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EIGENVALUES AND CONDITION NUMBERS OF RANDOM MATRICES*

ALAN EDELMANT+

Abstract. Given a random matrix, what condition number should be expected? This paper presents a
proof that for real or complex 7 X n matrices with elements from a standard normal distribution, the expected
value of the log of the 2-norm condition number is asymptotic to log # as n — co. In fact, it is roughly
log n + 1.537 for real matrices and log n + 0.982 for complex matrices as # — oo . The paper discusses how
the distributions of the condition numbers behave for large n for real or complex and square or rectangular
matrices. The exact distributions of the condition numbers of 2 X n matrices are also given.

Intimately related to this problem is the distribution of the eigenvalues of Wishart matrices. This paper
studies in depth the largest and smallest eigenvalues, giving exact distributions in some cases. It also describes
the behavior of all the eigenvalues, giving an exact formula for the expected characteristic polynomial.

Key words. characteristic polynomial, condition number, eigenvalues, random matrices, singular values,
Wishart distribution
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1. Introduction. What is the condition number of a random matrix? Though we
were originally motivated by this question, the problem quickly becomes one of studying
the eigenvalues of a related random matrix. '

This application of random eigenvalues originally appeared in a classic paper by
von Neumann and Goldstine [22]. Further applications can be found in statistics and
physics (see, e.g., [7], [25]). Statisticians use random eigenvalues in principal component
analysis, multiple discriminant analysis, and canonical correlation analysis. Physicists
model nuclear levels with eigenvalues.

When speaking of a random matrix, we will focus on the Gaussian and Wishart
distributions. We say that a matrix X has the Gaussian distribution if each element of
the matrix comes from an independent standard normal distribution. We obtain Wishart
matrices from Gaussian matrices by forming X X 7. Wishart matrices are of intrinsic
interest because they are essentially the sample covariance matrices for multivariate
Gaussian distributions, as discussed in books on multivaniate statistics such as [25].

Various researchers have investigated the eigenvalues of a Wishart matrix from a
number of points of view. If we take a large matrix from a Wishart distribution, we may
sort and plot the eigenvalues against their position index. A theory of what the picture
should be is developed in [13],[16], [21], and [23]. Estimates of the largest and smallest
eigenvalues are given in [9] and [17]. A complicated expression for the distribution of
the largest eigenvalue is given in [19] and for the smallest eigenvalue in [15].

Our question about condition numbers was introduced in a precise format in [18].
In effect, Smale asks for the expected geometric mean of the condition number of a
Gaussian matrix. Precisely, let X, be an n X n matrix whose elements are independent
standard normal random variables. Let xx, = || X, || X, '] be its condition number in
the 2-norm. What is the expected value of log « y,? The reason we use log « v, is that this
quantity is the measure of the loss of numerical precision (see [6]). The result of directly
averaging the condition number, on the other hand, is known to be infinite. Kostlan and
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Ocneanu (see [18]) obtained some estimates showing that for all ¢ > 0, when 7 is suffi-
ciently large,

2 pal08kn) 5,

3 log 1 2
Kostlan has communicated to me a new result that raises the lower bound to 1 [14]. In
the present paper, we show that this new result is sharp: E(log kx, ) ~ lognas n = oo.
The same leading behavior holds for complex matrices, but we have more precise esti-
mates. We also explore asymptotic results for rectangular matrices.

A natural first step in conducting this investigation was to run some numerical
experiments. In Table 1.1, we list the result of averaging log condition numbers from
random samples of 1000 square matrices of dimension equal to various powers of 2.
Also listed are the results for 1000 matrices of dimensions 100 X 200. The data for square
matrices clearly suggest E(log « x,) ~ 1og n for both the real and complex cases, and we
might perhaps predict that E(log x x,) = log n + ¢ + o(1) for some constant c. In § 6,
we derive the constant ¢ (= 1.537 for real matrices and ~~(0.982 for complex matrices).
We also show that for large (real or complex ) matrices the condition number depends
on the ratio of rows to columns m /n. For example, matrices with twice as many columns
as rows have an expected log condition number asymptotic to 1.76. It is of interest that
this value is finite. In the table we see that the asymptotic result gives a usable approxi-
mation for the finite case.

In Table 1.2, we summarize our results about condition numbers in the limit n —
oo . (Please consult the text for details not explained here.) The values listed are the
exponentials of the expected logarithms of three random variables: the condition number
of the Gaussian matrix and the largest and smallest eigenvalues of the related Wishart
matrix. Note that this first quantity is the ratio of the square root of the other two
quantities. As a kind of table of contents, the table lists where these results are stated
explicitly in the text. K, is in fact 2e7"% where v is Euler’s constant, =0.5772. K, is a
little more complicated. It is given by v and a readily evaluated definite integral. For the
rectangular matrices, the variable y denotes the ratio m /n, where 0 < y < 1.

For the special case of real and complex 2 X n matrices we can specify exactly the
distributions of condition numbers and eigenvalues; these results are reported in §7. We
comment about the tail of the condition number distribution in § 8. We look at the
complete spectrum of a Wishart matrix in § 9 and derive further exact distributions
in § 10.

TABLE 1.1
Average log condition numbers.

Real Complex
n Avg. Avg, —logn Avg. Avg. — log n

2 1.53 0.84 1.19 0.49

4 2.63 125 2.09 0.70

8 3.46 1.38 2.91 0.83

16 4.24 1.47 3.65 0.88

32 493 1.47 4.35 0.88
64 5.64 1.48 5.06 0.90
128 6.44 1.59 5.78 0.93
256 7.04 1.49 6.50 0.96

100 x 200 1.72 1.67




EIGENVALUES OF RANDOM MATRICES 545

TABLE 1.2
Exponentials of expected logs (K, = 4.65, K; =~ 2.67).

