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Abstract

Scientific computing is increasingly incorporating the advancements in machine
learning and the ability to work with large amounts of data. At the same time,
machine learning models are becoming increasingly sophisticated and exhibit many
features often seen in scientific computing, stressing the capabilities of machine
learning frameworks. Just as the disciplines of scientific computing and machine
learning have shared common underlying infrastructure in the form of numerical
linear algebra, we now have the opportunity to further share new computational
infrastructure, and thus ideas, in the form of Differentiable Programming.
We describe a Differentiable Programming (∂P ) system that is able to take gra-
dients of Julia programs making Automatic Differentiation a first class language
feature. Our system supports almost all language constructs (control flow, recur-
sion, mutation, etc.) and compiles high-performance code without requiring any
user intervention or refactoring to stage computations. This enables an expressive
programming model for deep learning and, more importantly, it enables users
to utilize the existing Julia ecosystem of scientific computing packages in deep
learning models.
We discuss support for advanced techniques such as mixed-mode, complex and
checkpointed differentiation, and present how this leads to efficient code generation.
We then showcase several examples of differentiating programs and mixing deep
learning with existing Julia packages, including differentiable ray tracing, machine
learning on simulated quantum hardware, training neural stochastic differential
equation representations of financial models and more.

1 Introduction

At first glance, a casual practitioner might think that scientific computing and machine learning are
different scientific disciplines. Modern machine learning has made its mark through breakthroughs in
neural networks. Their applicability towards solving a large class of difficult problems in computer
science has led to the design of new hardware and software to process extreme amounts of labelled
training data, while simultaneously deploying trained models in devices. Scientific computing, in
contrast, a discipline that is perhaps as old as computing itself, tends to use a broader set of modelling
techniques arising out of the underlying physical phenomena. Compared to the typical machine
learning researcher, many computational scientists works with smaller volumes of data but with
more computational complexity and range. As we look closer, many similarities emerge. Both
disciplines have a preference for using dynamic languages such as Python, R and Julia. Often,
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performance critical sections in Python and R are written in C++ and Fortran, less so in Julia. The
core computational routines are grounded in numerical linear algebra, and fundamentally, hardware
has been designed to accelerate this computational core.

There are deep historical and intellectual links between machine learning and scientific computing. On
the surface, deep learning appears to be data driven and scientific computing is about very technical
numerically intensive differential equations that mirror physical processes. It is our viewpoint that
the fields are closer than is often realized with opportunities for machine learning and scientific
computing to benefit from stronger interactions.

Specifically, machine learning has strongly benefited from Numerical Linear Algebra software. The
optimized numerical linear algebra stack was first developed in the context of scientific computing -
BLAS (Levels 1 through 3) kernels [14], LAPACK routines for computing matrix factorizations [3],
and MPI for message passing in parallel computing [1]. The early CUDA libraries were developed
by Nvidia for accelerating scientific kernels on GPUs.

This trend is continuing with more recent techniques such as Neural ODEs. A neural ODE [10] is a
neural network layer which compacts the L layers of a ResNet into a single ODE definition solved in
N < L steps of an adaptive ODE solver. By changing to this form, the memory and computational
costs for the residual network model are decreased. Additionally, the continuous ODE formulation
does not restrict the model to a grid like the traditional RNN, naturally allowing for fitting time series
with irregular observations. Existing ODE solver software can then be employed for efficient solution
of the system.

This is a two-way street. The 2018 Gordon Bell prize [35], awarded for the largest high-performance
scientific computing application, applied deep learning to climate analytics at exascale. Scientific
computing also has much to benefit from advances in machine learning:

1. Surrogate modeling: Scientific simulations are often expensive to run as they evaluate
a system using first principles. These simulations can be accelerated by having machine
learning models approximate the input-output relation. Neural networks or other surrogate
models can be trained on expensive simulations once and then used repeatedly in place of
the simulations, making it possible to explore the parameter space, propagate uncertainties,
and fit the data in ways that have previously been impossible.

2. Adjoint sensitivity analysis: Calculating the adjoint of an ordinary differential equation
system du

dt = f(u, p, t) requires solving the reverse ODE dλ∗

dt = λ∗ dfdu + df
dp . The term λ∗ dfdu

is the primitive of backpropogation, and thus applying machine learning AD tooling to the
ODE function f accelerates the scientific computing adjoint calculations.

