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Abstract

In this note, we give the exact distribution of a scaled condition number
used by Demmel to model the probability that matrix inversion is difficult.
Specifically, consider a random matrix A and the scaled condition number
kp(A) = [|A]|F - []JA7Y|. Demmel provided bounds for the condition num-
ber distribution when A has real or complex normally distributed elements.
Here, we give the exact formula.
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1 Introduction and statement of results

In [4], Demmel investigates the probability that numerical analysis prob-
lems are difficult by unifying the common algebraic and geometric structures
underlying the notion of ill-conditioning. As an application of his theory,
he constructs a probabilistic model to examine the probability that matrix
inversion is difficult. It is our goal in this note to work exclusively within
his framework and derive exact distributions for the condition numbers that
he considers. This condition number is a measure of difficulty in that the
larger the value of the condition number, the more “difficult” matrix inver-
sion becomes. The limitations of the model are discussed in [4]. We con-
sider it a rather remarkable accident of mathematics that these distributions
can be written down in a closed form at all. Although, as Demmel states,
the assumption that matrices are uniformly distributed spherically is rather
strong, the mathematics stands on its own, and indeed might have further
applications to the “tubular neighborhoods” that he uses and perhaps also
in multivariate statistics.

The objects of study are a scaled version kp(A) = ||A||F - [|A7"]| of the
usual condition number, and its distribution when considering random real
and complex n by n matrices with elements distributed uniformly on the
sphere 1 = ||A[|7 = 3 af;. Because of the scale invariance of the condition
number and special properties of the normal distribution, it is equivalent to
assume that the random matrices are generated with independent elements
from a real or complex standard normal distribution. Demmel concludes
that for real matrices

C(1—1/z)"""? < Prob(kp(A) > ) < 532(7:) (2_71)167
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where C' is a constant. For complex matrices, on the other hand, he con-

cludes that
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and that asymptotically
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as & — oo for fixed n.

In this note, we derive the exact probability distribution by combining
exact distribution expressions for the smallest singular values [5, 6] of these
random matrices with equations from [3, 8] which relate to kp. Our results

are:

Probability Densities for kp(A):

Real n by n matrices:
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Complex n by n matrices:
2n(n? — 1)$1_2n2($2 — n)”2_2

Here 5 F) denotes the Gauss hypergeometric function. Since obviously
V1 < kp(A), these formulas are valid only for z > /n.
For real matrices, the formula is cumbersome. For large 2 and n > 20,

say, the formula below is quite adequate:
Prob(kp(A) > z) = n*?/z, x> Vn,n> 1.
For complex matrices the exact distribution is a simple expression:

Prob(kp(A) > ) =1—(1—n/2>)" "1, z> /n.



For large n, the condition numbers of real and complex matrices scale
like n%/2. To be precise let &’ be the random variable 2xp/n®?. Then as

n — oo, for real matrices,
Prob(x’ < ) — e~ /o=2/=", (1.2)
For complex matrices,
Prob(s’ < &) — e~/ (1.3)

In fact, for large n the Demmel condition number kp of random uniformly
distributed matrices is roughly y/n/2 times as big as the ordinary 2-norm
condition number x5. To be precise, as n — 00, \%HD/HQ converges almost
surely to 1. Thus for large n, kp truly deserves to be called a scaled condition
number, and the distribution of &’ is the same as the distribution of k,/n

which we have presented in [5, 6].

2 The distribution of xp (real case)

Let A be a real random n X n matrix with independent and identically
distributed (iid) elements from a standard normal distribution. The matrix
W = AAT is said to be a Wishart matrix or to have the Wishart distribution.
Our goal is to study the random quantity

kp(A) = %;/\i,

where A\; > ... > A, > 0 are the eigenvalues of AAT. Clearly xkp(A) > /n.
Let f,, be the probability density function (pdf) of (.%D(A))_2 =N/ A

and let g, be the pdf of A,. The distribution function for kp(A) will be de-

rived from two lemmas regarding f, and g,.



Lemma 2.1 (Davis) The pdfs f, and g, are related by

L((r w2 () ) (5) = 2000 203 g 26,

where L denotes the Laplace transform.

This lemma was proved in [3], where the more general case of A; /3" | A;
is examined. These ratios arise in the multivariate analysis of variance
(MANOVA) as described in multivariate analysis books such as [2].

