
Index Transformation Algorithms in a Linear Algebra Framework�Alan EdelmanyDepartment of MathematicsMassachusetts Institute of TechnologyCambridge, MA 02139edelman@math.mit.eduSteve Heller& S. Lennart JohnssonzThinking Machines Corporation245 First StreetCambridge, MA 02142heller@think.comjohnsson@think.comApril 1992AbstractWe present a linear algebraic formulation for a class of index transformations such as Graycode encoding and decoding, matrix transpose, bit reversal, vector reversal, shu�es, and otherindex or dimension permutations. This formulation uni�es, simpli�es, and can be used to derivealgorithms for hypercube multiprocessors. We show how all the widely known properties of Graycodes and some not so well-known properties as well, can be derived using this framework. Usingthis framework, we relate hypercube communications algorithms to Gauss-Jordan eliminationon a matrix of 0's and 1's.Keywords and phrases: binary-complement/permute, binary hypercube, Connection Ma-chine, Gray code, index transformation, multiprocessor communication, routing, shu�e
�Simultaneously appears as Thinking Machines technical report TMC{223.ySupported by the Applied Mathematical Sciences subprogram of the O�ce of Energy Research, U.S. Departmentof Energy under Contract DE-AC03-76SF00098.zAlso a�liated with the Division of Applied Sciences, Harvard University.1

1 IntroductionWe present a theory for a class of index transformation algorithms that should be properlythought of as a matrix-vector product, though they rarely are. This class is strictly a superset ofthe class known as BCP (bit-permute/complement) [20, 21]. In spirit this theory is linked with theideas in Van Loan's new book [26], particularly the notion that matrix factorizations can de�nealgorithms. The principal idea is not the discussion of matrix factorization algorithms, per se. Theidea is a di�erent way of viewing and generating algorithms.Van Loan [26] covers computational frameworks for the Fast Fourier Transform. Despite di�er-ences in our approach, on this quote we �rmly agree:The proper way to discuss a matrix-vector product such as the discrete Fouriertransform is with matrix-vector notation, not with vectors of subscripts and multiplesummations. We should be as repelled by scalar notation as we are by assembly languagecoding for both retard algorithmic development.Although it has always been clear that BCP and larger classes of communications problems canbe formulated as matrix-vector products, they rarely have been. Keohane and Stearns address asimilar class of permutations [19], but do not formulate the problem as a matrix-vector product. Anotable exception is the contemporaneous work of Cormen [2] for permuting data on disk arrays.Our motivation stems from communications algorithms for real applications on hypercube mul-tiprocessors such as the Connection Machine model CM{2 multiprocessor, though we believe theseideas to have wider applicability. Our matrices only contain 0's and 1's: they describe transforma-tions on a vector of length 2n indirectly through binary encodings. The most familiar example isbit reversal, an operation used in conjunction with FFT's. Bit reversal is a permutation of a vectorof length 2n induced by a permutation on n objects: the n bits of the vector's indices. One canrepresent this transformation as a 2n � 2n permutation matrix on the components of the vector[11, 26]. For our purposes it is more convenient to consider the more compact representation ofthe n � n matrix describing the index transformation, which in the bit reversal case has 1's on thenortheast-southwest diagonal and is otherwise 0. Also familiar are so-called dimension transforma-tions or index permutations. These are arbitrary permutations of the n bit indices, which inducepermutations on 2n elements. Why use matrices of order 2n when matrices of order n su�ce?We de�ne a linear index transformation byi! Ai;2