3. Inverse problems: For many parameterized scientific simulations, one can ask "what
parameters would make my model best fit the data?" This inverse problem is pervasive yet
difficult because it requires the ability to efficiently compute the gradient of a large existing
simulation. One can train a model on a simulator, which can then be used to quickly solve
inverse problems, but this currently requires generating massive amounts of simulation data
for training, which is slow and computationally expensive. By being able to differentiate
through simulators, we can learn much more quickly and efficiently.

4. Probabilistic Programming: Inference on statistical models is a crucial tool in the sciences.
Probabilistic programming enables more complex models and scaling to huge data sets
by combining statistical methods with the generality of programming language constructs.
Automatic differentiation is the backbone of many probabilistic programming tools, but
domain specific languages lack access to an existing ecosystem of tools and packages. ∂P
in a general purpose language has the benefit of higher composability, access to better ab-
stractions, and enabling richer and more accurate models. The Turing.jl [20] and Gen.jl [11]
packages are excellent examples of these capabilities.

Differentiable Programming (∂P ) has the potential to be the lingua franca that can further unite the
worlds of scientific computing and machine learning. The choice of a language to implement this
system is an important one. Supporting multiple languages within a single ∂P system causes an
explosion in complexity, vastly increasing the developer effort required. Our ∂P system extends the
Julia programming language [7] with differentiable programming capabilities. We chose the Julia
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language because of the abundance of pure-Julia packages for both machine learning and scientific
computing allowing us to test our ideas on fairly large real-world applications.

Our system can be directly used on existing Julia packages, handling user-defined types, state-based
control flow, and plentiful scalar operations through source-to-source AD. In this paper we briefly
describe how we achieve our goals for a ∂P system and showcase its ability to solve problems which
mix machine learning and pre-existing scientific simulation packages.

1.1 A simple sin example: Differentiate Programs not Formulas

We start out with a very simple example to differentiate sin(x) written as a program through its Taylor
series:

sinx = x− x3

3!
+
x5

5!
− . . . .

One feature of our example is that the number of terms will not be fixed, but will depend on x through
a numerical convergence criterion.

To run, install Julia v1.1 or higher, and install the Zygote.jl and ForwardDiff.jl packages with:

using Pkg
Pkg.add("Zygote")
Pkg.add("ForwardDiff")
using Zygote, ForwardDiff

function s(x)
t = 0.0
sign = -1.0
for i in 1:19

if isodd(i)
newterm = x^i/factorial(i)
abs(newterm)<1e-8 && return t
println("i=",i)
sign = -sign
t += sign * newterm

end
end
return t

end

While the Taylor series for sine could have been written more compactly in Julia, for purposes of
illustrating more complex programs, we purposefully used a loop, a conditional, a print statement,
and function calls to isodd and factorial, which are native Julia implementations. AD just works,
and that is the powerful part of the Julia approach. Let’s compute the gradient at x = 1.0 and check
whether it matches cos(1.0):

julia> ForwardDiff.derivative(s, 1.0) # Forward Mode AD
i=1
i=3
i=5
i=7
i=9
i=11
0.540302303791887

julia> Zygote.gradient(s, 1.0) # Reverse Mode AD
i=1
i=3
i=5
i=7
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i=9
i=11
(0.5403023037918872,)

julia> cos(1.0)
0.5403023058681398

2 Implementation

Recent progress in tooling for automatic differentiation (AD) has been driven primarily by the
machine learning community. Many state of the art reverse-mode AD tools such as Tracker.jl [31, 18],
PyTorch [40], JAX [32], and TensorFlow [2] (in the recent Eager version) employ tracing methods to
extract simplified program representations that are more easily amenable to AD transforms. These
traces evaluate derivatives only at specific points in the program space. Unfortunately, this generally
unrolls all control flow and requires compilation and optimization for every new input value.

This choice has been driven largely by the fact that, as the JAX authors put it, “ML workloads
often consist of large, accelerable, pure-and-statically-composed (PSC) operations” [32]. Indeed,
for many ML models the per-executed-operation overhead (in both time and memory) incurred by
tracing-based AD systems is immaterial, because these execution time and memory requirements of
the operations dwarf any AD overhead.