Real Complex
K Kn Kin
Thm. 6.1 Thm. 6.2
Square  Apax 4n 8n
Prop. 4.1 Prop. 4.2
4 8
R Kin K3n
Cor. 3.2 Cor. 3.4
1+ Vy [+ Vy
« 1-Vy 1-Vy
Thm. 6.3 Thm. 6.3
Rectangular Ay a(l + Vyy? 2n(1 + Vyy?
Prop. 4.1 Prop. 4.2
)\min f’l(] - 1/;)2 2”“ - V’;’)Z
Prop. 5.1 Prop. 5.2

2. Gaussian and Wishart matrices. We are interested in rectangular Gaussian ma-
trices, that is, m X n matrices all of whose components are independent standard normal
variables. We denote such a random matrnix (or its distribution) by G(m, r). G(m, n)
has the symmetry property that it is invariant under orthogonal transformations (i.e..
1sotropic).

A derived random matrix is the m X m Wishart matrix W (m, n) defined by M =
X X7, where X has the distribution G(m, n). We will focus on the eigenvalues of M,
Amax = M = * 0 = Ay = Amin = 0, since they are the squares of the singular values of X,
and the 2-norm condition number of X is VAnax/ Amin-

Remarkably enough, the exact joint density function for the m eigenvalues of M
can be written as

l m "
(1) Kn,m exP(E Z }\1) H )\i{nfmfl‘,‘ﬂ H (}\z‘_)\j)dxl' ' 'dAm:
i=1 i=1 i<j
where
7 e —i+1 —i+1
o sl Ry
T - 2 2

(see [12] or [25]).

We may further define complex Wishart matrices M = XX 7, where X is of the form
X, + iX,, with X;, X> each independent and with distribution G(m, n). Let G(m, n)
and W (m, n) denote the distributions of X and M, respectively. In this case also, the
exact joint density function for the m eigenvalues is known [12]:

. [ m m
(3) Kn,m eXp (_5 Z ?\r) H )\?HMH (Ai_Aj)2dAl' i dAm:

i=1 i=1 i< j

where

(4) K,=2m"T[ T(n—i+ DT (m—i+1),

i=1
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3. The smallest eigenvalue of W (n, n) and W (n, n). In Theorem 3.1, we show
that the probability density function (pdf) for the smallest eigenvalue, A, of a matrix
from W(n, n)is given exactly by a confluent hypergeometric function of a single variable.
The exact distributions of the largest and smallest eigenvalues of Wishart matrices are
known in certain cases (see [15] and [19]), but these distributions are given as zonal
polynomials or hypergeometric functions of matrix arguments that are computationally
unwieldy. In contrast, the function described below in Theorem 3.1 is readily calculated
numerically by equations 13.1.2 and 13.1.3in [2].

In Corollary 3.1, we will observe that n\,,;, converges in distribution to a random
variable whose distribution has a simple form. From the limiting distribution, we
will analyze the asymptotic behavior of 1og Awi,, which is the key factor in analyzing
E(log «), the expected log condition number.

THEOREM 3.1. If M, has the distribution W(n, n), n = 1, then the pdf of Auin is
given by

Srnn (M) = n I'(n) )\_1/26’_'”’/2(,’(”_1 1 }\).

2#=12 Dy /7Y 2 ' 2'2
When a > 0 and b < 1, the Tricomi function, U(a, b, z), is the unique solution to
Kummer’s equation
d*w
5
dz?
satisfying U(a, b, 0) = T'(1 — b)/T(1 + a — b) and U(a, b, o) = 0.
Proof. Integrating (1), we obtain

() +(b*z)%—aw=0

S (A) = KN ”ze’_mf

Ry

n'—l}\i n—=1
exp (— boM 3) [T Ov=2) TT v=2)A7"2 an,,
i=1 I1=i<j=n—1 =4

where Ry ={\ 2 - Z N, Z A} c R" 'and K;' = o /22 2« DLif27,
The first trick is the transformation x; = \; — A,
Kn n—1

N " e e IT Gt M)A du(x) -+ - du(xa-1),
(n—1)! R1-1 0

where A = [ 1zicj2n1 | X; — x|, du(x) = xe™/?, and the integration takes place over
Rl = flmeg, ovs | My Yo 8y & 0}. Let w(X) denote the integral above. Our goal is to
show that w satisfies (5).

Let A = 6A,, where § = [['Z} |x;, — x;| and A, = Iosicjzn 1x: — x;l.
Further, let f§°= x(x;+A)® and g;=TI/5' (x;+X)""2. Last, let dQ=
du(x,)- - du(x,—1) and dQ; = du(x,) - du(x,_,). Below we express w, w', and w"
using this notation. All the integrations are over R” !, and symmetry is used when
possible.