where i is a bit vector with n components, A is an n � n 0,1 matrix, and the matrix-vector multiplyis performed modulo 2. So long as A is nonsingular, this n � n matrix induces a permutation on the2n indices. Dimension permutations are trivial examples of such transformations; other examplesinclude Gray code encoding and decoding of arbitrary axes. Many real applications on hypercubemultiprocessors require complicated compositions of these transformations.We show that this is not a matter of notation, but rather that the existence of a certain kindof convenient algorithm on a hypercube to perform the data movement given by a linear indextransformation is equivalent to the ability to perform Gauss-Jordan elimination on A withoutpivoting. This ability, in turn, is related to a familiar condition on the principal submatrices of A.Thus the complicated combinatorial problem of devising an algorithm is reduced to the algebraicproblem of decomposing a matrix. We believe that this is the �rst time that the existence ofa hypercube communications algorithm has been related to the ability to perform Gauss-Jordanelimination.In Section 2, we �x notation that will be useful throughout the paper, while Section 3 containsour main results. In Section 4, we apply these results towards the special case of Gray code encodingand decoding while Section 5 considers dimension permutations. We conclude in Section 6.2 NotationLet F2 be the �eld of elements f0; 1g with addition and multiplication de�ned modulo 2. Inthis paper, addition and multiplication are always performed modulo 2.We denote the vector space of n-vectors with elements in F2 as Fn2 . Similarly, the set of m� nmatrices with elements in F2 is denoted by Fm;n2 . For clarity, we sometimes display such matriceswith empty spaces where the entries are 0. We sometimes consider i or its binary encoding as thenode address of a hypercube in the usual manner.Any integer i such that 0 � i < 2n can be identi�ed with an element of Fn2 by the use ofthe binary encoding of the number. Thus, if i = Pn�1k=0 ik2k, then we identify i with the vector(i0; : : : ; in�1)T . Notice that the vector is written with the least signi�cant bit �rst. Of course Fn2can be naturally included as a subset of Fn+12 by appending an extra zero.We admit that this vector notation for the binary representation of a number seems to clash withthe usual representation, in�1 : : : i1i0, in that the order appears backwards, but the de�nition aspresented is appropriate and consistent for matrix-vector notation. We have resisted the temptationto refer to the �rst row of a matrix in Fmn2 or the �rst component of a vector in Fn2 as the 0th, but3

rather chose the more familiar index origin of one.Some useful vectors are en = 2n�1 in which only the nth component is 1 and jn = 2n � 1 inwhich only the �rst n components are 1. These vectors can be thought of as elements of Fk2 for anyk � n using the natural embedding. Also we can avoid di�culties by letting e0 = j0 = 0.If (x1; : : : ; xk) is any ordered sequence of numbers, then its reversal is the sequence (xk; : : : ; x1):3 Linear and A�ne Index TransformationsWe now de�ne the transformations of interest to us which we refer to as a�ne or linear:De�nition 3.1 An index transformation is de�ned to be a�ne if the data in node i is sent tonode f(i), where f(i) = Ai+ b:Cormen [2] calls this class of transformations BMMC for bit-matrix-multiply/complement.De�nition 3.2 An index transformation is de�ned to be linear if the data in node i is sent tonode f(i), where f(i) = Ai:Thus a linear index transformation is an a�ne transformation that �xes the data in node 0.The simplest hypercube communication is the unconditional exchange of data across a �xeddimension. Algebraically this can be described by f(i) = i+ek : Another simple hypercube commu-nication sends data to the opposite corner of the hypercube. This is f(i) = i+ jn, which describesvector reversal.Another example of a linear index transformation is a dimension permutation considered bysuch authors as Stone [22], Fraser [6], Nassimi and Sahni [20, 21], Flanders [5], Johnsson and Ho [14],Stout and Wagar [23, 24], and Swarztrauber [25]. A dimension permutation is de�ned as the mapf(i) = Pi, where P is a permutation matrix. Since permutation matrices are orthogonal (PPT = I),if it is also symmetric, then it is a square root of the identity (P 2 = I). Thus a symmetricpermutation matrix corresponds to a disjoint set of dimension pairs being exchanged. Onthe other hand circulant permutation matrices correspond to relabeling dimensions in a waythat preserves the circular order of the indices. The shu�e and unshu�e operations give twosuch matrices. Circulant permutation matrices form a subset of the irreducible permutationmatrices. A matrix A is said to be irreducible if it has no nontrivial invariant subspaces. Theirreducible permutation matrices correspond to the dimension exchange represented by a cycle.4