However, this assumption does not hold for many scientific inverse problems, or even the cutting
edge of ML research. Instead, these problems require a ∂P system capable of: (1) low overhead,
independent of the size of the executed operation (2) Efficient support for control flow (3) Complete,
efficient support for user defined data types (4) Customizability (5) Composability with existing code
unaware of ∂P , and (6) Dynamism.

Particularly, scientific programs tend to have adaptive algorithms, whose control flow depends on
error estimates and thus the current state of the simulation, numerous scalar operations, define large
nonlinear models using every term individually or implementing specialized numerical linear algebra
routines, and pervasive use of user-defined data structures to describe model components, which
require efficient memory handling (stack-allocation) in order for the problem to be computationally
feasible.

To take these kinds of problems, Zygote does not utilize the standard methodology and instead
generates a derivative function directly from the original source which is able to handle all input
values. This is called a source-to-source transformation, a methodology with a long history [6]
going back at least to the ADIFOR source-to-source AD program for FORTRAN 77 [8]. Using this
source-to-source formulation, Zygote can then be compile, heavily optimize, and re-use a single
gradient definition for all input values. Significantly, this transformation keeps control flow in tact:
not unrolling loops to allow for all possible branches in a memory-efficient form. However, where
prior source-to-source AD work has often focused on static languages, Zygote expands upon this
idea by supporting a full high level language, dynamic, Julia, in a way that allows for its existing
scientific and machine learning package ecosystem to benefit from this tool.

2.1 Generality, Flexibility, and Composability

One of the primary design decisions of a ∂P system is how these capabilities should be exposed
to the user. One convenient way to do so is using a differential operator J that operates on first
class functions and once again returns a first class function (by returning a function we automatically
obtain higher order derivatives, through repeated application of J ). There are several valid choices
for this differential operator, but a convenient choice is

J (f) := x→ (f(x), Jf (x)z),

i.e. J (f)(x) returns the value of f at x, as well as a function which evaluates the jacobian-vector
product between Jf (x) and some vector of sensitivities z. From this primitive we can define the
gradient of a scalar function g : Rn → R which is written as:
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function J(f . g)(x)
a, da = J(f)(x)
b, db = J(g)(a)
b, z -> da(db(z))

end

Figure 1: The differential operator J is able to
implement the chain rule through a local, syntactic
recursive transformation.

julia> f(x) = x^2 + 3x + 1
julia> gradient(f, 1/3)
(3.6666666666666665,)

julia> using Measurements;
julia> gradient(f, 1/3 +- 0.01)
(3.6666666666666665 +- 0.02,)

Figure 2: With two minimal definitions, Zygoteis
able to obtain derivatives of any functions that only
requires those definitions, even through custom
data types (such as Measurement) and many layers
of abstraction.

∇g(x) := [J (g)(x)]2 (1)

([]2 selects the second value of the tuple, 1 = ∂z/∂z is the initial sensitivity).

This choice of differential operator is convenient for several reasons: (1) The computation of the
forward pass often computes values that can be re-used for the computation of the backwards pass.
By combining the two operations, it is easy to re-use this work. (2) It can be used to recursively
implement the chain rule (see figure 1).

This second property also suggests the implementation strategy: hard code the operation of J on
a set of primitive f ’s and let the AD system generate the rest by repeated application of the chain
rule transform. This same general approach has been implemented in many systems [38, 46] and a
detailed description of how to perform this on Julia’s SSA form IR is available in earlier work [29].

However, to achieve our extensibility and composability goals, we implement a slight twist on this
scheme. We define a fully user extensible function ∂ that provides a default fallback as follows

∂(f)(args...) = J (f)(args...),

where the implementation that is generated automatically by J recurses to ∂ rather than J and can
thus easily be intercepted using Julia’s standard multiple dispatch system at any level of the stack.
For example, we might make the following definitions:

∂(f)(:: typeof(+))(a :: IntOrFloat, b :: IntOrFloat) = a+ b, z → (z, z)

