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Abstract. It seems likely that improvements in arithmetic speed will continue to outpace
advances in communication bandwidth. Furthermore, as more and more problems are working on
huge datasets, it is becoming increasingly likely that data will be distributed across many processors
because one processor does not have sufficient storage capacity. For these reasons, we propose
that an inexact DFT such as an approximate matrix-vector approach based on singular values or
a variation of the Dutt–Rokhlin fast-multipole-based algorithm may outperform any exact parallel
FFT. The speedup may be as large as a factor of three in situations where FFT run time is dominated
by communication. For the multipole idea we further propose that a method of “virtual charges”
may improve accuracy, and we provide an analysis of the singular values that are needed for the
approximate matrix-vector approaches.
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1. Introduction. In future high-performance parallel computers, improvements
in floating-point performance are likely to continue to outpace improvements in com-
munication bandwidth. Therefore, important algorithms for the future may trade
off arithmetic for reduced communication. Indeed, with the increasing popularity of
networks of workstations and clusters of symmetric multiprocessors, even on present
machines it may be worthwhile to make this tradeoff.

Traditional research into algorithmic design for the fast Fourier transform (FFT)
focuses on memory and cache management and organization. All such algorithms
are in effect variations of the original algorithm of Cooley and Tukey [7]. A few
important variants are the Stockham framework [6], which reorders data at each step,
the Bailey method [4], which minimizes the number of passes through external data
sets, Swarztrauber’s method [18] for hypercubes and vector supercomputers, and the
recent algorithm by Cormen and Nicol [8], which reorganizes data for out-of-core
algorithms. Many other important references may be found in Van Loan [20]. In this
paper, we believe that we are first to propose a parallel Fourier transform algorithm
that would not be exact in the absence of roundoff error.

In our distributed-memory model, we assume that the input vector is stored in
natural order, with each processor holding a contiguous portion of the data. The
output vector should be distributed the same way. In this model, the standard ap-
proach to the parallel FFT is known as the “six-step framework” [20, pp. 173–174],
consisting of (1) a global bit reversal or shuffle, (2) local FFTs, (3) a global transpose,
(4) multiplication by twiddle factors, (5) local FFTs, and (6) a global shuffle or bit
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Fig. 1. Communication pattern in parallel FFT of length 32 over 4 processors, using the 6-step
framework based on the factorization F32 = (F4 ⊗ I8)T (I4 ⊗ F8)Π of (8) in section 4. The step
numbers are indicated at the bottom of the figure.

reversal. The global shuffles in steps (1) and (6) each require an amount of communi-
cation equivalent to the transpose in step (3). They may be saved if the order is not
important. The communication pattern is as indicated in Figure 1, which is based on
Gupta et al. [15].

This paper presents a method which can save up to a factor of three in commu-
nication cost, by using an approximate algorithm that essentially combines the three
global transposes into one. Accuracy can be extended to full machine precision with
negligible effect on communication complexity.

The paper is organized as follows. Section 2 contains a mathematical discussion
of the singular-value ideas that explain why a reduction in communication is pos-
sible. Section 3 introduces a matrix-vector multiply algorithm that uses an offline
singular-value analysis. Section 4 introduces our parallel fast multipole algorithm, an
equispaced variation of the nonequispaced Fourier transform proposed by Dutt and
Rokhlin [10]. Section 5 discusses the results of numerical experiments.

The main contributions of this work are

• the proposal that these algorithms in the parallel context may in fact be faster
than the traditional algorithms;
• a mathematical analysis of why these methods work in terms of singular

values and their connection to the prolate matrix;
• a portable prototype MPI code that demonstrates the accuracy of the algo-

rithm; and
• an improvement of the Dutt–Rokhlin algorithm that our experiments show

often yields two additional digits of accuracy in the equispaced case.

We conclude the introduction by pointing out an interesting fact about all exact
Fourier transforms that became clear to one of us while working at Thinking Machines
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Corporation. The FFT always starts with long-distance butterfly moves. To be
precise, assuming the data are stored in standard (serial) order and need to end up
that way (often this can be avoided!), then to perform the first set of butterflies,
communication with long strides must occur. This is true no matter whether we use
decimation in time, decimation in frequency, or any inverse FFT.

2. Mathematical insights. In this section, we do not yet present our algo-
rithms, but rather provide mathematical explanations as to why we expect that more
communication-efficient algorithms may be found. The most important underlying
critical idea is the notion of near-rank deficiency. The operators that represent the
relationship between the input on one processor and the output on another processor
are nearly rank-deficient. Therefore, as is well known to those who wish to compress
images [3], this represents an opportunity to replace the operator with its more eco-
nomical rank-deficient cousin, thereby gaining speedups on parallel supercomputers.
We shall see later that the existence of a multipole algorithm is really a way of taking
advantage of this fact.

We can mathematically press further and ask for an explanation of why we are
lucky enough to be in this near-rank deficiency situation at all. The answer to such
a question may be found in an understanding of the link between our linear operator
and its continuous limiting form. Such an understanding is closely related to the
mathematics of prolate functions, which we shall explain in this section.

The DFT of x ∈ Cn is y = Fnx, where

[Fn]jk = exp(−2πijk/n) (0 ≤ j, k ≤ n− 1).

Let Fn|p denote the top-left m×m submatrix of the unitary matrix 1√
n
Fn, where

m = n/p is an integer.

Proposition 1. The singular values of Fn|p are strictly between 0 and 1.

Proof. Since Fn|p is a submatrix of a unitary matrix, its singular values are at
most 1. Moreover, Fn|p is a Vandermonde matrix and hence nonsingular.

The CS decomposition [11, p. 77] of 1√
n
Fn shows that if any singular value of Fn|p

is equal to 1, then 0 occurs as a singular value of a rectangular block of Fn. But this
is not possible because the rectangular block would be a section of a Vandermonde
matrix, which has full rank.

Proposition 2. If p = 2, then singular values occur in sine-cosine pairs, that
is, σ2

j + σ2
m+1−j = 1.

Proof. If 1√
n
Fn is split into four blocks, then all four blocks differ from Fn|2 by a

diagonal unitary matrix, and hence they have the same singular values. Then the CS
decomposition shows that the singular values must occur in sine-cosine pairs.

For any p, the singular values of Fn|p have an interesting property suggested by
the plot in Figure 2: a fraction 1/p of them are close to 1, and the rest are close to 0.