In Section 4, we will consider the example of Gray code encoding and decoding.The basic theorems of algebra tell us that if f(i) = Ai + b, where A is nonsingular, then themap is one-to-one. Otherwise, if the rank of A is r, then A maps the hypercube to an r-dimensionalsubcube. This map sends the data in 2n�r nodes to one.De�nition 3.3 A conditional exchange across dimension k, denoted Ek, is a communicationpattern de�ned by f(i) = Ai; where A is any matrix whose diagonal consists of 1's, and whoseo�-diagonal may possibly be 1 only in the kth row.An example of a conditional exchange across dimension 3 is represented by the matrix:E3 = 0BBB@ 1 0 0 00 1 0 01 0 1 10 0 0 1 1CCCA :The mapping f(i) = E3i describes a conditional change of the third bit, depending on the �rstand fourth bits. We will extend our use of the term \conditional exchange" to also refer to theassociated matrix without loss of clarity.Lemma 3.1 If Ek is a conditional exchange, then Ek is nonsingular, Ekek = ek and E2k = I (i.e.,Ek = E�1k).Proof From the form of the matrix, it is clear that the determinant of Ek is 1, and that Ekek = ek.Either Eki = i so that E2ki = i or Eki = i+ ek and Ek(i+ ek) = i. Either way, E2ki = i for all nodesi, and thus E2k = I .Notice that if the kth diagonal entry were 0, then the kth column is 0 and the matrix would besingular. In fact the rank of the matrix would be exactly n � 1. Such a communication might betermed a conditional projection.A conditional exchange can be implemented directly on a hypercube. Each node either sendsall its data across the dimension speci�ed in the exchange, or does nothing. Only one dimensionof the hypercube is traversed in this operation, and this algorithm achieves �fty percent overallutilization of that dimension.A hypercube communication operation that uses all the dimensions simultaneously is calledcube swap. In this operation, each node sends one message along each hypercube dimension.If an n � n matrix A can be decomposed as a sequence of conditional exchange matrices,A = En : : :E1, then this factorization describes an algorithm for implementing the linear index5

transformation given by A as a sequence of conditional exchange operations across dimensions 1through n respectively. More generally, if A admits a factorization of the form A = Edn : : :Ed2Ed1 ,where d1; d2; : : : ; dn is a reordering of the dimensions 1 through n, then the factorization de�nes analgorithm for implementing the linear index transformation as a sequence of conditional exchangesin a di�erent order. Any sequence of exchanges on disjoint dimensions can be implemented in apipelined fashion on a hypercube as a sequence of identical cube swap operations, as long as thereis a nontrivial amount of data at the node. The pipeline will have one start-up and one wind-downstep for each dimension traversed. Once the pipe is started the algorithm achieves �fty percentutilization of the total bandwidth available. Of course, this leaves us short by a factor of two intotal use of cube swap bandwidth, but allows us to consider very general situations.We now present our main theorem relating hypercube communications algorithms algebraicallyto Gauss-Jordan elimination performed columnwise and modulo 2 instead of over the reals:Theorem 3.1 The following statements are equivalent:1. A may be decomposed as a product of conditional exchanges:A = En : : :E1:2. The index transformation de�ned by A can be accomplished on a hypercube as a pipelinedsequence of cube swaps, accomplishing a sequence of conditional exchanges traversingdimensions 1 through n consecutively.3. The columnwise Gauss-Jordan elimination algorithm (modulo 2) on A runs to completionwithout the need for pivoting.4. All n principal submatrices of A are nonsingular.Proof The equivalence of 1. and 2. is discussed before the theorem. By columnwise Gauss-Jordanelimination we mean an algorithm whose ith step consists of adding multiples of column i to theother columns so that the resulting matrix matches the identity in the �rst i rows. In modulo 2arithmetic one can verify that the algorithm takes the following simple form:A0 = Afor i=1,2,...,nEi := E(Ai�1; i)Ai := Ai�1EiendHere E(A; j) denotes a matrix that is the identity except in the jth row, which is de�ned tomatch that of A. It is well-known that the Gauss-Jordan algorithm requires no pivoting at the ith6