∂(f)(:: typeof(∗))(a :: IntOrFloat, b :: IntOrFloat) = a ∗ b, z → (z ∗ b, a ∗ z)

i.e. declaring how to compute the partial derivative of + and ∗ for two integer or float-valued numbers,
but simultaneously leaving unconstrained the same for other functions or other types of values (which
will thus fall back to applying the AD transform). With these two definitions, any program that is
ultimately just a composition of ‘+‘, and ‘*‘ operations of real numbers will work. We show a simple
example in figure 2. Here, we used the user-defined Measurement type from the Measurements.jl
package [21]. We did not have to define how to differentiate the ∧ function or how to differentiate +
and ∗ on a Measurement, nor did the Measurements.jl package have to be aware of the AD system in
order to be differentiated. This extra, user-extensible layer of indirection has a number of important
consequences:

• The AD system does not depend on, nor require any knowledge of primitives on new
types. By default we provide implementations of the differentiable operator for many
common scalar mathematical and linear algebra operations, written with a scalar LLVM
backend and BLAS-like linear algebra operations. This means that even when Julia builds an
array type to target TPUs [16], its XLA IR primitives are able to be used and differentiated
without fundamental modifications to our system.

• Custom gradients become trivial. Since all operations indirect through ∂, there is no
difference between user-defined custom gradients and those provided by the system. They
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are written using the same mechanism, are co-optimized by the compiler and can be finely
targeted using Julia’s multiple dispatch mechanism.

Since Julia solves the two language problem, its Base, standard library, and package ecosystem are
almost entirely pure Julia. Thus, since our ∂P system does not require primitives to handle new types,
this means that almost all functions and types defined throughout the language are automatically
supported by Zygote, and users can easily accelerate specific functions as they deem necessary.

3 ∂P in Practice

A more extensive code listing for these examples is available at the following URL:
https://github.com/MikeInnes/zygote-paper.

3.1 Deep Learning

Zygote is a flexible backend for calculating gradients of deep learning models. A typical example is
shown here, where a recurrent architecture using LSTMs [26] is used to learn Shakespeare. The code
sample below demonstrates many powerful elements of Zygote, making use of several convenient
Julia features in the process. First, the defined model has no special data types within it to enable AD;
the models are defined for forward-pass calculation only, with backwards-pass definitions only for
basic building blocks such as BLAS operations and basic array manipulation. Zygote is used to wrap
the loss computation, explicitly denoting the bounds of the computation that should be differentiated
to calculate the gradients imposed upon the model, but all other pieces of code (including the LSTM
layer definition itself) are written without automatic differentiation in mind. This model executes on
the CPU, GPU [31] and Google TPU architecture [16], with little to no change.

alphabet, Xs, Ys = load_data("shakespeare_input.txt")

model = Chain(
LSTM(length(alphabet), 128),
LSTM(128, 128),
Dense(128, length(alphabet)),
softmax,

)

opt = ADAM(0.01)

# Run through our entire dataset a few times
for epoch_idx in 1:10,

(x_batch, y_batch) in zip(Xs, Ys)

# Calculate gradients upon the model for this batch of data,
# summing crossentropy loss across each time index in this batch
grads = |\Zygoteplain|.gradient(model) do model

return sum(crossentropy.(model.(x_batch), y_batch))
end

# Update the model, then reset its internal LSTM states
model = update!(opt, model, grads)
Flux.reset!(model)

end

Zygote provides an extremely low-overhead AD interface. By performing source-to-source trans-
formation, there is little runtime overhead from the AD transformation, beyond the actual cost of
computing the backwards pass 2. In addition, it has been shown to perform at the same level as
TensorFlow for ResNet on a TPU pod [17].

2In practice Zygote may currently generate code that pessimizes certain compiler assumption and thus leads
to slower execution. We are working on improving the compiler for these case to achieve true zero overhead.
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Layers Total Overhead Number of Ops Overhead/op
1 147.0 us 255 576.3 ns
2 280.5 us 491 571.3 ns
3 406.1 us 727 558.6 ns

Table 1: Zygote per-op overhead estimated across varying numbers of stacked LSTM layers.

In order to measure this, we have benchmarked the backwards pass of a stacked LSTM network,
measuring the runtime as batch size trends toward zero. We hypothesize that overall runtime should
be linear in batch size, and so by linearly extrapolating our readings to a batch size of zero, we will
be able to estimate the fixed overhead induced by each operation within the AD system, where an
operation is a single adjoint definition. We furthermore verify that this overhead is linear in the
number of ops by measuring this for a variable number of stacked LSTMs and recording the number
of ops per model.