This is a remarkable property of sections of the Fourier matrix. By contrast, if we
take a random unitary matrix (with Haar measure) and plot the singular values of a
section, we find that for p = 4 the singular values appear to be uniformly distributed
on the interval (0,

√
3/2), as shown in Figure 3. A discussion of the behavior of

singular values of a section with p 6= 4 is beyond the scope of this paper.

An exact statement of the near-rank deficiency of a Fourier matrix section is
obtained by bounding the number of singular values away from 0 and 1.

Theorem 3. For fixed p and 0 < ε < 1
2 , let Sn(a, b) represent the number of
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Fig. 2. Singular values of F1024|4, computed with Matlab.
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Fig. 3. Singular values of a 256×256 section of a random 1024×1024 unitary matrix, computed
with Matlab.

singular values of Fn|p in the interval (a, b). Then asymptotically, with m = n/p,

Sn(0, ε) ∼
(

1− 1

p

)
m,

Sn(ε, 1− ε) ∼ O(log n),

Sn(1− ε, 1) ∼ 1

p
m.

Proof. Up to unitary phase factors, F ∗n|pFn|p is equal to the m×m matrix Gn|p =

[gjk], where

gjk =

{
1
p if j = k,
sin(π(k−j)/p)
n sin(π(k−j)/n) if j 6= k.

(1)

The singular values σ1, . . . , σm of Fn|p are the positive square roots of the eigenvalues
of Gn|p. Take the Frobenius norm of Gn|p:

‖Gn|p‖2F =
∑
j,k

|gjk|2 =
m

p2
+

1

n2

∑
j 6=k

sin2
(
π(k−j)

p

)
sin2

(
π(k−j)
n

) =
m

p2
+

2

n2

m−1∑
l=1

(m− l)
sin2

(
πl
p

)
sin2

(
πl
n

)
=
m

p2
+

2

n2
m
m−1∑
l=1

sin2
(
πl
p

)
sin2

(
πl
n

) − 2

n2

m−1∑
l=1

l
sin2

(
πl
p

)
sin2

(
πl
n

)
∼ m

p2
+

(
m

p
− m

p2

)
− 1

π2
ln
m

p

∼ n

p2
− 1

π2
lnn.
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Since the eigenvalues of Gn|p are σ2
j , we have, by the trace formula,

m∑
j=1

σ2
j = m

1

p
=

n

p2
.(2)

But σ2
j are also the singular values of Gn|p, so

m∑
j=1

σ4
j = ‖Gn|p‖2F ∼

n

p2
− 1

π2
lnn.(3)

Subtracting (3) from (2), then

m∑
j=1

σ2
j (1− σ2

j ) ∼ 1

π2
lnn.(4)

Since 0 < σj < 1, (4) implies Sn(ε, 1− ε) = O(log n). And then from (2) and (3), we
also have Sn(0, ε) ∼ m/p and Sn(1− ε, 1) ∼ m(1− 1/p).

A better understanding of the transition region is suggested by examining the
generating function [13] g(x) =

∑∞
l=−∞ ĝ(l)e2πilx of the infinite Toeplitz matrix with

entries gjk = ĝ(k − j) given by (1), for j, k ∈ Z. In this case, we have

g(x) =
1

n

m∑
j=1

δ

(
x− 2j − 1−m

2n

)
,

which is a comb function having m = n/p spikes equally spaced in the interval
(− 1

2p ,
1
2p ). This function can be viewed as a discrete version of the periodic win-

dow function defined on [− 1
2 ,

1
2 ] as

w(x) =


1 if x ∈

[
− 1

2p ,
1
2p

]
,

0 if x ∈
[
− 1

2 ,− 1
2p

)
∪
(

1
2p ,

1
2

]
,

which is the generating function of an infinite Toeplitz matrix with entries

wjk = ŵ(k − j) =
sin(π(k − j)/p)

π(k − j) .

The finite version Wp of this matrix is known as the prolate matrix [21], and it has
been well studied in the signal-processing literature. Observe that Gn|p converges
elementwise to Wp:

lim
n→∞ gjk = wjk.

Slepian [17] observed that the prolate matrix Wp also has eigenvalues clustered
near 0 and 1, with a fraction 1/p of them near 1 and the rest near 0. In the transition
region near j = m/p, the jth largest eigenvalue is given asymptotically by

λj(Wp) ∼ 1

1 + exp(πβ)
,
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Table 1
A listing of eigenvalues in a transition interval for the matrices Gn|p and Wp, of order n/p,

and the approximation (5).

p n n/p j λj(Gn|p) λj(Wp) approx

2 512 256 127 0.8774 0.8643 0.8588
128 0.6545 0.6465 0.6460
129 0.3455 0.3535 0.3540
130 0.1226 0.1357 0.1412

2 1024 512 255 0.8575 0.8453 0.8408
256 0.6425 0.6356 0.6352
257 0.3575 0.3644 0.3648
258 0.1425 0.1547 0.1592

4 1024 256 63 0.8774 0.8743 0.8681
64 0.6545 0.6525 0.6521
65 0.3454 0.3473 0.3479
66 0.1226 0.1257 0.1319

where j = dm/p+ β
π logme. In the region 0.2 < λj < 0.8, Slepian found that a good

approximation [17, eqns. 61–62] is

λj(Wp) ∼ 1

1 + exp
(
πβ̂
) ,(5)

where

β̂ =
π(j − 1/2−m/p)

log(8m| sin(π/p)|) + γ

and γ = 0.5772156649 is the Euler–Mascheroni constant. Table 1 shows that approx-
imation (5) is a good predictor of the eigenvalues of the prolate matrix, Wp, which
are also close to the eigenvalues of Gn|p.

These results on the eigenvalue distribution of the prolate matrix come from
finding the asymptotics of discrete prolate spheroidal functions, which are solutions
of a differential equation with a differential operator related to a tridiagonal matrix
that commutes with the prolate matrix. A similar analysis may, in principle, be
applicable to Gn|p. Grünbaum [14] makes the first step in this direction by finding a
tridiagonal matrix that commutes with Gn|p.

3. Algorithm 1: A matrix-vector algorithm. Given that the sections Fn|p
are nearly rank-deficient, we may borrow an idea from image compression [3] and take
a singular-value decomposition. Our first algorithm for the DFT involves nothing more
than matrix-vector multiplication by SVD matrices. In the equation y = Fnx, if we
write Fn as p2 blocks of size m = n/p and if p2 divides n, then


y(0:m−1)
y(m: 2m−1)

...
y(n−m:n−1)

 =
√
n


Fn|p · · · Dp−1Fn|p
Fn|pD · · · Dp−1Fn|pD
...