step if Ai�1ii 6= 0 which is exactly the condition that E(Ai�1; i) is nonsingular. If the Gauss-Jordanalgorithm above can run to completion without generating any singular matrices Ei thenAn = I = AE1E2 : : :Enor A = En : : :E1:Conversely, suppose A can be decomposed as in 1. ThenAE1 : : :Ei = Ei+1 : : :En: (3:1)For i = 1; : : : ; n, the product on the right side of (3.1) does not change bits 1 through i and thus,as a matrix it agrees with the identity matrix in its �rst i rows. This determines Ei as the uniquematrix that describes the ith step of column-wise Gauss-Jordan elimination without pivoting. Thisestablishes the equivalence of 1 and 3.Finally, since at step i the Gauss-Jordan procedure adds multiples of column i to the othercolumns, the determinants of the principal submatrices do not change. Thus, if the Gauss-Jordanalgorithm runs to completion, then the principal submatrices are all nonsingular. Conversely, if theprincipal submatrices are all nonsingular, the ith pivot cannot be 0, for the product of the �rst ipivots is the determinant of the ith principal submatrix. Having now established the equivalenceof 3 and 4, the proof is complete.Corollary 3.1 If A = LU where L and U are nonsingular lower and upper triangular matrices,then A can be decomposed as A = En : : :E1. Thus Gaussian elimination, rather than Gauss-Jordanelimination, can be used to test whether A has this decomposition, though Gauss-Jordan is neededto construct the decomposition.Corollary 3.2 Let d1; : : : ; dn be a reordering of the numbers 1 through n. Then A can be decom-posed as A = Edn : : :Ed1 if and only if all the diagonal submatrices of A given by rows and columnsd1; : : : ; di are nonsingular for i = 1; : : : ; n. Equivalently, if A = PLUPT , where P is a permuta-tion matrix, then the index transformation corresponding to A can be performed as a sequence ofconditional exchanges in an order speci�ed by P .Proof The Gauss-Jordan algorithm, when run consecutively on rows d1 through dn, gives thedesired decomposition if it exists, or breaks down through the need for pivoting if it does not.7

Corollary 3.3 If A is a nonsingular upper (or lower) triangular matrix, then an algorithm existsthat traverses the dimensions in any order.Proof All diagonal minors of A are determinants of upper (or lower) nonsingular triangular ma-trices.Corollary 3.4 A cycle or any matrix at all that has all diagonal entries equal to 0 cannot bewritten as a product of conditional exchanges in any order.Proof No 1 � 1 principal submatrix is equal to 1.Corollary 3.5 No permutation matrix can be written as a product of conditional exchanges in anyorder.Proof All principal submatrices that include exactly one row and column from one of the compo-nent cycles are singular.Corollary 3.6 Any nonsingular A de�nes an index transformation that can be performed as apipelined sequence of conditional exchanges followed by a dimension permutation algorithm.Proof Any nonsingular A can be written as PLU by performing Gaussian elimination with partialpivoting.Since we have shown how to construct an algorithm corresponding to any LU , and since algo-rithms for accomplishing address permutations exist, we can now accomplish any linear transfor-mation.Corollary 3.7 If A has the form U1PU2 where U1 and U2 are upper triangular, then A = PA0where A0 has all nonsingular principal submatrices. Therefore A0 can be implemented as a sequenceof conditional exchanges in standard order.Proof Let A0 = PTU1PU2. Since U1 is upper triangular, every diagonal minor of U1 and hencePTU1P is nonzero. The kth principal submatrix of A0 is given by the product of the kth principalsubmatrix of PTU1PU2 and that of U2 and hence is nonsingular.The triple product U1PU2 arises on the CM{2 multiprocessor when transposing a matrix,collapsing or separating axes, or changing the layout of an array on the machine. In this case,U1 and U2 denote Gray coding and decoding operations respectively. The Gray code is decoded,the address bits are permuted, and then the bits are encoded in possibly a new way. This type ofoperation is explored in the next section. 8