W=fg1A dQ,

H

w=—

= ],
3 ff?’_yzgzﬂ dqQ,

W' = Wff?.—wzfnggyﬁ dQ +§(n = l)ff(l)'_ﬁfzng ds2.
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Since g, = (A + x,)f$*/? g2, we have

w= fx,f?'_3’2g2A dQ + P\J..f'?‘“”zng dQ

. w"+ff{’"3/2ng do

n—1

2\
n—1

2A d
=— 1w’—2ff%’3/2g2d7{e‘x"2}Adx1 dSl,
1

n—

w'+ ff%'_3f2g2 e A dx, d

2\ d
=— w’+2j—{f%=_3’26}e*"'”gz/_\z dx, dQ.
n—1 dx

The last line is the result of integration by parts. The differentiation gives three terms,
so that

%
W= —nz— 1 w’+4ff?’“3"2g2A dﬂ—3ff}’5f2g2f_\ dQ
6) +2(n-2) [ 170 do
X — X2
(AW

2 e Ao 3{_{'}‘ 512N dQ+2(n—2) fﬁéﬁ-”zgza Ao,
n—1 J x—x2

Investigating each of the above two integrals, we find

(7) Jf}'_sfzng dQ= ff?-—mng dQ— xff&’-—ﬁfzgza dQ,

and

X x(xa+ A .
fd‘ —f9732g,A dQ = f——‘( 24N 03200312, g0
X1 — X2 X1—X2

X e o
=X f —Z—fOR T A d,
X1 — X2
because x,x2/(x; — X2) is antisymmetric. We can use the identity x,/(x; — X2) + X2/
(x; — x;) = | and symmetry to integrate this last expression. We obtain
x _ X1 - .
[ ptrrgaa [ S E g gse
X1 —X2 X1~ X2

(8)
) %f ST g0

We substitute (7) and (8) into (6), replacing the integrals with the expressions for
w' and w”, and finally rescale z = A/2 to obtain (5). Equation (1) gives w(0) =
K7L, 1(n— 1)!and clearly w(co) = 0. The constant term in the pdf is then
K, I'(n/2+1) _n I'(#)
Kosina T(3/2)  277'12T(n/2)’
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and the theorem is proved. This proof was inspired by [3]. See §§ 9 and 10 for further

applications of the techniques used.
Though the pdf given in Theorem 3.1 is readily computed, the distribution of #A;,

is far simpler as n = o0
COROLLARY 3.1. IfM, has the distribution Wi(n,n), thenasn—> oo, n\y, converges
in distribution to a random variable whose pdf is given by
— 1 ijek(x/u 1)
&

J(x)

Proof. From Theorem 3.1, the pdf of n\,, is

_n'”? T(n) ~172 -x2p (B 1 x
fnxmin(x)*zn*uzp(n/g)x o U( 2 2’2n)'

We recall that x, converges to x in distribution if, for all o, lim,—,, P(x,<a)=
P(x < «). We obtain pointwise convergence of the pdfs on (0, o0) with the aid of
Stirling’s formula and the following limiting expression:

. +2\ (n—1 1
nll»nl 27r_”2I‘(nT)U(n2 ,—5,%)=(1+V;)€ "

which is a valid variation of equation 13.3.3 in [2].

In Fig. 3.1, we illustrate the speed of this convergence. We plot the ratio of the pdf
of nAmin for n = 10 against the function given by Corollary 3.1. We do the same for n =
50. Note for n = 50 the ratio is nearly 1 throughout the whole interval shown.

COROLLARY 3.2. If M, has the distribution Win, n), then as n = oo,

E(log(nApin))— —1.68788 - - .

n-fo J

n=50

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

FIG. 3.1. Speed of convergence of the pdf of P\min.
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Proof. In light of the previous corollary and proper convergence of the integrals,
the number we seek is

va- log xl L V;e’(”“ " dx
0 2\(;

This integral can be manipulated into

,—1/2y?

—2’Yf29”2fm £
1

via a change of variables and equation 4.331.1 in [10], but we know of no simpler form.
In this form, however, numerical integration is trivial. v =~ 0.5772 in Euler’s constant.
We now give the analogous results for complex matrices. The complex case turns
out to be simpler.
THEOREM 3.2. If M, has the distribution W(n, n), then the pdf of Amin is

given by

d
y+1 ¥

H
f)’\mm(}\)ZEE-Mz/2‘

Proof. Let fi_, (\) be the pdf of Anin. From (1) we have

. . " lnr 1
,f)\min(}\):K?i,neihjh‘[\' exp (_2 Z ;\i) H (AIAAJ) d)\l B d>\n 1-

R i=1 i<
By making the transformation x; = A; — A, we may conclude that f, (A\) = ce ™/ * for
some constant ¢.

COROLLARY 3.3. If M, has the distribution W(n, n), then for all n, n\ni, has the
distribution X3.

Although this corollary immediately follows from the theorem, we might only have
guessed it immediately for n = 1. This result may be observed experimentally in Fig. 3.2,
where we have computed #Anm, for 1000 matrices, each 100 X 100. After sorting these
1000 numbers, let n; denote the ith value obtained. In Fig. 3.2, we plot n; versus i/n.
This gives the empirical fraction that is less than or equal to n;. Note that this empirical
cumulative density function (cdf) (also known as the empirical distribution function)
wiggles around the theoretical cdf plotted as a sold line.

COROLLARY 3.4. If M, has the distribution W (n, n), then for all n,

E(log nAmin) = log 2 — v = 0.11593- - -,

Proof. We can use equation 4.352 in [10] to compute the appropriate integral.

4. The largest eigenvalue of W (m, n) and W(m, n). In this section we discuss the
largest eigenvalue, Amax, of W(n, n) and W(m n), but it requires little extra effort to
consider a more general case. Specifically, consider a sequence of Wishart matrices
W(m,, n)or W(mn, n) such that m,/n— yasn—> . Loosely speaking, we are looking
at large matrices X X 7, where the ratio of number of rows to columns in X is roughly y.
Clearly, ¥ = 1 covers the cases of W(n, n) and W(n, n).