...
Fn|pDp−1 · · · Dp−1Fn|pDp−1



x(0:m−1)
x(m: 2m−1)

...
x(n−m:n−1)

 ,(6)

where

D = diag(1, η, η2, . . . , ηm−1), η = exp(−2πi/p).
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Since the number of significant singular values of Fn|p is asymptotically only m/p,
this suggests the idea of using compression to reduce communication.

The singular-value decomposition of Fn|p is written

Fn|p = UΣV ∗,

where U and V are m ×m unitary matrices, and Σ is a diagonal matrix of singular
values. Let Σk denote the matrix consisting of the first k rows of Σ, containing the k
largest singular values. The value of k depends on the accuracy desired, but for fixed
accuracy and fixed p, the results of the previous section tell us k = m/p+O(logm).

Let Uk be the first k columns of U . We shall use the approximation

Fn|p ≈ UkΣkV
∗.(7)

If we precompute the k ×m matrices

A(r) = ΣkV
∗Dr (0 ≤ r ≤ p− 1)

and the m× k matrices

B(r) = DrUk (0 ≤ r ≤ p− 1),

then we have the following algorithm. The input vector x is distributed across the
p-processors, as are the intermediate vectors u(r) and v(r) (of length pk), and the
output vector y.

Algorithm 1. Matrix-vector DFT.
1. foreach processor s = 0 : p− 1:

for r = 1 : p
v(r)(sm: (s+ 1)m− 1)← A(r)x(sm: (s+ 1)m− 1)

end
2. foreach processor s = 0 : p− 1:

for r = 1 : p
Send v(r)(sm: (s+ 1)m− 1) to processor r;
Receive u(r)(sm: (s+ 1)m− 1) from processor r.

end
3. foreach processor s = 0 : p− 1:
y(sm: (s+ 1)m− 1)←∑p−1

r=0 B
(r)u(r)(sm: (s+ 1)m− 1)

3.1. Accuracy. Let F̃n denote an approximation to Fn obtained by replacing
Fn|p in (6) by UkΣkV

∗ from approximation (7).

Lemma 4. For all x ∈ Cn, ‖Fnx− F̃nx‖2/‖Fnx‖2 ≤ p(
∑m
j=k+1 σ

2
j )1/2.

Proof.

‖Fn − F̃n‖2 ≤ ‖Fn − F̃n‖F = p
√
n‖UΣV ∗ − UkΣkV

∗‖F = p
√
n

 m∑
j=k+1

σ2
j

1/2

,

and for x ∈ Cn, ‖Fnx‖2 =
√
n‖x‖2.

Table 2 shows k, the number of significant singular values, that must be used with
several choices of n and p in order to obtain selected values of relative accuracy. These
results were computed on a Sun Ultra Enterprise 5000 with the SunSoft Performance
Library.
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Table 2
Number of significant singular values required for given relative accuracy.

Size Relative accuracy
p n n/p2 10−5 10−8 10−11

2 1024 256 271 278 284
2048 512 529 537 544
4096 1024 1043 1051 1060

4 1024 64 78 84 89
2048 128 144 151 157
4096 256 274 282 289
8192 512 532 540 549

8 1024 16 28 32 36
2048 32 45 51 55
4096 64 79 85 91
8192 128 145 152 159

3.2. Complexity. We first analyze the arithmetic complexity of Algorithm 1,
which is based on multiplications of complex matrices. In each of steps 1 and 3, every
processor performs p complex matrix-vector multiplications, each requiring 8km flops.
Hence the total number of flops per processor is 16mkp = 16m2 +O(m logm).

As for communication, all of it takes place in step 2, where there is an all-to-
all personalized communication with each processor sending k scalars to each other
processor. The total number of scalars sent by each processor is (p − 1)k = m(1 −
1/p) +O(logm).

The FFT, by comparison, has each processor sending 3m(1−1/p) scalars but uses
only 5m lg n flops. The matrix-vector multiplication algorithm using the SVD saves
as much as a factor of three in communication at the cost of greater arithmetic. In
the next section, we show how a different algorithm using the fast multipole method
can reduce the arithmetic but maintain this saving in communication.

4. Algorithm 2: Fast multipole approach. The near-rank deficiency shown
in section 2, together with the understanding that the Fourier transform is a highly
structured problem, leads to the suggestion that a multipole-based algorithm may
be appropriate. The suggestion is subtle, for it is the converse that is really correct.
It is well known that we can cluster charges or particles when evaluating potential
fields far away. In the language of linear algebra, the linear operator that transforms
charge or mass to faraway potentials is approximately low rank. It is therefore in-
tuitively reasonable to attempt to identify nearly low rank matrices that arise from
highly structured mathematical problems with the evaluation of some sort of potential
field. We shall see that commuting the so-called “twiddle factor” matrix through the
“butterfly” operations leads to just this sort of identification.

4.1. Matrix factorizations. For parallel FFT computations over p processors,
the standard “six-step framework” [20, pp. 173–174] is based on the radix-p splitting
[20, eqn. 2.1.5], a factorization of the Fourier matrix as

Fn = (Fp ⊗ Im)T (Ip ⊗ Fm)Π,(8)

where again m = n/p and T is a diagonal matrix of twiddle factors,

T = diag(Im,Ω,Ω
2, . . . ,Ωp−1),

Ω = diag(1, ω, ω2, . . . , ωm−1), ω = exp(−2πi/n),
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and Π is a block-to-cyclic permutation that acts on the columns of the identity matrix
as

Πej+kp = ek+jm (0 ≤ j ≤ p− 1, 0 ≤ k ≤ m− 1).

Our algorithm will use a factorization

Fn = (Ip ⊗ Fm)(Fp ⊗ Im)MΠ.(9)

To solve for M , use the fact that Ip ⊗ Fm and Fp ⊗ Im commute, so

(Fp ⊗ Im)T (Ip ⊗ Fm)Π = Fn = (Fp ⊗ Im)(Ip ⊗ Fm)MΠ,

which gives

M = (Ip ⊗ Fm)−1T (Ip ⊗ Fm)

= diag(Im, F
−1
m ΩFm, . . . , F

−1
m Ωp−1Fm)

= diag(Im, C
(1), . . . , C(p−1)),(10)

where the matrices C(s) =
(
c
(s)
jk

)
have elements

c
(s)
jk = ρ(s)

[
cot

(
π

m

(
k − j +

s

p

))
+ i

]
,

with ρ(s) = 1
m exp(−iπs/p) sin(πs/p).

