(2005), 738–744.

8. R. Gutiérrez, J. Rodriguez, and A. J. Sáez, Approximation of hypergeometric functions with matricial
argument through their development in series of zonal polynomials, Electron. Trans. Numer. Anal. 11
(2000), 121–130.

9. G. H. Hardy, Ramanujan: Twelve lectures on subjects suggested by his life and work., AMS Chelsea,
New York, 1999.

10. M. Kang and M.-S. Alouini, Largest eigenvalue of complex Wishart matrices and performance analysis
of MIMO MRC systems, IEEE Journal on Selected Areas in Communications 21 (2003), no. 3, 418–431.

11. Plamen Koev and Alan Edelman, The efficient evaluation of the hypergeometric function of a matrix
argument, Math. Comp. 75 (2006), no. 254, 833–846 (electronic). MR MR2196994 (2006k:33007)

12. I. G. Macdonald, Symmetric functions and Hall polynomials, Second ed., Oxford University Press, New
York, 1995.

13. M.R. McKay and I.B. Collings, Capacity bounds for correlated rician MIMO channels, 2005 IEEE In-
ternational Conference on Communications. ICC 2005., vol. 2, 16-20 May 2005, pp. 772–776.

14. , General capacity bounds for spatially correlated Rician MIMO channels, IEEE Transactions on
Information Theory 51 (2005), 3121–3145.

15. R. J. Muirhead, Aspects of multivariate statistical theory, John Wiley & Sons Inc., New York, 1982.
16. A. Ozyildirim and Y. Tanik, Outage probability analysis of a CDMA system with antenna arrays in a cor-

related Rayleigh environment, IEEE Military Communications Conference Proceedings, 1999. MILCOM
1999, vol. 2, 31 Oct.–3 Nov. 1999, pp. 939–943.

17. , SIR statistics in antenna arrays in the presence of correlated Rayleigh fading, IEEE VTS 50th
Vehicular Technology Conference, 1999. VTC 1999 - Fall, vol. 1, 19-22 September 1999, pp. 67–71.

18. Markus Püschel, Cooley-Tukey FFT like algorithms for the DCT, Proc. International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), vol. 2, 2003, pp. 501–504.

19. Markus Püschel and José M. F. Moura, The algebraic approach to the discrete cosine and sine transforms
and their fast algorithms, SIAM J. Comput. 32 (2003), no. 5, 1280–1316. MR MR2001274 (2004j:42023)

20. Hyundong Shin and Jae Hong Lee, Capacity of multiple-antenna fading channels: spatial fading corre-
lation, double scattering, and keyhole, IEEE Transactions on Information Theory 49 (2003), 2636–2647.

21. V. Smidl and A. Quinn, Fast variational PCA for functional analysis of dynamic image sequences,
Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis, 2003.
ISPA 2003., vol. 1, 18-20 September 2003, pp. 555–560.

Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, MA 02139, U.S.A.

E-mail address: cychan@mit.edu
12

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia,
Bulgaria

E-mail address: drensky@math.bas.bg

Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, MA 02139, U.S.A.

E-mail address: edelman@math.mit.edu

Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, MA 02139, U.S.A.

E-mail address: plamen@math.mit.edu

13