We start with a known result concernir}g the convergence in probability of the
largest eigenvalues. As a reminder, to say x, = X means for all € > 0,

lim,— . Pr(|x—x,|>¢)=0.
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O MRS 1 1 i ool L | 1
0 2 4 6 3 10 12 14 16

F1G. 3.2. Theoretical and empirical cdf of nhmin for Win, n).

LEMMA 4.1, If M, has the distribution W{m,, n), where im,_. . m,/n =y, 0 =
Vv < oo, then

(9) (/M= (L + VP2 andfor0=y=1, (1/n)Amin—(1— V)2

Proof. A stronger result (almost sure convergence) can be found in [17].

It is interesting to check Lemma 4.1 experimentally. When we take y = 1, the lemma
states that, (1/#1) Anax COnverges in probability to 4. With # = 100, we computed Ap../ %
for 1000 matrices. In Fig. 4.1, we plot the empirical cumulative density function (cdf),
which is quite close to a step function with step at 4.

We would like to be able to readily conclude from Lemma 4.1 that

E(108 Amax/) = log (14 V)2,

It would be that simple if the logarithm were a bounded function; however, since log x
has singularities at zero and infinity, we must carefully investigate the convergence at
the singularities. To be precise, we must show that the sequence of random variables
log Amax/# 18 uniformly integrable [5]. In the following lemma we estimate the pdf.
LEMMA 4.2. If M has the distribution W(m, n), then the pdf f,_, (x) satisfies
1:']/22“ —n— )2

K i
10 X é# (n+M73)/2€—x/2: x(n+;n—3)/28—x/2_
(10) Sra(X) Kn-l‘m-lx T'(n/2)T(m/2)

Proof. This was shown for m = n in [22] by manipulating the expression (1). The
same techniques work in the general case.

We can now prove the result that we expect.

PROPOSITION 4.1. If M, satisfies the hypotheses of Lemma 4.1 then E(log Apay) =
logn+log(l+ Vi)i+o(asn— oo.
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FIG. 4.1. Empirical cdf of (1 /nhna) for Win, n) (n = 100).

Proof. Let o denote Anax /7, and let f,(x), F,(x) be the corresponding probability
density function and cumulative density function. We break up

E(bgo%=fmkgxﬁﬂxﬂh
(4]

L]
0 ] r
for values of ¢ and r depending on y, but not n. By Lemma 4.1, the middle integral
approaches log (1 + V;f)"', and we proceed to show that the other integrals vanish in
the limit. '

Step 1. [§.

We will need a fact that is also of independent interest. We have available another
distribution of random matrices whose singular values are distributed exactly as that of
G(m, n). We perform a series of Householder transformations to obtain this distribution.
(See [17] or [21] for details.) The conclusion is that if X has the distribution G(m, n),
then X is orthogonally similar to an m X 7 matrix

i o~ 0---0\
(11) Ym=1, =i, o

into three integrals:

/

i Wi Xn—(m—1) 00 /

where x? and y? are distributed as X* variables with i degrees of freedom (i.e., x?). The
elements here are all nonnegative and independent.
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Let 7 be the random variable defined by (1/n)(x2 + yf,,_l). Considering the first
column of (11), we have | M,.] = | X |? = Anax = X2 + V2,_,, i.e., ¢ = 7. It follows that
F,(x) = F,(x). Integrating by parts, we obtain

0>f log xf,(x) dx= J‘F(x) f £(x) dx= f log xf.(x) dx.

The terms log x F,.(x) and log x F,(x) produced by the integration by parts vanish as
x— 0. The former can be verified by using the fact that 7 has the distribution
n~'x2, ,._., and the latter follows from the former.

To complete the argument we take m = m,,, and let kK = n + m,, — 1, so that r has
the distribution X%/n, and f,(x) = ((1n/2)*?/T(k/2))x**> 'e ™/2 Then,

(]1/2)1(/2 _— ﬁi kf2
0>f log xf.(x) dx= F(k/Z)I(Ing)X (1+y) .

Here the ~ indicates that only the exponential behavior is kept as n = . (Comput-
ing the asymptotics of this integral is routine but not obvious. A good reference is [4,
Chap. 6].) By choosing any ¢ < (1 + y)/e, we have the desired result.

Step 2. [ 7.

For the singularity of the logarithm at occ we use Lemma 4.1, the fact that f,(x) =
nh....(nx), and a standard asymptotic analysis.

Forr> 1+ y,

o

J:mf(,(x) log x dx EJW xf(x) a’x=f

r reif2

(2/n)m'/?
I“(n/2)l’(m,i/2) rn/lw

(ﬂ)ﬁmﬁx) dx
#

£ €n+m,‘*l)/2€7)_ dx_

- (Eﬁr(e’.) L+ }~y,‘1‘)n/2_

Here again, = indicates that only the exponential behavior is kept as n — oo . By taking
r (depending on y) sufficiently large, we conclude Step 2.

All of these results have analogues for the complex case.

LEMMA 4.3. If M, has the distribution W{(m,,, n), where lim,—.., my,/n =y, 0 =
Vv < oo, then

(12) (1/ 1) Amax = 2(1 +V3)2 and for 0=y = 1, (1/ 1) Ain = 2(1 = V)2,

PROPOSITION 4.2. If M, satisfies the hypotheses of Lemma 4.3, then
E(108 Amay) =log n +1og 2(1 + V)2 + o(1) as n = 0.