For fast multiplication by C(s), we can use the one-dimensional fast multipole
method (FMM) of Dutt, Gu, and Rokhlin [9]. Dutt and Rokhlin [10] use a simi-
lar approach in a serial algorithm to compute the discrete Fourier transform on a
nonequispaced set of points.

4.2. General approach. In evaluating y = Fnx, we assume that x ∈ Cn is
stored in block order and y ∈ Cn should also end in block order. That is, x(µm: (µ+
1)m− 1) ∈ Proc(µ) at the beginning, and y(µm: (µ+ 1)m− 1) ∈ Proc(µ) at the end
of the algorithm.

One possible approach is as follows:

1. Perform the distributed permutation Πx.
2. In processor µ = 1 : p− 1, multiply local vector by C(µ).
3. Do m distributed FFTs of size p, with one element from each processor

(corresponds to Fp ⊗ Im).
4. In each processor, do a local FFT of size m

(corresponds to Ip ⊗ Fm).

This method requires two distributed permutations, one in step 1 and the other
in the distributed FFT in step 3.

We use an alternative approach that avoids performing the distributed permuta-
tion Π directly. Instead, we combine steps 1 and 2, doing each of the p multiplications
by C(s) matrices in parallel. In terms of total number of scalars sent, the communi-
cation requirements are reduced by nearly half. In the description of the algorithm
below, each of the vectors v(s), of length m, is distributed blockwise across the p
processors, as are x and y, which are of length n.
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Algorithm 2. Fast multipole DFT (Dutt and Rokhlin [10]).

1. for s = 1 : p− 1

σ(s) ←∑m−1
k=0 x(s+ kp)

end
2. for s = 1 : p− 1

v(s) ←∑m−1
k=0 cot

(
π
m

(
k − (0:m− 1) + s

p

))
· x(s+ kp)

{evaluated approximately using Algorithm 3}
end

3. v(0) ← x(0: p: (m− 1)p)
for s = 1 : p− 1

v(s) ← ρ(s)
(
iσ(s) + v(s)

)
end

4.
[
v(0), . . . , v(p−1)

]← [
v(0), . . . , v(p−1)

]
Fp

{evaluated as local FFTs of length p}

y ←


v(0)

v(1)

...
v(p−1)


{distributed transpose}

5. y(µm: (µ+ 1)m− 1)← Fmy(µm: (µ+ 1)m− 1)
{evaluated as local FFT of length m in Proc(µ)}

4.3. The fast multipole method. The heart of Algorithm 2 consists of the
distributed matrix multiplications of step 2. We view each of these p− 1 transforma-
tions as a mapping of m charges on a circle to values of the potential due to these
charges, at points on the circle. The potential due to a charge of strength q, at a point
separated from it by a clockwise arc subtended by an angle θ, is given by q cot(θ/2).
Here the charges and potential evaluation points are both spaced equally along the
circumference of the circle. In the sth potential mapping, the charge locations and
evaluation points are offset from each other by an arc of length 2πs/n.

Dutt and Rokhlin [10] showed how the nonequispaced Fourier transform can be
computed using the FMM. In this article, we are restricted to an equispaced DFT
but we use a different set of interpolating functions that offer greater accuracy in this
restricted case. We also compute it in parallel, using the method of Greengard and
Gropp [12] and Katzenelson [16].

We divide the input, m particles, into 2h boxes, each containing b = m/2h parti-
cles. In the tree code for the one-dimensional FMM, there will be h− 1 levels in the
tree. At level h, the lowest level, the number of boxes, 2h, is not necessarily equal to
the number of processors, p, but 2h should be a multiple of p. The number of boxes
at the lowest level is chosen so as to minimize the total amount of arithmetic to be
performed. At higher levels, numbered h− 1 ≥ l ≥ 2, the number of boxes at level l
is 2l, and each box is formed by combining two boxes at the level immediately below
it. There are four boxes at the top level, level 2.

The number of interpolation coefficients, t, must also be chosen high enough to
obtain sufficient accuracy. In general, t will depend on the size of the problem and the
number of particles in each box. Finite machine precision, however, will also provide
an upper limit on t beyond which improvements in accuracy are not obtained.

In the following code, we may assume that each box is in a separate processor,
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c2(B)

c1(B)

B

n1(B)

n2(B)

i1(B)

i2(B)

i3(B)

p(B)

op(p(B))

Fig. 4. Box B at level 3 with children c1(B) and c2(B) at level 4, parent p(B) at level 2,
neighbors n1(B) and n2(B), and interaction list i1(B), i2(B), i3(B). At level 2, the “highest” level,
box p(B) is opposite box op(p(B)).

although the communication we are concerned about is that between boxes in different
processors. Each box B is adjacent to two other boxes, labelled n1(B) and n2(B),
and if B is below level 2 it has a parent labeled p(B). A box B at level 2 is opposite
to a box labeled op(B).

The interaction list of box B is the set of boxes that are children of neighbors of
B’s parent but are not neighbors of B. The interaction list of each box at levels l ≥ 3
consists of three boxes. See Figure 4.

For each box k at level l, the algorithm calculates Φl,k, a far-field expansion
containing t interpolation coefficients, representing the potential due to particles inside
box k. The algorithm also calculates Ψl,k, a local expansion containing t interpolation
coefficients, representing the potential due to particles outside box k and its immediate
neighbors.

Algorithm 3. Fast multipole potential solver (Dutt, Gu, and Rokhlin [9]).

1. foreach box k at bottom level h: form the t-term far-field expansion Φh,k.
2. {Form the far-field expansions at all higher levels.}

for l = h− 1 : −1 : 2
foreach box k at level l:
Φl,k ← SHFTF(Φl+1,c1(k), π/2

l+1) + SHFTF(Φl+1,c2(k),−π/2l+1)
end

3. {Form the local expansions at every level.}
foreach box k at level 2:
Ψ2,k ← FLIP(Φ2,op(k), 2)
for l = 3 : h

foreach box k at level l: Ψl,k ← SHFTL(Ψl−1,p(k), (−1)kπ/2l)+
SHFTL(FLIP(Φl,i1(k), l), 2π/2

l−1)+
SHFTL(FLIP(Φl,i2(k), l),−2π/2l−1)+
SHFTL(FLIP(Φl,i3(k), l), (−1)k3π/2l−1)

end
4. foreach box k at level h: Evaluate Ψh,k at the potential locations of box k.
5. foreach box k at level h: Compute and sum up the direct potentials due to

particles in boxes k, n1(k), and n2(k), at the potential locations of box k.
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6. foreach box k at level h: Add up the results from the previous two steps for
each potential location of box k.