Our benchmarks were run on an Intel(R) Core(TM) i5-6600 CPU @ 3.30GHz processor, running
Linux with Julia version 1.3. In all tests, multithreading was disabled both in the AD framework and
in the underlying BLAS library, so as to avoid performance cliffs around multithreading thresholds.
Our results are shown in Table 3.1, displaying an average overhead of 568.8 ns per adjoint definition.
This is a highly competitive as compared to other frameworks such as PyTorch, where op overhead is
at least 1 µs [39].

This vanishing overhead lowers the bar for AD systems to be integrated more thoroughly into
programming languages at an extremely fine scale without worrying about performance issues. The
lower the AD overhead, the smaller the minimum feasible kernel size for an AD system that is
restricted by backwards pass efficiency.

3.2 Differentiating a Trebuchet

Figure 3: Using a neural network surrogate to solve inverse problems

Model-based reinforcement learning has advantages over model-agnostic methods, given that an
effective agent must approximate the dynamics of its environment [4]. However, model-based
approaches have been hindered by the inability to incorporate realistic environmental models into
deep learning models. Previous work has had success re-implementing physics engines using machine
learning frameworks [13, 12], but this effort has a large engineering cost, has limitations compared to
existing engines, and has limited applicability to other domains such as biology or meteorology.

Zygote can be used for control problems, incorporating the model into backpropagation with one call
to gradient. We pick trebuchet dynamics as a motivating example. Instead of aiming at a single
target, we optimize a neural network that can aim it given any target. The neural net takes two inputs,
the target distance in metres and the current wind speed. The network outputs trebuchet settings (the
mass of the counterweight and the angle of release) that get fed into a simulator which solves an ODE
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and calculates the achieved distance. We then compare to our target, and backpropagate through the
entire chain to adjust the weights of the network. Our dataset is a randomly chosen set of targets and
wind speeds. An agent that aims a trebuchet to a given target can thus be trained in a few minutes on
a laptop CPU, resulting in a network which solves the inverse problem with constant-time aiming that
is 100× faster than optimizing the trebuchet system directly (Figure 3). We present the code for this
and other common reinforcement learning examples such as the cartpole and inverted pendulum [30].

3.3 Computer Vision

An emerging direction for computer vision is to see the problem as ‘inverse graphics’: where
vision models take pixel arrays to scene parameters, renderers take scene parameters to pixel arrays.
Many high-fidelity, photo-realistic renderers are available which contain a vast amount of implicit
knowledge about this mapping, and differentiation allows renderers and models to be used in an
autoencoder-like setup to quickly bootstrap a full vision model.

As in other cases, the difficulty lies in getting efficient derivatives from a production-ready renderer,
typically written in a performance language like C++. We repeat the going themes of this paper: ML
framework-based reimplementations are typically limited compared to existing renderers (both by the
available framework operations and by the years of work from rendering experts that has gone into
production renderers), and workarounds such as Monte Carlo sampling [36] impose a high efficiency
cost (around 40× slower than a single render) compared to AD (at most around 5× due to division,
in principle). The Julia community’s approach is to build a renderer suitable, first and foremost, for
traditional production rendering tasks, using a general and high-performance numerical language, and
then differentiate it. Of course, this approach does not preclude the use of domain-specific methods
such as Monte Carlo sampling where appropriate (sections 3.6, ??).

In our examples we have used our prototype renderer to demonstrate optimization of the position of
a point light source, given the desired final rendered image. We define a loss function that accepts
a point light source as input, renders the scene, and compares it to a reference image. As usual,
gradients are then trivial and we can begin to update the position of the point source.

julia> guess = PointLight(Vec3(1.0), 20000.0, Vec3(1.0, 2.0, -7.0))

julia> function loss_function(light)
rendered_color = raytrace(origin, direction, scene, light, eye_pos)
rendered_img = process_image(rendered_color, screen_size.w,

screen_size.h)
return mean((rendered_img .- reference_img).^2)

end

julia> gs = gradient(x -> loss_function(x, image), guess)