The proofs are similar and are omitted, but we think it is of interest to mention the
analogue of formula (11). If X has the distribution G(m, n), then X is orthogonally
similar to an »m X » matrix

[ Xan 0---0
(13) J’2(m—1)_ xz(n—u_ : i

\ Y2 X2(n—(m—1)) 0---0

where the notation is as in (11). From this we can immediately read that in the square
complex case det M has the distribution X3,X3,_;,- - - X3, while in the square real
case it is well known (and can be seen from (11)) that det M has the distribution
40 CAREEE &
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5. The smallest eigenvalue of W (m, n) and W(m, n).

PROPOSITION 5.1. If M, satisfies the hypotheses of Lemma 4.1 and 0 < y < 1, then
E(10g Amin) = log 1+ log (1 — V)2 + o(1).

Proof. As in the proof of Proposition 4.1, we must check that [§log A f,.(A) dX
and [ log AMfi,.(A) dX vanish as n = oo. We use the same notation as in the proof of
Proposition 4.1 and abbreviate m,, as m:

BanlM)
m=1x, m—1
:Kn’mh(ﬂ—m—“ﬂe—hﬂf CXD(_ Z _l) H (Aj_}\_,’) H (7\;—7\))\}"_’”_”/2 d?\;
Ra i=1 2 /i< i—1
m_lA, m—1
gKn'm}\(n—m—l)f’Ze—A/Zf exp(_ E 2L H ()\i_)\_j) H )\I(n—mﬂ},'z dﬁ,
Ro i=1 E i<j =]
:.ngﬂﬂ_ﬁ)\(n—m—l)fze—uz
Kn+],m—1 ’

and from (2),

Knm Uy - nt 1 m n—m+1 n—m+2
4 — ;2 (n m+l)/2l'\ ) (= I‘ I‘ .
Kn+ I —1 " 2 2 2 2
Let ¢ = Amin/ 7, so that f,(x) = nfi,, (nx). Fore <1 —y,
¢ . K, . - % = = :
ozf log xf,(x) dxz—"%—np0"=—"m* "’Zf (log )t VIR REE gy
0 K, 1 — 1 0

ee 1—y ., nf2
%((n(l-y)z) e) '

On the other hand, as in the proof of Proposition 4.1, ¢ = 7, which has the distribution

X2 .. 1t then follows that F,(x) = F,.(x). Forr> 1,
® 1= Fx)
X

J‘OL log x/.(x) dx = log x(F,(x)— 1) |7 + f

Zlog x(F,.(x)— D|F—logx(F.(x)=1)|F + fm log xf,(x) dx.

The same kind of asymptotic analysis as above shows that as n — oo, each of the terms
vanishes.

Of course, we have the complex result as well.

PROPOSITION 5.2. If M, satisfies the hypotheses of Lemma 4.3 and 0 <y <1,
then E(1og Amin) = log 1 + log 2(1 — V)2 + o(1).

6. Limiting condition number distributions and expected logarithms. We can now
combine all the results of the previous section to describe the condition number distri-
butions and the expected logarithms.

THEOREM 6.1. If k, is the condition number of a maltrix from the distribution
G(n, n), then k,/n converges in distribution to a random variable whose pdf is given by

2x+4

s o 2
: e 2/x—2]x .
X

flx)=
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Moreover,
E(log,)=logn+c+o(l)=logn+1.537

asmn—> oo.

Proof. From Lemma 4.1, we know (1/#)Amax 5 4 and Corollary 3.1 gives the
limiting distribution for #An,. The ratio of these quantities, k2/n?, converges in distri-
bution by a standard probability argument. The appropriate change of variables gives
the limiting pdf of k,/#. The expected logarithm follows from Corollary 3.2 and Prop-
osition 4.1.

THEOREM 6.2. If «k, is the condition number of a matrix from the distribution
G(n, n), then k,/n converges in distribution to a random variable whose pdf is given by

8 2
Jly=— o™,
X

Moreover,
E(logk,)=logn+3vy+log2+o(l)=~logn+0.982

as n = oo.
Proof. Asin the proof of Theorem 6.1, the pdf follows from Lemma 4.3 and Cor-
ollary 3.3, and the expected logarithm follows from Corollary 3.4 and Proposition 4.2,
THEOREM 6.3. If k, is the condition number of a matrix from the distribution
G(m,, n) or G(my, n), where lim,_.., m,/n =y and 0 < y < 1, then , converges in
probability to (1 + V:) L — 1/;'). Moreover,
L8 VI +o(l)

1—Vy

E(log k,)=log

as n = oo,

The convergence follows trivially from Lemima 4.1 and Lemma 4.2 and, of course,
the statement could be strengthened to almost sure convergence. The expected logarithm
follows from Propositions 4.1, 4.2, 5.1, and 5.2.

7. Exact expressions for m = 2. It is possible to integrate expressions (1) and (3)
against the condition number to get the exact distributions of the condition numbers of
real and complex 2 X n matrices. We spare the reader the details and give only the results.

The pdf of the condition number of matrices that have the distribution G(2, n) is
given by

x?—1

n—2
s
(x2+1)”

(14) fx)=(n—12"""

Similarly, when the matrices have the distribution G(2, n), we have

T'(2n)  #2 3(x?=1)?
T(mT(n—1) (x*+1)>"

(15) F(x)=2

We can use (14) and (15) to evaluate the integrals giving the expected condition
numbers, and the result is the following theorem.
THEOREM 7.1. If X, has the distribution G(2, n), then

E(logxk-"):%ﬁr(n; i)/r(’;)
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If X, has the distribution G(2, n), then

Fogesy =tog2 + 1= ()

(logus) =log2+5= 2 7x\ 1 Jk—1-
We can also obtain the exact distribution for the smaller and the larger eigenvalues:
THEOREM 7.2. If M, has the distribution W (2, n) and 8 denotes (n — 1)/2, then

S (N) = Ky M (2N e ™2 + 2828 — MT(B, A/2))
and
B K =K 527308 = 1IN ™/2 — 2F(38 — XYy {B, N/2)).
A similar result for (2, n) could be calculated.