The density function g, is known exactly (see [5] or [6]):

Lemma 2.2 The density of the smallest eigenvalue of a Wishart matriz is

n—1
2

n n+1
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When a > 0 and b < 1, the Tricomi function, U(a,b,z), is the unique

1
)x_l/ze_m/zU( ,—§,$/2).

solution to Kummer’s equation

dw
27—|—(b—2)E—aw_0, (2.1)

satisfying U(a,b,0)=T'(1 —b)/T(1 + a —b) and U(a,b,00) = 0.

Combining Lemma 2.1 and Lemma 2.2, we obtain

Theorem 2.1 The density of (kp(A))™" is

) = e o) 2 (-
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and 5 F is the Gauss (hypergeometric) function.




Proof According to [7] (formula 7.522.4° p. 850),! if b > 0,
L(w'™ S F(a,a—c41;b;—w)) (s) = T(b)s*"U(a,c, s), (2.2)

where 5/} is the Gauss (hypergeometric) function.

: _n 1 _n2 n _ 1 _n
Withe=2-35,0="%4+2~-1,¢c=—3,and d = 7 + 1, we have from

Lemmas 2.1 and 2.2 that

1

I ((1 +wyiozg, (m)) () = ac' =T (B)s" U (a, e, 5). (2.3)

From 2.2 we have
L (aw' 'y Fi(a,d; b; —w)) (s) = al'(b)s*~'U(a, ¢, s).
Using familiar results concerning the Laplace transform, we then obtain

L(a(w—n+ 1) (a,d;b;—(w—n+1))) (s) = ae*"T(b)s* U a, ¢, 5).
(2.4)
Combining 2.3 and 2.4, we obtain

1

1 %n2—2
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) = alw =+ )b~ =+ 1)

from which the theorem follows. ]

Corollary 2.1 Let h, (x > \/n) be the density of kp(A) for real matrices.
Then

2
_n2 n(rntl) n n n n
ho(2) = pa' ™" (2* — n) G 3} (5— ,§—|—1;7—|— 5" 1;—(962—71)) ,
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where .
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M= ﬁr(n(n;—l) _ 1)

and 5 F is the Gauss (hypergeometric) function.

!This formula is incorrect in older editions of [7]. We have verified that the formula as
listed in our edition of [7] is indeed correct.



Proof This follows from Theorem 2.1 using the standard change of variable
formula for probability densities.
Corollary 2.2 For fized n, as v — o0,

-2

ho() ~vpa™7,

where

Forn > 20, v, ~ n?/?.

Proof The asymptotic formula for h,, follows from 15.3.4 and 15.1.20 of [1].

3 The distribution of xp (complex case)

The complex case is much easier than the real case, and the resulting
formulas are considerably simpler. In [6], we gave a complete derivation
of the exact density from first principles, but here we will proceed in an
analogous manner to the real case.

Let A be a complex n X n matrix with independent and identically dis-
tributed (iid) elements from a complex standard normal distribution. A
complex standard normal distribution can be defined as u+ vi, where u and
v are independent standard normals.

The matrix W = AA is said to be a complex Wishart matrix or have
the complex Wishart distribution. Again our goal is to study the random

quantity




where Ay > ... > A, > 0 are the eigenvalues of the complex Wishart matrix
AAH . As in the real case, kp(A) > /n.

Using the same notation as in the real case, let f, be the probability
density function (pdf) of (kp(A))~2 = A,/ >, A; and let g, be the pdf of
A,.. The generalization of Lemma 2.1 for the complex case can be found in
[8].

Lemma 3.1 (Krishnaiah and Schuurmann) The pdfs f, and g, are related

by

2

I ((1 +w)yt g, (1%0)) () = T(n2)e*s'=" g, (s).

Again, we have the density function g, exactly (see [5] or [6]):

Lemma 3.2 The density of the smallest eigenvalue of a complex Wishart

rn

matriz is g,(x) = ne="", i.e, NA\ymin is exponentially distributed.

Theorem 3.1 The density of (kp(A))™" is
fa(@) = n(n® = 1)(1 = na)”" 2

Proof This formula can be derived from the two lemmas, and the integral

formula for the gamma function. ]

Corollary 3.1 Let h,(z) (x > \/n) be the density of the condition number

kp(A) for complex matrices. Then
ho(z) = 2n(n® — D'~ (2 — n)"" 2

Corollary 3.2 The probability distribution of kp is given in the complex
case by

Plip > 2)=1—(1—n/a*)""", &> n.



The above result allows us to verify that indeed

Corollary 3.3 For fired n, as © — 00,

P(kp > ) ~n(n* — 1)/2°.
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