Figure 4: Initial Guess Figure 5: After 100 iterations Figure 6: Target Image
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3.4 Financial Derivatives

Much of finance is concerned with how the value of a security will change according to changes
in the market factors, such as interest rates, market indices, or spot prices of underlying assets.
This is naturally expressed via the derivatives of security prices with respect to various conditions.
Previous work has noted that financial contracts are compositional, and form a kind of programming
language [34, 33]. Work in Julia has generalized this to a differentiable contract language, Miletus [9],
where greeks can b derived for arbitrary contracts. Contract valuation can be mixed with free-
form market simulations as well as other ∂P tools like neural networks, enabling differentiable
programming for finance.

In working with fixed-income securities such as bonds, the primary factors are interest rate curves.
These are typically quoted as the par rate at a set of times in the future (e.g. 1 month, 3 month,
6 month, 1 year, etc.), which are referred to as "key rates". Using this to determine the price
of a bond requires (1) interpolating a yield curve from the par rates: this is a process known as
bootstrapping, and requires solving a sequence of implicit problems, typically via Newton iterations;
and (2) computing the bond price from the yield curve by discounting cash flows.

The derivatives of a bond price with respect to the key rates are known as key rate durations:
computing these via AD requires higher-order derivatives (in order to differentiate through the
Newton solver). However, this is entirely invisible to the programmer; several unrelated uses of
differentiation, and even entirely different ADs, simply compose together and do the right thing.

3.5 Quantum Machine Learning

A promising approach for near-term exploitation of quantum computing is hybrid classical-quantum
algorithms where most computation is performed on a classical computer, but key pieces are offloaded
to a quantum processor. One approach to such hybrid systems is the variational quantum circuit where
a quantum circuit is parameterized by classical inputs. Here, a quantum circuit is parameterized by
classical inputs and has a classical output corresponding to the expectation value of some observable
of the final state (obtainable on real devices from the quantum measurement of the final state over
repeated executions of the quantum computation). One interesting characteristic of such quantum
circuits is that it is generally possible to compute a (linear combination of) quantum circuit(s), the
expectation value of which corresponds to the derivative of the expectation value of the original
quantum circuit. An application is quantum circuit design, where the design phase the parameter
space of the variational quantum circuit is explored to find a configuration that outputs desired values.

One such state of the art simulator is the Yao.jl [48] quantum simulator project. Yao.jl is implemented
in Julia and thus composable with our AD technology. There are a number of interesting applications
of this combination. The most obvious is to simply define a custom adjoint of the quantum evaluation
that performs the quantum AD transform and evaluates the transformed circuit, thus enabling full
end-to-end automatic differentiation of hybrid classical-quantum systems. This technique is of course
applicable to both quantum simulators and real hardware.

A more subtle application is to simply perform traditional AD of the quantum simulator itself. As
a simple example of this capability, we consider a Variational Quantum Eigensolver (VQE). A
variational quantum eigensolver is used to compute the eigenvalue of some matrix H (generally the
Hamiltonian of some quantum system for which the eigenvalue problem is hard to solve classically,
but that is easily encoded into quantum hardware). This is done by using a variational quantum circuit
Φ(θ) to prepare some quantum state |Ψ〉 = Φ(θ)|0〉, measuring the expectation value 〈Ψ|H|Ψ0〉 and
then using a classical optimizer to adjust θ to minimize the measured value. In our example, we will
use a 4-site toy Hamiltonian corresponding to an anti-ferromagnetic Heisenberg chain:

H =
1

4

∑
〈i,j〉

σxi σ
x
j + σyi σ

y
j + σzi σ

z
j
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using Yao, Zygote
const nsites = 4
let H = heisenberg(nsites),

v0 = statevec(zero_state(nsites))
energy(circuit) =

(|$\Psi$| = circuit*v0;
real(|$\Psi’$| * H * |$\Psi$|))

end
circuit_init =

random_diff_circuit(nsites, 2)
optimize_plot_loss(

energy, circuit_init, ADAM(0.1))

Figure 7: An ADAM optimizer is used to tune pa-
rameters of a variational quantum circuit to find
the ground state of a 4-site anti-ferromagnetic
Heisenberg chain Hamiltonian. The necessary
gradients are obtained by automatic differentia-
tion of a Yao.jl quantum simulator.