At each level, the operations SHFTF, FLIP, and SHFTL can be computed by
multiplying the vector of coefficients by a real t × t matrix. The initial far-field
expansion of step 1 is obtained by multiplying the vector of b charges by a real t× b
matrix.

4.4. Interpolation functions and accuracy. In their t-term interpolations
for the Fourier transform, Dutt and Rokhlin [10] use polynomial functions of cot(θ/2)
and degree t. (This is equivalent to using a finite series of derivatives of cot(θ/2).)
To approximate the potential at angular positions θ ∈ [6a, 2π − 6a], due to charges
in the interval −2a ≤ θ ≤ 2a, the Dutt–Rokhlin interpolation scheme sets x =
3 tan a cot(θ/2) and for x ∈ [−1, 1] sets

f̃(x) =

t∑
j=1

f(cj)
∏
k 6=j

(
x− ck
cj − ck

)
,(11)

where c1, . . . cn are the Chebyshev nodes, cj = − cos((j − 1/2)π/t).
In our approach, the interpolation functions are the potentials due to t “virtual

charges” at fixed positions θ′1, . . . , θ
′
t given by θ′j = −2a cos((j − 1)π/(t − 1)). Then

we have

f̃(x) =

t∑
j=1

f(cj)
∏
k 6=j

(
x− ck
cj − ck

) t∏
l=1

(
cj − x′l
x− x′l

)
,(12)

with x′l = 3 tan a cot(θ′l/2).
For local expansions, where the potential at θ ∈ [−2a, 2a] is calculated due

to charges in 6a ≤ θ ≤ 2π − 6a, the Dutt–Rokhlin scheme uses (11) with x =
cot(a)/ cot(θ/2). In our approach, we use (12) with “virtual charges” at θ′j = π +
(6a− π) cos((j − 1)π/(t− 1)), and x′j = cot(a)/ cot(θ′j/2).

When using the virtual-charge approach, the shift and flip matrices in the multi-
pole algorithm will depend on the level of the tree, but greater accuracy is obtained
with the same number of coefficients.

Using the proof methods as Dutt and Rokhlin [10], we can show that the relative
error with the new interpolation functions is O((1/11)t). This compares with an error
bound of O((1/5)t) using Chebyshev polynomials. The analysis is included in the
second author’s doctoral dissertation [23].

If C̃(s) denotes an approximation to C(s) in (10) and F̃n is the resulting approxi-
mation to Fn from (9), then

‖Fnx− F̃nx‖2 ≤ max
s
{‖C(s) − C̃(s)‖2}‖Fnx‖2.

Therefore the maximum relative 2-norm error in computation of Fnx is

max
s
{‖C(s) − C̃(s)‖2},(13)

which is plotted in Figure 5 for a problem of size n = 32, 768 with p = 4. These
results were obtained by computing the matrix norms with a power method using
Matlab. With both the Chebyshev polynomial and virtual-charge interpolation
schemes, using an even number of coefficients, t, the error actually increases over
using t− 1 coefficients. Hence odd t is recommended.
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Fig. 5. Maximum relative 2-norm error as a function of number of coefficients used, with
Chebyshev polynomial interpolation (dashed line) and virtual-charge interpolation (solid line). The
problem size is n = 32, 768, with p = 4 processors. Results were computed from formula (13) using
Matlab.

The authors have also found that when using double-precision arithmetic, ac-
curacy is not improved for increasing t above 15, because of the effects of roundoff
error. In fact, with t = 15 for virtual charges or t = 17 for Chebyshev, the computed
maximum error for a problem of this size is less than the error of 3 × 10−13 that we
obtain using random data in Matlab.

4.5. Arithmetic complexity. We first analyze the arithmetic complexity of
Algorithm 3 by itself. The algorithm is based on multiplications of vectors of complex
numbers by real matrices. To multiply a real µ × ν matrix by a complex vector of
length ν requires 4µν flops. Here is a step-by-step analysis of the number of flops
used by each processor in Algorithm 3.

1. 2h

p 4tb = 4mt
p :

Level h has 2h boxes. A vector of length b containing charges is multiplied
by a t× b matrix.

2.
∑
l=2:h−1d 2l

p e2 · 4t2 = 8t2(lg p− 2 + 2h−p
p ) = 8t2(mbp + lg p− 3):

Level l has 2l boxes. The two SHFTF matrices are t× t.
3. d 4

pe4t2 +
∑
l=3:hd 2l

p e4 · 4t2 ≤ 4t2 + 16t2(lg p− 3 + 2h+1−p
p ) = 16t2( 2m

bp + lg p−
15/4):
Level l has 2l boxes. The four matrices are t×t.

4. 2h

p 4bt = 4mt
p :

Level h has 2h boxes. Vector of length t containing coefficients is multiplied
by a b× t matrix.

5. 2h

p · 3 · 4b2 = 12mb
p :

Level h has 2h boxes. Vector of length b containing charges is multiplied by
a b× b matrix.

6. 2h

p 2b = 2m
p :
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Level h has 2h boxes. Vectors are of length b.
The total number of flops per processor for each potential problem solved by the

fast multipole method is

8mt

p
+

12mb

p
+

40t2m

bp
+ 24t2 lg p− 84t2 =

8mt

p
+

4m

p

(
3b+

10t2

b

)
+ 12t2(2 lg p− 7).

We choose b, the number of particles per box, to minimize this quantity. The
best choice is bopt = t

√
10/3, but since b should be a power of 2, we choose some

bopt/
√

2 ≤ b ≤ bopt
√

2. Then the number of flops per processor for a potential prob-
lem (Algorithm 3) is at most

55
mt

p
+ 12t2(2 lg p− 7).

In Algorithm 2 for the DFT, we solve p − 1 multipole problems in parallel in
step 2. Here is a step-by-step analysis of the number of flops used by each processor
in Algorithm 2.

1. (p− 1)2m/p.
2. (p− 1)[55mtp + 12t2(2 lg p− 7)] (at most).

3. (p− 1)8m/p.
4. m · 5p lg p/p = 5m lg p:

There are m FFT evaluations of size p.
5. 5m lgm:

In each processor there is an FFT evaluation of size m.
Adding up and replacing m = n/p, the total number of flops per processor is

bounded above by

n

p

[
5 lg n+

(
1− 1

p

)
(10 + 55t)

]
+ 12t2(2 lg p− 7)(p− 1).(14)

For t = 15, the number of flops per processor is

n

p

[
5 lg n+ 835

(
1− 1

p

)]
+ 2700(2 lg p− 7)(p− 1).