8. The tails of the condition number distributions. In the previous sections, we
described the behavior of the condition numbers but said nothing about the probability
that a matrix with a large condition number may appear. Here we will approximate the
condition numbers for square matrices in order to get a sense of the tails of the distri-
butions.

There are four condition numbers that we find interesting. Let « and ¥ denote the
random variables, which are the 2-norm condition number of a matrix having the dis-
tribution (¢(»n, n) and G (n, n), respectively. Since we are only considering # X 7 matrices,
we omit the dependence on # in the notation. The other two condition numbers were
introduced by Demmel [8]. Let | X | denote the Frobenius norm of X, defined
as VX,; X7 = Vtrace (XY X 7). Demmel’s condition number is defined by [|.X || X ~'|.
Let «p and £, denote the random variables that are the Demmel condition number in
the real and complex cases as above. We chart the condition numbers and relate them
to the eigenvalues of the corresponding Wishart matrix in the table below.

K= L>\mii.)t/?\min E - H)\max/?\min
k0= VZ N/ Aain | &5 = VZ N/ A

In the tables that follow, we consistently use the above ordering: real versus complex in
the columns, and 2-norm versus Demmel’s norm in the rows.

The numbers in the table below are the values that the indicated expressions converge
to in probability as #n = oc.

Wi(n,n) W(n,n)
1
= Nz 4 8
n

1
_22:'1:1)\,‘ 1 2
n

The first row is Lemmas 4.1 and 4.3. The second row is derived from the law of large
numbers and the observation that the trace of a Wishart matrix has the X 22 distribution
in the real case and the X3,: in the complex case. Replacing these convergence results
with equality, we define four approximate condition numbers:

Kf: "47’1/)\111“1 %= LSn/}\min
kp=V12/ Ain | K> = V212 /Ain
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Directly from the definition of these condition numbers we have the following jus-
tification of our approximation.

LEMMA 8.1. A4s n — oo, k/&', kp/kp, K/K', and kp/&'p all converge in probability
to 1.

The approximate condition numbers only depend on A,,;,. Thus it becomes necessary
to investigate the probability that Ay, is small.

LEMMA 8.2. As A =0, P(Apin < \) ~ Van if M has the distribution W(n, n) and
P(Amin < N) ~ \n/2 if M has the distribution W (n, n).

Proof. The real result comes from analyzing the formula given in Theorem 3.1.
The complex result is trivial since nAn;, has the distribution X3 according to Corol-
lary 3.3.

THEOREM 8.1. As x = o,

P(k'>x)~2n/x | P(R'>x)~4n?/x?

Plkp>x)~n?/x | P(k'p>x)~n?/x*

Proof. Combine the small A behavior described in Lemma 8.2 with the definitions
of our condition numbers. The results follow from the obvious change of variables.

In one case we can compare our results with those known for the exact condition
number. Demmel showed that for all n, P(¥p > x) ~ (n® — n)/x* as x = oo, while we
have P(Kp> x)~ n’/x* as x— co. The difference is negligible for all but very
small 7.

9. All the eigenvalues of a Wishart matrix. We would like to describe the complete
spectrum of a Wishart matrix. The m eigenvalues of a matrix from W (m, n) and
W(m, n) are, of course, random, but what can we say about them? We have already
mentioned their joint density function in (1) and (3), but this does not give much insight
into the total picture. Here, we contrast three descriptions of the complete set of eigen-
values. The first two are well known and the third is, we believe, new.

(1) Mode. The m-tuple (A;, -+, \,;) that maximizes (1) or (3) (when there is a
maximum ) consists of the roots of the Laguerre polynomial

Lg(a/ﬁ)— ”(X/ﬁ)

where @ = §(n — m — 1) and 8 = 1 in the real case, while « = n — m and 8 = 2 in the
complex case.

(2) Empirical distribution function. Take a large Wishart matrix and plot the
(A, i/n). The picture will be a curve the limiting form of which is well known and listed
for reference in Propositions 9.1 and 9.2.

(3) Expected characteristic polynomial. The expected characteristic polynomials
of Wishart matrices can be computed precisely. They are

(=BY"mI L=/ B);

B = 11in the real case and 2 in the complex case.
We now discuss these ideas in detail.

9.1. Mode. The mode is related to an electrostatic interpretation of the zeros of
the classical polynomials given in [20]. Note that there is an infinite density in the real
case when m = n and A, = 0, so the formula does not apply.

9.2. Empirical distribution function. The empirical distribution function W, (x)
of a matrix M is the fraction of eigenvalues of M that are less than or equal to x. One
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l’—'"—u—f—— ; ; | T r,,,—-/*“l

0.9F

n = 200

— W)

. IVM,.,M(I) -

0 1 — 1 I 1 1 I
0 0.5 1 1.5 2 a5 3 3.

U
=N

FI1G. 9.1. Empirical odf of the eigenvalues of Win. n).

way to view this is that if the eigenvalues are thought of as being chosen from a random
sample, Wy (x) 1s its empincal cdf. Computationally, we simply sort the eigenvalues and
plot A; against //n. We do this for a matrix M, /n, where M, was generated from the
distribution (200, 200) and plot Wy, (x) in Figure 9.1 as a dotted line. It is well known
that W)y, (x) converges almost surely to a limiting function as n = oo, W(x) is plotted
in Fig. 9.1 as a solid line.