4 Gray Codes and Hypercube MultiprocessorsGray coding and decoding of arbitrary axes is an important communication pattern on hyper-cube multiprocessors. The outline of this section is as follows:1. A brief digression into the history of Gray coding, which is not as well-known as perhaps itought to be.2. Derivation of widely known properties of the Gray code using the linear algebra framework.3. Applications of the theory from the previous section toward new results about Gray coding.The binary-re
ected Gray code has had a most curious history in that it has appeared in somany di�erent applications. It was invented by the French engineer Emile Baudot (1845-1903) forthe purpose of sending and receiving telegraphs [10]. In 1872, it appeared in the solution of theso-called Chinese ring puzzle (see Gardner [7]), and it is also the solution of the famous Tower ofHanoi puzzle. Frank Gray developed the code that now bears his name during the 1940's, thoughit was �rst published in 1953 in a patent for a so-called pulse code modulation tube. Later, theGray code has been used in many ways in analog-to-digital converters.Though probably obvious to many, we believe that Gilbert [8] in 1958 was the �rst to pointout explicitly that the consecutive numbers in the Gray code sequence form a Hamiltonian pathon a hypercube. During that time it was fashionable to enumerate other Hamiltonian paths on thehypercube as well.With the invention of multiprocessor computers with hypercube networks, it became possible forthe �rst time to make use of these paths on real physical hypercubes. Many authors independentlyobserved the utility of this property for embedding rings and higher dimensional meshes. CM{2system software uses these embeddings to store grids in such a manner that it is invisible to theprogrammer. Indeed it would be easy to believe erroneously that the CM-2 has a separate networkfor grid communication.On the CM-2, data is considered to be in \grid" order (also known as \NEWS" order) if thedata labeled i is located in the processor with the label Gi, where G is the gray coding operator.The data is in \cube" order (also known as \send" order) if the data labeled i is in fact locatedin node i. Since certain algorithms run more e�ciently if the data is in \grid" order while otheralgorithms run faster in \cube" order, there has been need for routines to convert between the twoordering schemes. The communication pattern that converts a single one-dimensional axis from\cube" to \grid" order is f(i) = Gi and from \grid" to \cube" order is given by f(i) = G�1i, where9

G and G�1 are given below. The key point is that they are linear index transformations.In numerical linear algebra [9], it is common to embed Householder re
ections or Givens rota-tions inside a larger identity matrix so as to operate on selected components of a vector. Analo-gously, one can \Gray code" certain components of a vector. On hypercubes it is usual to associateblocks of components with various axes, and then one refers to Gray coding an axis.The Gray code encoding operator G is deceptively simple, de�ned by the condition that G bea linear operator on vectors modulo 2 and thatG(jn) = en; n = 1; 2; : : : : (4:2)Since en = jn + jn�1, it follows thatG(en) = G(jn + jn�1) = en + en�1: (4:3)Let Gn denote the restriction of the Gray code encoding operator G to the �nite dimensionalspace Fn2 . We then have that Gn is a linear transformation on Fn2 whose n � n matrix representationis Gn = 0BBBBBBBB@ 1 11 1 01 . .. 10 1 11 1CCCCCCCCA :The Gray code decoding operator G�1 is uniquely de�ned byG�1(en) = jn; n = 1; 2; : : : : (4:4)The restriction of G�1 to the �nite dimensional space Fn2 has the n � n matrix representationG�1n = 0BBBBBBBB@ 1 1 1 � � � 1 11 1 � � � 1 11 � � � 1 10 .. . 1 11 11 1CCCCCCCCA :We now let Sn be the sequence of 2n elements of Fn2 in numerically increasing order. To obtainthe same sequence in reverse order, add jn to each element; hence the name vector reversal. LetG(Sn) denote the sequence of Gray codes of elements of Sn. SinceG(i+ jn) = G(i) +G(jn) = G(i) + en; (4:5)10

we have proved a very important property of the binary-re
ected Gray code that is often taken aspart of the standard de�nition:Theorem 4.1 (Reversal Property) The reversal of the sequence G(Sn) is equal to the sequenceG(Sn) with the bit in the nth position complemented.A related observation isTheorem 4.2 Consecutive members of the sequence G(Sn) di�er in exactly one bit.Proof Two consecutive numbers can always be written as i+ jk�1 and i+ ek , where neither i norGi has a 1 in the k least signi�cant bits. Since Gjk�1 = ek�1 and Gek = ek�1+ ek , the bit in whichthe Gray codes di�er is the kth.Following Gilbert [8], the reversal property is readily grasped by the eye from the diagram belowin which 0 is represented by a blank space, and 1 with a black square.S4 G(S4)0000 00000001 00010010 00110011 00100100 01100101 01110110 01010111 01001000 11001001 11011010 11111011 11101100 10101101 10111110 10011111 1000Since G and G�1 are both upper triangular, by Corollary 3.3 Gray coding and decoding can beaccomplished in any order. For example, when n = 4, we express the algorithm from Johnsson [12]in our notation: G = 0BBB@ 1 1 1 11 1CCCA0BBB@ 1 1 11 1 1CCCA0BBB@ 1 11 1 1 1CCCA11