4.6. Communication complexity. In Algorithm 3, for each multipole prob-
lem, the number of scalars sent by any processor in each step is at most

1. 0.
2. lg(p/4)t at the highest levels of the tree;

4t lg(mbp ) for sending Φ to neighbors.
3. t, for the top-level flip;

(lg p− 2)4t, for the other high levels of the tree.
4. 0.
5. 2b, for sending charges to neighbors.
6. 0.

The total number of scalars sent by a processor in each potential problem is
therefore at most

2b+ t
(

4 lg
(m
b

)
+ lg p− 9

)
.

In Algorithm 2 for the DFT, we solve p − 1 multipole problems in parallel in
step 2. Here is a step-by-step analysis of the maximum number of scalars sent by
each processor in Algorithm 2:
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1. 2.
2. (p− 1)[2b+ t(4 lg(mb ) + lg p− 9)]
3. 0.
4. m

p (p− 1).
5. 0.

So the total number of scalars sent by each processor is

(p− 1)[m/p+ 2b+ t(4 lg(m/b) + lg p− 9)],(15)

which for t = 15 and b = 32 is

(p− 1)[n/p2 + 60 lg n− 45 lg p− 371].

The total number of messages required to be sent from each processor is at most
2p+ 5 lg p− 8.

5. Experimental results. We have implemented both our new algorithm and a
conventional high-performance parallel FFT algorithm in order to assess the accuracy
and performance of our algorithm. In this section, the phrase “new algorithm” refers
to Algorithm 2 of section 4, and the phrase “conventional parallel FFT” refers to an
implementation of the six-step framework described in section 1 and in Figure 1. We
use our implementation to show below that the new algorithm is accurate and that it
can outperform the performance of conventional parallel FFT algorithms.

Before we proceed to present our experimental results, we would like to state the
precise goal of our performance experiments. The experiments are intended to show
that the performances of the two algorithms are within a small factor of each other,
and that the relative speed of the two algorithms is determined by the communication-
to-computation-rates ratio of the parallel computer on which they are executed. When
the ratio is high, the conventional algorithm is faster. When the ratio is low, the new
algorithm is faster.

Our experiments are not intended to show that either of our implementations is
a state-of-the-art code that is better than other parallel FFT codes. We do believe,
however, that if both implementations are improved to a state-of-the-art level, our
new algorithm would still prove faster on machines with fast processors and relatively
slow communication network.

5.1. Performance results. This section compares the performance of our im-
plementations of the new algorithm and a conventional high-performance FFT algo-
rithm. Both algorithms are coded in Fortran 77. We use a publicly available FFT
package, FFTPACK [19], for performing local FFTs on individual processors, and
the message passing interface (MPI) for interprocessor communication. The software
is portable and runs without modifications on both the IBM SP2 scalable parallel
computer and a cluster of Sun UltraSparc symmetric multiprocessors (SMPs).

The first set of experiments was conducted on an IBM SP2 parallel computer [2].
The machine was configured with so-called thin nodes with 128 Mbytes of main mem-
ory. Thin nodes have a 66.7 MHz POWER2 processor [22], 64 Kbytes 4-way set
associative level-1 data-cache, no level-2 cache, and a 64-bit-wide main memory bus.
They have smaller data paths between the cache and the floating-point units than
all other POWER2-based SP2 nodes. The system software that we used includes the
AIX version 4.1.3 operating system, Parallel Environment version 2.1 (this includes
the message-passing library), and the XLF version 3.2.5 Fortran compiler.
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The computation-to-communication balance of the SP2 can be summarized as
follows. The peak floating-point performance of POWER2-based nodes is 266 million
operations per seconds (Mflops), thanks to two floating-point functional units that
can each execute a multiply-add operation in every cycle. While many dense matrix
operations run on these nodes at close to peak performance [1], FFT codes run at
lower rates. Large power-of-two one-dimensional FFTs from FFTPACK run at 20–
30 Mflops, and similar routines from IBM’s Engineering and Scientific Subroutine
Library (ESSL) run at 75–100 Mflops. When the message-passing libraries use the
SP2’s high-performance switch (a specialized interconnection network) using the so-
called user-space communication protocol, which bypasses the operating system, the
communication bandwidth they can achieve is at most 41 Mbytes per second per
node. When the libraries use the high-performance switch using the internet protocol
(IP), which does not bypass the operating system, the communication bandwidth is at
most 13 Mbytes per second per node. When the libraries use IP over Ethernet rather
than over the high-performance switch, the bandwidth is even lower, 1.25 Mbytes per
second for all the nodes combined.

The running times that are reported here are averages of 10 runs. We ran each
experiment 11 times, always discarding the first run, which incurs various startup
costs. We also discarded runs in which the running time was more than twice the
smallest running time for that experiment, which happened only once. We averaged
the other 10 runs (9 in one case). The relative standard deviations were less than 3%
when we used user-space communication over the high-performance switch, less than
9% when we used IP over the high-performance switch, and less than 20% when we
used IP over Ethernet.

The results of our experiments are summarized in Table 3. The results show
that the conventional algorithm is faster when we use the two faster communication
mechanisms, and that the new algorithm is faster with the slowest communication
mechanism, IP over Ethernet. The absolute running times using Ethernet are very
slow. Ethernet is also the only communication mechanism that does not allow addi-
tional processors to reduce the absolute running times, since it is a broadcast mech-
anism in which the total bandwidth does not grow with the number of processors.
The high-performance switch allows additional processors to decrease the absolute
running times of both algorithms.

Table 3 also shows that the conventional algorithm is more sensitive to degra-
dation in communication bandwidth. For example, on an FFT of 1,048,576 points
on 4 processors, the running time of the conventional algorithm increased by 0.932
seconds when we switched from user-space to IP communication over the HPS, but
the running time of the new algorithm increased by only 0.423 seconds. The relative
increases are 36% and 8%, respectively.

Table 4 describes the experiments with the best communication mechanism in
more detail. The table shows that the conventional FFT achieves good speedups. The
speedups for the largest problems on 2, 4, and 8 processors are 1.45, 2.66, and 4.77
respectively (where the speedup is defined as p·Tfft/T ). The volume of communication
and the time spent in communication in the new algorithm are smaller by a factor of
2–3 than the volume and time spent by the conventional algorithm. The part spent in
computations other than local FFTs is much larger, however, in the new algorithm.