Figure 8: Optimization progress over steps of
the classical optimizer to ground state.

We use a standard differentiable variational quantum circuit composed of layers (2 in our example) of
(parameterized) rotators and c0 entanglers with randomly initialized rotator angles. The corresponding
code is showing in figure 8 3. The resulting plot can be seen in figure 8.

3.6 Neural Differential Equations with applications in finance

Neural latent differential equations [10, 49, 27, 41] incorporate a neural network into the ODE deriva-
tive function. Recent results have shown that many deep learning architectures can be compacted and
generalized through neural ODE descriptions [10, 25, 15, 23]. Latent differential equations have also
seen use in time series extrapolation [19] and model reduction [45, 24, 5, 37].

Here we demonstrate financial time series forecasting with a neural stochastic differential equation
(SDE). Typically, financial SDE models follow the form:

dXt = f(Xt)dt+ g(Xt)dWt,

where f : Rn → Rn and g : Rn×m → Rn with Wt as the m-dimensional Wiener process. For
example, the infamous Black-Scholes equation

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

is related through the Feynman-Kac Theorem to a probability measure driven by a geometric Brownian
motion stock price dSt = rStdt+ σStdWt, where S is the stock price, r is the fixed interest rate of
an option, and σ is the volatility. This signifies that the true value of an option contract can then be
achieved by hedging such that the following conditional expectation holds:

V (S, t) = E

[∫ T

t

e−
∫ T
t
rdτf(Sν)dν + e−

∫ T
t
rdτψ(ST )dν

]
where ψ(Sν) is the value of the contract at the terminal time T given a stock price S, showing that
the PDE’s solution is given by an average over the SDE solutions.

To generalize the model, we replacing the fixed interest rate r with a neural network train against
financial time series data. Our financial simulator utilizes a high strong order adaptive integration

3For space efficiency, some details are factored into utility function omitted from this code listing. However,
the code is very similar to the optimization loop from the deep learning example above. A full, expanded version
of this example can be found with the full code listing in the supplemental material.
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provided by DifferentialEquations.jl [43, 44]. Figure 9 depicts a two-dimensional neural SDE trained
using the l2 normed distance between the solution and the data points. Included is a forecast of the
neural SDE solution beyond the data to a final time of 1.2, showcasing a potential use case.

0.00 0.25 0.50 0.75 1.00

-1

0

1

2

3

4

Neural SDE: Before Training

0.00 0.25 0.50 0.75 1.00

-1

0

1

2
Neural SDE: After Training

Time

Figure 9: Neural SDE Training. For the SDE solution X(t), the blue line shows X1(t) while the
orange line shows X2(t). The green points shows the fitting data for X1 while the purple points show
the fitting data for X2. The ribbons show the 95 percentile bounds of the stochastic solutions.

The analytical formula for the adjoint of the strong solution of a SDE is difficult to efficiently calculate
due to the lack of classical differentiability of the solution4. However, Zygote still manages to
calculate a useful derivative for optimization with respect to single solutions by treating the Brownian
process as fixed and applying forward-mode automatic differentiation, showcasing Zygote’s ability to
efficiently optimize its AD through mixed-mode approaches [42]. Common numerical techniques
require computing the gradient with respect to a difference over thousands of trajectories to receive
an average cost, while our numerical experiments suggest that it is sufficient with Zygote to perform
gradient decent on a neural SDE using single trajectories, reducing the overall computational cost by
this thousands. This methodological advance combined with GPU-accelerated high order adaptive
SDE integrators in DifferentialEquations.jl makes a whole new field of study accessible.

4 Conclusion

The disciplines of machine learning and scientific computing have much to share. We presented a
∂P system that can serve as the basis of a common shared infrastructure in both disciplines. We
demonstrated how we can compose ideas in machine learning and scientific computing to allow for
new applications that transcend these domains, by using the same technology to differentiate programs
in both domains. On the ML side, we show the same performance as existing ML frameworks for
deep learning models (on CPUs, GPUs, and TPUs) and in reinforcement learning. In the case of
scientific computing, we show neural SDEs and quantum machine learning. The system is open
source, and we invite the reader to try their own examples.
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