and G�1 = 0BBB@ 1 11 1 1 1CCCA0BBB@ 1 1 11 1 1CCCA0BBB@ 1 1 1 11 1CCCA :Notice that the algorithms perform encoding from low-order bits to high-order bits, while de-coding is performed from high-order bits to low-order bits. Algorithms for the reverse order were�rst developed by Johnsson [16], and the existence and use of algorithms for any order are discussedby Johnsson and Ho [15, 17].One particularly interesting example is decoding starting from the least signi�cant bit. In thiscase F pk has a 1 in row p(k) and column n. It readily follows that if an edge is used in the subcubede�ned by vn = 0, then it is not used in the subcube vn = 1. This is the basis for a new algorithmgiven by Johnsson and Ho [15] that takes better advantage of the available bandwidth.More generally, if A can be decomposed as the product of conditional exchanges Ei over distinctdimensions, then if the element in the ith row and jth column of Ei is 1 for every i and if the jthrow of A matches the identity matrix, then the wires along dimension j can be used to take betteradvantage of the available bandwidth.We de�ne a code change operation as any G1G�12 combination. As an example, treating atwo-dimensional matrix as a one-dimensional vector on a hypercube involves a code change.Corollary 4.1 All code change operations have pipelined algorithms.Proof Since decode and encode operations are both upper triangular, so is their composition.Corollary 4.2 All code change operations have pipelined algorithms for each permutation of thedimensions.5 Dimension Permutations and Hypercube MultiprocessorsWe have seen previously that dimension permutations correspond to permutation matrices.Why use n2 elements to describe an object only requiring n? There are two answers. One isthat on a hypercube multiprocessor it is frequently desirable to combine coding, decoding, anddimension permutation operations [13]. Matrix notation allows us to put all of these operationsinto the same setting. The other answer is that we can derive results about these matrices withoutactually explicitly writing down the entries of the matrix. In this latter context, we are really onlyderiving algebraic results for the symmetric group on n objects.12

On hypercube multiprocessors, dimension permutations induce a fairly complicated motion onthe machine. Remember that a dimension permutation is an index transformation on n objectsthat induces a more complicated permutation of 2n objects. Factorizing the permutation matrixinto simpler matrices allows a compact way of thinking about algorithms.A dimension permutation on all dimensions forming a shu�e is represented by a circulant matrixas shown below for �ve dimensions.S1;5 = 0BBBBB@ 0 0 0 0 11 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 0 1CCCCCAAn unshu�e is also represented as a circulant matrix,S�11;5 0BBBBB@ 0 1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 11 0 0 0 0 1CCCCCAIn our next de�nition we precisely de�ne shu�e permutations.De�nition 5.1 A shu�e permutation on indices i; i + 1; : : : ; j is the transformation whosematrix Si;j is given as the identity except in columns i; i+ 1; : : : ; j; which are ei+1; : : : ; ej�1; ej ; eirespectively; in other words, the appropriate columns are shifted left circularly.On hypercube multiprocessors, it is convenient to implement dimension permutations as sequencesof elementary bit-exchanges:De�nition 5.2 An index transformation is de�ned to be an elementary bit-exchange if itsmatrix representation is a permutation matrix that is the identity except in two rows and columns.We denote such a matrix Ei$j, where i and j are the distinguished rows and columns.De�nition 5.3 An index transformation is de�ned to be a bit-exchange if its matrix represen-tation is a symmetric permutation matrix.Lemma 5.1 A bit-exchange matrix can be expressed as the product of independent elementary bit-exchange matrices, and, conversely, the product of independent elementary bit-exchange matricescan be reduced to a bit-exchange matrix.Lemma 5.2 Any shu�e permutation can be expressed as the product of two bit-exchange matrices.13