With a flop rate of FR (in flops per second) and a communication bandwidth of
BW (in bytes per second), the times we should expect for the the conventional parallel
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Table 3
A comparison of the performance of the two algorithms on an SP2 parallel computer using

three communication mechanisms. The table compares the running time of a standard parallel FFT
with the running time of the new approximate DFT algorithm. Running times are in seconds.
The three communication mechanisms that were used are user-space communication over the high-
performance switch (US-HPS), internet protocol over the high-performance switch (IP-HPS), and
internet protocol over Ethernet (IP-EN). The last two rows give the minimum and maximum ratios
of the timings reported in the table to what we would expect from the sum of (16)–(18) for TC or
(19)–(21) for TN .

Communication mechanism
Size US-HPS IP-HPS IP-EN

p n standard new standard new standard new
2 32768 0.113 0.199 0.164 0.219 0.769 0.443

65536 0.220 0.399 0.301 0.432 1.526 0.857
131072 0.471 0.833 0.633 0.888 3.083 1.725
262144 1.043 1.761 1.354 1.869 6.250 3.535
524288 2.545 3.987 3.154 4.197 12.976 7.479

4 32768 0.059 0.128 0.109 0.152 1.213 0.602
65536 0.116 0.268 0.199 0.302 2.368 1.198

131072 0.220 0.563 0.355 0.614 5.928 2.528
262144 0.469 1.171 0.719 1.264 11.474 4.902
524288 1.033 2.441 1.504 2.605 18.540 8.726

1048576 2.608 5.355 3.540 5.778 37.020 17.000
8 32768 0.031 0.077 0.061 0.101 1.708 1.263

65536 0.070 0.150 0.114 0.179 3.166 2.117
131072 0.140 0.296 0.266 0.358 7.225 3.196
262144 0.265 0.593 0.446 0.681 12.983 5.691
524288 0.556 1.288 0.866 1.410 22.165 10.097

1048576 1.172 2.704 1.770 2.924 42.093 17.827
2097152 2.823 5.926 3.926 6.320 85.428 33.783

min ratio 5.503 4.984 3.482 4.597 1.193 1.356
max ratio 10.060 6.890 5.405 6.087 1.639 1.918

FFT are

Tfftloc =

(
5
n

p
lg n

)
/FR,(16)

Tarith =

(
6
n

p

)
/FR,(17)

Tcomm =

[
3
n

p

(
1− 1

p

)]
· (16 bytes)/BW.(18)

The last two rows of Table 4 show the minimum and maximum ratio of the actual
times recorded to the times expected with FR = 266 Mflops/sec and BW = 41
Mbytes/sec.

For the new parallel approximate DFT, (14) and (15) with t = 16 give expected
times of

Tfftloc =

(
5
n

p
lg
n

p

)
/FR,(19)

Tarith =

(
890

n

p

(
1− 1

p

))
/FR,(20)

Tcomm =

[
(p− 1)

(
n

p2
+ 64 lg n− 48 lg p− 400

)]
· (16 bytes)/BW.(21)
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Table 4
A comparison of the performance of the two algorithms on an SP2 parallel computer. The

communication software used the high-performance switch without operating system overhead (US-
HPS). Mean times are reported in seconds. The total time is divided into three parts: Tfftloc spent
in Netlib local FFTs, Tcomm used for communication, and Tarith for other arithmetic. The last two
rows give the minimum and maximum ratios of the timings reported in the table to what we would
expect from (16)–(21).

Conventional parallel FFT New parallel approximate DFT
Formula → (16) (17) (18) (19) (20) (21)
p n T Tfftloc Tarith Tcomm T Tfftloc Tarith Tcomm

2 32768 0.113 0.067 0.018 0.029 0.199 0.046 0.141 0.012
65536 0.220 0.129 0.035 0.055 0.399 0.086 0.292 0.021

131072 0.471 0.295 0.070 0.105 0.833 0.211 0.583 0.039
262144 1.043 0.690 0.141 0.212 1.761 0.521 1.166 0.075
524288 2.545 1.846 0.282 0.417 3.987 1.502 2.338 0.147

4 32768 0.059 0.026 0.008 0.024 0.128 0.020 0.097 0.011
65536 0.116 0.059 0.015 0.042 0.268 0.047 0.203 0.018

131072 0.220 0.113 0.030 0.076 0.563 0.088 0.443 0.033
262144 0.469 0.263 0.060 0.146 1.171 0.213 0.902 0.056
524288 1.033 0.626 0.121 0.286 2.441 0.533 1.804 0.104

1048576 2.608 1.724 0.305 0.580 5.355 1.524 3.635 0.197
8 32768 0.031 0.011 0.004 0.016 0.077 0.008 0.056 0.012

65536 0.070 0.025 0.014 0.031 0.150 0.019 0.112 0.018
131072 0.140 0.057 0.028 0.055 0.296 0.047 0.223 0.026
262144 0.265 0.110 0.056 0.100 0.593 0.087 0.464 0.043
524288 0.556 0.253 0.109 0.193 1.288 0.214 1.003 0.070

1048576 1.172 0.608 0.219 0.344 2.704 0.519 2.052 0.133
2097152 2.823 1.683 0.468 0.672 5.926 1.513 4.165 0.249

min ratio 5.503 9.525 40.588 2.485 4.984 8.659 4.649 2.537
max ratio 10.060 19.717 79.147 3.813 6.890 17.182 5.526 4.734

As with the conventional parallel FFT, the last two rows of Table 4 show the minimum
and maximum ratios of actual to expected times with FR = 266 Mflops/sec and
BW = 41 Mbytes/sec.

We have also conducted experiments on a cluster of 9 Sun Ultra Enterprise 5000
servers connected by an Ethernet switch. These servers use UltraSPARC processors
with a peak floating-point performance of 333 Mflops. Although each server contains 8
UltraSPARC processors, our experiments used only 1 processor per server. The maxi-
mum observed bandwidth of the Ethernet switch was approximately 1.25 Mbytes/second
for all nodes.

Table 5 summarizes the results of our experiments on the Sun Ultra cluster. As
on the SP2, we ran each experiment 11 times, discarding the first run, and averaged
the other 10 runs. Relative standard deviations for the arithmetic portions were less
than 15% in all but 4 cases, which ran as high as 30%. Because of fluctuations in
traffic on the cluster, relative standard deviations in communication time were as high
as 53%.