PROPOSITION 9.1. If M, satisfies the conditions of Lemma 4.1, then W, w,sn(X) con-
verges almost surely to a fixed function W(x) as n = oo. If y = 1, this function satisfies
W'(x)=(1/2m)((4 — x)/x)'"? for 0 = x = 4. More generally, for 0 < y = 1, we have
almost sure convergence to a fixed function satisfying

Vix—a(»))(b(»)—x)
2w yx

Wx)=

Jor a(y) < x < b(y), where
a()=(Vy=17? and b(y)=Vy+1)2

For y > 1 the above result is modified by adding (1 — 1/y)8(x) to W'(x).

Proof. This proposition and the one to follow was proved in [23] in a very general
setting. Convergence in probability was proved earlier in [16]. Other more recent proofs
can be found in [13] and [21]. These last two proofs are not as general but are quite
elegant.

PROPOSITION 9.2. If M, has the distribution W(m,, n), where lim,_, .. m,/n=y
and 0 = y < oo, then Wy (X) converges almost surely to a fixed function W(x) as
n— co. If y = 1, this function satisfies W'(x) = (1/4m)((8 — x)/x)'? for0 = x = 8.
More generally, W( 2x) = Wi(x), as defined in Proposition 9.1.
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The source of the extra factor of 2 is simple. It is merely the variance of the elements
of the matrices that are 1 in the real case but 2 in the complex case.

9.3. Characteristic polynomial. We can derive exactly the expected characteristic
polynomial of a Wishart matrix. This could be thought of as the average of all the coef-
ficients (which are of course symmetric functions of the eigenvalues) or as the average
value of the characteristic polynomial at a given point. This is of interest here because
the roots of the average polynomial deserve to be thought of as “typical” values for the
eigenvalue.

Computing the expected characteristic polynomial is a special case of a multivanate
integration of the form

J;f(?\l, ,)\m)Ak d#l"'dﬂm,

where du; = e P AfdN;, A =TI, (A — A;), and the region of integration S is defined
by A, -+ Z A, = 0. Any expected value calculations involving the eigenvalues of
Wishart matrices has exactly this form with & = 1 in the real case and k = 2 in the
complex case. (See § 2.)

To compute the expected characteristic polynomial, take f(A;, -+, Ay) =

”_, (t — \;), where ¢ may be thought of as a variable. We make use of a recent result

due to Aomoto [3].

LEMMA 9.1. Let

(16) Ir=| TTGu=2)A  dvy- - dvm,

Sij=1

v

where dv; = Ne(1 — N)?d\;, and the region of integration, S, is defined by 1 Z A\, = - -+
A = 0. Then

(17) ﬁ_(a’+ﬁ’+2n

-1
P4 B (1-2
L } 'm0,

n
where P@#" denotes a Jacobi polynomial, o' =—1+2(a+ Dk, '=-1+
284 )/kand I, = [g A dyy - dy,,.

This lemma is proved in [3]. The value of I; was first computed by Selberg in 1944,
but his original paper is unavailable in many libraries. His results and argument, however,
can be found in § 5.4 of [1]. We have derived an alternative proof to this lemma and to
Lemma 9.2 by proving that the integrals satisfy the correct second-order differential
equation for the Jacobi and Laguerre polynomials. This proof closely resembles the proof
of Theorem 3.1.

LEMMA 9.2
- i L
%) fH (1= N)A* dpy - = Ly )(E),
=l
where Li;" denotes a Laguerre polynomial, (O™ = (=) ("5) Kpmomssm and
(el3) ™ =—1Y" ") Katwss 15

Proof. In (16) make the substitutions X\; = X\;/28 and ¢ — ¢/23. The value of (17)
becomes a multiple of

P,(,f”ﬁ’) 1—35 :P'(rt:’.ﬁ’) 1,_2_[_ .
26 k(B'+1)—2
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To compute (18), let 8’ = oo. Using standard formulas about orthogonal polynomials,
we can verify

2t sl
: @snf1o— =t J_jwunfl})
s Fi (1 k(ﬁ’+1)—2) m (k)

We get the constants ¢4}, by setting 7 = 0 in (18). The right-hand side is ¢{%,("5*). The
left-hand integral is an integral of the expressions (1) and (3) up to a constant. Since (1)
and (3) are joint density functions they integrate to 1. For a suitable choice of n we get
the values (2) and (4). (Note that we computed the constant for k = 1 or 2 since we
had (2) and (4) handy. We could have obtained ¢{"), from scratch for all k, by evaluating
the integral (18) when ¢ = 0 by using a limiting process on the value of Selberg’s integral.)

THEOREM 9.1. Let Py (t) = det (¢ — M) be the characteristic polynomial of M.
Then E(Pyu())=(—D"m\Ly~"™(t) if M has the distribution W(m,n) and
E(Py (1)) = (=2)"m\L{™(t)2) if M has the distribution W'(m, n).

Proof. Each of the expected values we are computing here has the form (18). In
therealcase k= land o = (n — m1 — 1)/2, s0o ' = n — m. In the complex case, k = 2
and o = n — m, so again ' = n — m. The easy way to check that the constant is correct
is to compare the highest coefficient of ¢, which is unity on both sides.

10. The probability density function of A, for W (m, m + 3). The smallest elgen—
value of a matrix from W (m, m + 1) behaves exactly like the one in W(m, m), that is,
M\ has the x4 distribution. The proof is similar to that of Theorem 3.2.

In fact, the pdf of A, for any matrix from W (m, n) for n — m odd or any matrix
from W(m. 1) 1s given by

é)—)\mf'ZP( A)a

where P is a polynomial. This was pointed out in the real case in [15] and in fact can be
seen directly from the integral.