Proof Renumber the shu�e, if necessary, to be S1;n. S1;n is the product of the following twobit-exchange matrices: E1 = E1$nE2$n�1: : :and E2 = E1$n�1E2$n�2: : : .Lemma 5.3 Any permutation matrix can be expressed as the product of two bit-exchange matrices.Proof The proof is similar to the proof of Lemma 5.2 once the permutation matrix is separatedinto disjoint cycles.These facts can be quite useful in practice. Code written for the CM{2 to accomplish thebit-reverse operation [4] was easily generalized to the bit-exchange operation. Using Lemma 5.3,any dimension permutation had an implementation. This was the motivation for a large softwareproject, known as the \twu�er," to accomplish operations of the form G1PG�12 .Notice that if j = i+ 1, then Ei$j = Si;j .As is well-known [14], a shu�e or unshu�e can be carried out as a sequence of dimensionexchanges in two convenient ways, as illustrated by the following examples when n = 5:Example 1: S1;5 = E1$2E2$3E3$4E4$5and Example 2: S1;5 = E1$5E1$4E1$3E1$2:In fact, there are exactly n factorizations of the shu�e matrix into elementary bit-exchanges withn � 1 factors. Since elementary bit-exchanges are their own inverses, factorizations of S�11;5 areobtained by reversing the order of the factors of S1;5.Generalizing the two examples, we see thatSi;j = Ei$i+1Ei+1$i+2 : : :Ej�1$j (5:6)and Si;j = Ei$jEi$j�1 : : :Ei$i+1 (5:7)where the product is in increasing order in Equation (5.6) and in decreasing order in Equation(5.7).Note how in Example 1, all dimensions but the �rst and last are used twice, while in Example 2only dimension 1 is used more than once. With n� 1 factors, the total use of dimensions must be2n� 2, so that Example 1 best load balances all of the dimensions, while Example 2 represents theworst case of load balancing the dimensions. However, the data motion in Example 1 accounting forthe factor-of-two di�erence between the two approaches is unnecessary and can be eliminated [14].14

Furthermore, even though Example 2 appears unfavorable, if the �xed dimension is a dimensionlocal to a node, then all bit-exchanges are between adjacent nodes in a binary cube, while thefactorization given in Example 1 requires communication between nodes at distance two. Thefactorization given by Example 2 is the basis for the algorithms by Swartztrauber [25], and severalof the algorithms by Johnsson and Ho [14, 18].These algorithms are based on the following observation. From (5.6) we see that Ei$i+1Si;j =Si+1;j . Combining this with (5.7), we obtain thatEi$i+1 Yk=j;:::;i+1Ei$k = Si+1;j :Thus, a shu�e on n � 1 dimensions can be expressed as the product of n + 1 elementary bit-exchanges, with the same dimension used in every bit-exchange. If dimension i in fact representslocal memory, the advantages of this approach are clear. Each elementary bit-exchange representsone-hop communication on the hypercube.Another approach that has proved convenient is to express a shu�e permutation as a com-position of several shu�e permutations on fewer dimensions. This method can be used to devisealgorithms with optimal concurrency in communication [20, 21, 14, 18].Again using Equations (5.6) and (5.7),Si;k = Si;jSj;k= Ei$jSi;j�1Sj;k= Ei$jSj;kSi;j�1;taking advantage of the fact that Sj;k and Si;j�1 commute. Thus, if there are several elements pernode, some elements can be permuted according to Sj;k �rst, others according to Si;j�1 �rst.6 ConclusionWe have cast index transformation algorithms in a linear algebraic framework with applicationstowards hypercube algorithms. Such a framework has multiple purposes. One is to express ideasthat are already commonly known, but in a more concise language. Another more importantpurpose is to shed light on the existence of algorithms and to construct them automatically. Wehave demonstrated both. 15