5.2. Extrapolation to other machines. Our results have shown that when we
use Ethernet as an interconnect for SP2 nodes or UltraSPARC processor servers, our
new algorithm outperforms a conventional FFT. While Ethernet cannot be considered
an appropriate communication medium for high-performance scientific computing,
high-performance machines with similar communication-to-computation-rates ratios
do exist and are likely to be popular platforms in the future. (16)–(21) show that the
cutoff ratio is 0.036 bytes/flop.

Let us consider a cluster of symmetric multiprocessors connected with a fast
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Table 5
A comparison of the performance of the two algorithms on a cluster of servers of UltraSPARC

processors. Mean times are reported in seconds. The total time is divided into three parts: Tfftloc
spent in Netlib local FFTs, Tcomm used for communication, and Tarith for other arithmetic. The
last two rows give the minimum and maximum ratios of the timings reported in the table to what
we would expect from (16)–(21).

Conventional parallel FFT New parallel approximate DFT
Formula → (16) (17) (18) (19) (20) (21)
p n T Tfftloc Tarith Tcomm T Tfftloc Tarith Tcomm

2 32768 2.341 0.041 0.015 2.285 1.125 0.030 0.260 0.835
65536 5.738 0.092 0.031 5.615 2.260 0.070 0.553 1.637

131072 12.386 0.203 0.063 12.120 5.165 0.158 1.122 3.885
262144 23.632 0.470 0.126 23.036 9.663 0.381 2.248 7.034
524288 48.895 0.972 0.254 47.669 21.118 0.795 4.595 15.728

4 32768 1.366 0.016 0.007 1.343 0.558 0.015 0.193 0.351
65536 5.127 0.041 0.015 5.071 1.957 0.032 0.402 1.524

131072 10.603 0.092 0.031 10.479 4.341 0.077 0.818 3.447
262144 21.447 0.200 0.062 21.185 8.403 0.168 1.654 6.581
524288 43.711 0.444 0.124 43.143 16.878 0.392 3.368 13.119

1048576 79.827 0.951 0.248 78.628 33.573 0.833 6.860 25.881
8 32768 1.677 0.007 0.003 1.667 1.028 0.006 0.113 0.909

65536 5.460 0.019 0.006 5.435 2.274 0.014 0.226 2.034
131072 12.537 0.039 0.014 12.484 5.945 0.031 0.459 5.455
262144 23.825 0.089 0.031 23.706 10.781 0.076 0.974 9.732
524288 33.214 0.196 0.062 32.956 13.682 0.167 1.950 11.565

1048576 61.447 0.480 0.123 60.843 26.096 0.433 3.931 21.732
2097152 115.096 0.953 0.250 113.893 41.130 0.855 7.896 32.379

min ratio 1.444 7.588 40.649 1.423 1.384 8.130 11.753 0.910
max ratio 4.887 13.268 53.776 4.816 5.563 12.942 13.117 4.660

commodity network. Such a configuration might consist, for example, of several Sun
Ultra Enterprise servers using 8 UltraSparc processors each, connected by an ATM
switch. The peak floating-point performance of each node (if all processors are used)
is about 2.5 Gflops. Measurements made by Bobby Blumofe with Sun Sparc worksta-
tions connected by a Fore ATM switch have shown that the application-to-application
communication bandwidth of the switch is about 5 Mbytes per second per node in
one direction (the nominal peak bandwidth of this network is 155 Mbits per second).
Even if the network can support 5 Mbytes/sec in both directions, the communication-
to-computation-rates ratio is only 0.002 bytes/flop.

A cluster of Digital AlphaServers connected by Digital’s GIGAswitch/FDDI net-
work yields a similar communication-to-computation ratio. The nodes can have up
to 12 processors each, with peak floating-point performance of 600–874 Mflops each.
Digital has measured the bandwidth of the network at about 11.9 Mbytes per sec-
ond [5]. With nodes consisting of 12 600-Mflops processors each, the ratio is 0.0017
bytes/flop.

The ratio in our SP2 experiments with Ethernet is about 0.0022 bytes/flop when
we use 2 nodes, 0.0010 with 4 nodes, and 0.0005 with 8 nodes. The peak perfor-
mance of each node is 266 Mflops and the measured communication bandwidths are
about 580, 270, and 132 Kbytes per second per node with 2, 4, and 8 nodes. In our
Ultra cluster experiments, the ratio is approximately 0.002 bytes/flop with 2 nodes,
0.0009 with 4 nodes, and 0.0005 with 8 nodes. Each node has a peak performance of
333 Mflops, and the communication bandwidth is approximately 1.25 Mbytes for all
nodes combined.

Since the new algorithm outperformed the conventional FFT by a large margin
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even on two processors on the SP2, when the ratio is 0.0022 bytes/flop, it seems
safe to predict that the new algorithm would outperform a conventional FFT on the
above-mentioned clusters whose ratios are even lower.

If we assume that tuning both algorithms would improve the performance of their
local computations by a factor of three, say, then the new algorithm would outperform
a conventional FFT even if the networks of the clusters improved by a similar factor.
This assumption is supported by the fact that a tuned high-performance local FFT
routine (in ESSL) is about 3.75 times faster than the publicly available package that
we used (FFTPACK).

6. Conclusions. The results of our experiments on the SP2 and the Ultra cluster
have shown that when the communication-to-computation-rates ratio is low, the new
algorithm outperforms a conventional parallel FFT by more than a factor of two.
Quantitative performance extrapolation indicates that the new algorithm would also
be faster on state-of-the-art clusters of symmetric multiprocessors.

The new algorithm is faster when communication dominates the running time
of conventional parallel FFTs. When communication is so expensive, both conven-
tional and the new algorithms are not likely to be very efficient when compared to a
uniprocessor FFT. That is, their speedups are likely to be modest. There are at least
two reasons to believe that the new algorithm would prove itself useful even when
speedups are modest. First, in many applications the main motivation to use parallel
machines is the availability of large memories, and not necessarily parallel speedups.
In other words, it may be necessary to compute FFTs on multiple nodes because the
data do not fit within the main memory of one node. Second, an FFT with a small
or no speedup can be a part of a larger application which exhibits a good overall
speedup. The application might include, for example, FFTs as well as grid computa-
tions, which require less communication per floating-point operation than the FFTs.
In both cases, accelerating the parallel FFTs contributes to the performance of the
application, whereas switching to a single-node FFT is not a viable option.

We believe that improvements in the new algorithms that would reduce the
amount of local arithmetic it performs are possible. Such improvements would make
the new algorithm faster than a conventional parallel FFT on machines with higher
communication-to-computation-rates ratio than the ratios that we have indicated in
this paper.
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