To illustrate another application of Lemma 9.2, we derive the polynomial for the
special case of W (m, m + 3). A similar result 1s given in [15]. where the distribution is
expressed as a hypergeometric function of a matrix argument. The two results are in fact
equivalent, but we give a more explicit expression.

THEOREM 10.1. If M has the distribution W(m, m + 3), then

- ,—Am/2 (3) ¢
i (N) om +])e AL ((—)).

Proof. From (1) we know that

m—1

SN =K, e 2N H N=NAJT NidAh--dhp-y,

1—1 i=1

where 8" is defined by A, Z A\ = -+ = A, = 0. Letting A; = X\; — A, we obtain

m—1
S M) =Ky e ™20 TT (NHN)A duy e dgn— -

&) i=1

Here the notation is as in the previous section and « = 1, so that «’ = 3. The conclusion
follows from Lemma 9.2.

Acknowledgments. My sincere thanks go to Nick Trefethen, whose door was always
open when I needed to describe an idea. His insightful comments have meant a great
deal. I also wish to acknowledge the creators of an excellent software package, MATLAB,
which made running experiments as easy as thinking of them.



560 ALAN EDELMAN

REFERENCES

[1] G. E. ANDREWS, g-Series: Their Development and Application in Analysis, Number Theory, Combinatorics,
Physics, and Computer Algebra, Regional Conference Series in Mathematics 66, American Mathe-
matical Society, Providence, RI, 1986.
[2] M. ABRAMOWITZ AND I. A, STEGUN, EDS., Handbook of Mathematical Functions, Dover, New York,
1970,
[3] K. AoMOTO, Jacobi polynomials associated with Selberg integrals, SIAM J. Math. Anal., 18 (1987),
545-549.
[4] C. M. BENDER AND 8, A. ORSZAG, Advanced Mathematical Methods for Scientists and Engineers, McGraw—
Hill, New York, 1978.
[5] P. BILLINGSLEY, Probability and Measure, John Wiley, New York, 1979.
[6] L. BLUM AND M. SHUB, Evaluating rational functions: infinite precision is finite cost and tractable on
average, SIAM J. Comput., 15 (1986), pp. 384-398.
[7] I. E. CoHEN, H. KESTEN, AND C. M. NEWMAN, EDS., Random Matrices and Their Applications, Con-
temporary Mathematics, Vol. 50, American Mathematical Society, Providence, RI, 1986.
[8] J. DEMMEL, The probability thar a numerical analysis problem is difficult, Math. Comp., 50 (1988),
pp. 449-480. ;
[9] S. GEMAN, A4 limit theorem for the norm of random matrices, Ann. Probab., 8 (1980), pp. 252-261.
[10] L. 5. GRADSHTEYN AND I. W. RYZHIK, Table of Integrals, Series, and Products, Fourth edition, Academic
Press, New York, 1965.
[11] R.D.GupTa AND D. S. P. RICHARDS, Hypergeometric functions of scalar matrix argument are expressible
in terms of classical hypergeometric functions, SIAM J. Math, Anal., 16 (1983), pp. 852-858.
[12] A. T. JAMES, Distributions of matrix variates and latent roots derived from normal samples, Ann. Math.
Statist., 35 (1964), pp. 475-501.
[13] D.JonssoN, Some limit theorems for the eigenvalues of a sample covariance matrix, J. Multivariate Anal.,
12 (1982), pp. 1-38.
[14] E. KOSTLAN, Numerical linear algebra and multivariant analysis, in preparation.
[15] P. R, KRiSHNAIAH AND T. C. CHENG, On the exact distribution of the smallest roots of the Wishart Matrix
using zonal polynomials, Ann. Inst. Statist. Math., 23 (1971), pp. 293-295.
[16] V. A. MARCENKO AND L. A. PASTUR, Distributions of eigenvalues for some sets of random matrices,
Math. USSR-Sb., 1 (1967), pp. 457-483.
[17] J. W. SILVERSTEIN, The smallest eigenvalue of a large-dimensional Wishart matrix, Ann. Probab., 13
(1985), pp. 1364-1368.
[18] S. SMALE, On the efficiency of algorithms of analysis, Bull. Amer. Math Soc., 13 (19853), pp. 87-121.
[19] T. SuGiyaMa, On the distribution of the largest latent root of the covariance matrix, Ann, Math. Statist.,
38 (1967), pp. 1148-1151.
[20] G. SzeGO, Orthogonal Polynomials, American Mathematical Society, Providence, RI, 1939.
[21] H. F. TROTTER, FEigenvalue distributions of large hermitian matrices; Wigner’s semi-circle law and a
theorem of Kac, Murdock, and Szegd, Adv. in Math., 54 (1984), pp. 67-82.
[22] J. vON NEUMANN AND H. H. GOLDSTINE, Numerical inverting of matrices of high order, in John von
Neumann, Collected Works, Vol. 5: Design of Computers, Theory of Automata and Numerical
Analysis, A, H. Taub, ed., Pergamon, New York, 1963.
[23] K. W. WACHTER, The strong limits of random matrix spectra for sample matrices of independent elements,
Ann. Probab., 6 (1978), pp. 1-18.
[24] N. WEiss, G. W. WASILKOWSKI, H. WOZNIAKOWSKI, AND M. SHUB, Average condition number for solving
linear equations, Linear Algebra Appl., 83 (1986), pp. 79-102.
[25] S. WILKS, Mathematical Statistics, John Wiley, New York, 1967.