AcknowledgementsWe would like to thank Thinking Machines Corporation, and particularly Marshall Isman andTed Tabloski, for supporting this work and related projects on the Connection Machine. Theyprovided �nancial support and a sense of spirit that makes such a project a pleasure. In addition,the �rst author would like to thank Thinking Machines Corporation and the third author forinviting him to work on this project as it related to the \twu�er" project in the summer of 1990during which the earliest version of this paper was drafted [3]. Finally, we would like to thankEmily Stone for her excellent assistance in editing.References[1] D.P. Bertsekas, C. Ozveren, G.D. Stamoulis, P. Tseng, and J.N. Tsitsiklis, Optimal communi-cation algorithms for hypercubes, submitted for publication.[2] T.H. Cormen, Fast Permuting on Disk Arrays, Brown/MIT VLSI Conference, (1992).[3] A. Edelman, The algebra of shu�ing and Gray-coding on a hypercube, Thinking MachinesCorporation, Semi-internal note, August 9, 1990.[4] A. Edelman, Optimal matrix transposition and bit reversal on hypercubes: all-to-all personal-ized communication, J. Parallel Dist. Comp., 11, (1991), 328{331.[5] P.M. Flanders, A Uni�ed Approach to a Class of Data Movements on an Array Processor,IEEE Transactions on Computers. C-31, (1982), 809{819.[6] D. Fraser, Array permutations by index-digit permutation, Journal of the Association forComputing Machinery. 22, (1976), 298{308.[7] M. Gardner, Mathematical Games. The curious properties of the Gray code and how it canbe used to solve puzzles, Scienti�c American. 227 (August 1972), 106{109.[8] E.N. Gilbert, Gray codes and paths on the n-cube, Bell System Technical Journal. 37 (1958),815{826.[9] G. Golub and C.F. Van Loan,Matrix Computations, second edition, Johns Hopkins UniversityPress, Baltimore, 1989.[10] F.G. Heath, Origins of the binary code, Scienti�c American. 227 (August 1972), 76{83.[11] M. van Heel, A fast algorithm for transposing large multidimensional image data sets, Ultra-microscopy 38, (1991), 75{83.[12] S.L. Johnsson, Communication e�cient basic linear algebra computations on hypercube archi-tectures, J. Parallel Distributed Comput. 4 (1987), 133{172.[13] S.L. Johnsson and C.T. Ho, Algorithms for matrix transposition on Boolean N -Cube Con�g-ured Ensemble Architectures, SIAM J. Matrix Anal. Appl. 9, (1988), 419{454.[14] S.L. Johnsson and C.T. Ho, Optimal Algorithms for Stable Dimension Permutations onBoolean Cubes, The Third Conference on Hypercube Concurrent Computers and Applica-tions, ACM Press, 725{736, (1988).[15] S.L. Johnsson and C.T. Ho, On the conversion between binary code and binary-re
ected Graycode on Boolean cubes, Harvard University Technical Report 20-91, (1991).16

[16] S.L. Johnsson, Optimal Communication in Distributed and Shared Memory Models of Com-putation on Network Architectures, Models of Massively Parallel Computation, Morgan Kauf-man, (1990), 223{389.[17] S.L. Johnsson and C.T. Ho, The Complexity of Reshaping Arrays on Boolean Cubes, TheFifth Distributed Memory Computing Conference, IEEE Computer Society, (1990), 370{377.[18] S.L. Johnsson and C.T. Ho, Generalized Shu�e Permutations on Boolean Cubes, J. Paralleland Distributed Computing. 1992, to appear.[19] J. Keohane and R.E. Stearns, Routing linear permutations through the omega network in twopasses, Proceedings of The 2nd Symposium on the Frontiers of Massively Parallel Computing,IEEE, No. 88CH2649{2, 476{82.[20] D. Nassimi and S. Sahni, An optimal routing algorithm for mesh connected parallel computers,Journal of the Association for Computing Machinery, 27, (1980), 6{29.[21] D. Nassimi and S. Sahni, Optimal BPC Permutations on a Cube Connected SIMD Computer,IEEE Transactions on Computers. C-31, (1982), 338-341.[22] H. Stone, Parallel processing with the perfect shu�e, IEEE Transactions on Computers. 20,(1971), 153{161.[23] Q.F. Stout and B. Wagar, Passing Messages in Link-Bound Hypercubes, Proceedings of Hy-percube Multiprocessors 1987, SIAM Publications, Philadelphia, 1987.[24] Q.F. Stout and B. Wagar, Intensive hypercube communication I: prearranged communicationin link-bound machines, Computing Research Laboratory, University of Michigan, TechnicalReport CRL-TR-9-87, (1987).[25] P.N. Swarztrauber, Multiprocessor FFT's, Journal of Parallel Computing. 5, (1987), 197{210.[26] C. Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM Publications,Philadelphia, 1992.

17

