
EXERCISES IN SEMICLASSICAL ANALYSIS
AT SNAP 2019, §9

SEMYON DYATLOV

Throughout these exercises we assume that M is an n-dimensional manifold.

Exercise 9.1. Assume that X is a C∞ vector field on M . It defines a first order

differential operator on C∞(M), by differentiating along the vector field. Show that

P := −ihX ∈ Ψ1
h(M) and σh(P ) = p where

p(x, ξ) = 〈ξ,X(x)〉.

Use this example to explain why the principal symbol is a function on T ∗M rather

than on TM .

Exercise 9.2. In this exercise we assume that M is compact.

(a)∗ Show the following elliptic parametrix statement: if a ∈ Sk(T ∗M), P ∈ Ψ`
h(M),

and there exists a constant c > 0 such that |σh(P )| ≥ c〈ξ〉` on supp a, then there exist

Q,Q′ ∈ Ψk−`
h (M) such that

Oph(a) = QP +O(h∞)Ψ−∞ , Oph(a) = PQ′ +O(h∞)Ψ−∞ .

(Hint: one way is to use a partition of unity on a to reduce to standard quantization

on Rn. Another way is to carry out the elliptic parametrix construction directly on M

but then you have to take care of the supports of the resulting symbols.)

(b) Under the assumptions in part (a), show the following elliptic estimate: if u ∈
D′(M) and Pu ∈ Hs−`

h (M), then Oph(a)u ∈ Hs−k
h (M) and there exists C such that

for all N

‖Oph(a)u‖Hs−k
h
≤ C‖Pu‖Hs−`

h
+O(h∞)‖u‖H−N

h
.

(c) As an application of the elliptic estimate, show the following estimate for any

Riemannian metric g on M , any N , any fixed E ∈ R, and any u ∈ D′(M):

‖u‖Hs+2
h
≤ C‖(−h2∆g − E)u‖Hs

h
+ CN‖u‖H−N

h
.

(Hint: take a := 1 − χ for a correct choice of χ ∈ C∞c (T ∗M). You can use that

Oph(1) = I.)

Exercise 9.3.∗ This exercise defines the wavefront set of a semiclassical pseudodiffer-

ential operator. Morally speaking, this is the essential support of the full symbol of

Date: August 3, 2019.
1



2 SEMYON DYATLOV

the operator (i.e. the set of points near which the full symbol is not O(h∞)). However,

one has to take caution since the full symbol of a pseudodifferential operator on a man-

ifold is not invariantly defined. What saves us is that all the semiclassical asymptotic

expansions have terms which are local in the symbols involved, so the wavefront set

still makes invariant sense. (Caution: this definition is very different from the one of

the wavefront set of a family of distributions in §10.) We only define wavefront sets

for compactly microlocalized operators, for the general case (involving the fiber-radial

compactification T
∗
M) see §E.2.1 in the Dyatlov–Zworski book

Assume M is a compact manifold and A ∈ Ψk
h(M). We say that A is compactly

microlocalized and write A ∈ Ψcomp
h (M), if for each cutoff chart (ϕ, χ), we have

(ϕ−1)∗χAχϕ∗ = Oph(aϕ,χ), aϕ,χ ∈ Sk(R2n),

where aϕ,χ = O(h∞)S (R2n) outside of some h-independent compact set. For A ∈
Ψcomp
h (M), we define its wavefront set WFh(A) ⊂ T ∗M as follows: a point (x0, ξ0) ∈

T ∗M does not lie in WFh(A) if there exists a neighborhood U of (x0, ξ0) such that for

each cutoff chart (ϕ, χ), we have aϕ,χ = O(h∞)C∞ on ϕ̃(U).

(a) Show that Ψcomp
h (M) ⊂ Ψ`

h(M) for all `.

(b) Let A ∈ Ψcomp
h (M). Show that WFh(A) is a closed subset of T ∗M .

(c) Let A ∈ Ψcomp
h (M). Show that WFh(A) = ∅ if and only if A = O(h∞)Ψ−∞ . (Hint:

use the proof that Definition 2 ⇒ Definition 1 in the lecture.)

(d) Assume that a ∈ Sk(T ∗M) is supported inside an h-independent compact set K.

Using the change of variables formula, show that

Oph(a) ∈ Ψcomp
h (M), WFh(Oph(a)) ⊂ K.

(e) Show that for A,B ∈ Ψcomp
h (M),

WFh(A+B) ⊂WFh(A) ∪WFh(B),

WFh(AB) ⊂WFh(A) ∩WFh(B),

WFh(A
∗) = WFh(A).

(Hint: use the proof of Proposition E.17 in the Dyatlov–Zworski book.)

Exercise 9.4.∗ This exercise establishes the basic properties of the symplectic form,

the Poisson bracket, and Hamiltonian vector fields on T ∗M . As a prerequisite it has

the theory of differential forms.

(a) Define the canonical 1-form α on T ∗M as follows: for (x, ξ) ∈ T ∗M and v ∈
T(x,ξ)(T

∗M), define

α(x, ξ)(v) := ξ(dπ(x, ξ) · v)
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where π : T ∗M →M is the canonical projection. Show that if N is another manifold,

ϕ : N →M is a diffeomorphism, and

ϕ̃ : T ∗N → T ∗M, (y, η) 7→ (ϕ(y), dϕ(y)−T · η)

is the lifted map of the cotangent bundles, then ϕ̃∗αM = αN where αM , αN are the

canonical 1-forms on M,N . (“The canonical 1-form does not depend on the choice of

coordinates on M .”) Define the symplectic 2-form

ω := dα.

(b) If M ⊂ Rn is an open set and we use coordinates (x, ξ) on T ∗Rn, show that

α =
n∑
j=1

ξj dxj, ω =
n∑
j=1

dξj ∧ dxj.

This explains the abbreviated notation α = ξ dx, ω = dξ ∧ dx.

(c) Show that dω = 0. Next, show that the symplectic volume form

d volω := ω ∧ ω ∧ · · · ∧ ω︸ ︷︷ ︸
n times

is nonvanishing. (Hint: use local coordinates.) These two properties mean that

(T ∗M,ω) is a symplectic manifold.

(d) Let p : T ∗M → R be a C∞ function. Show that there exists a unique vector

field Hp on T ∗M , called the Hamiltonian vector field of p, such that

ιHpω = −dp

where ι denotes the interior product, i.e. for any (x, ξ) ∈ T ∗M and any v ∈ T(x,ξ)(T
∗M),

ω(Hp(x, ξ), v) = −dp(x, ξ)(v).

If M ⊂ Rn is an open set, show that

Hp =
n∑
j=1

(
(∂ξjp)∂xj − (∂xjp)∂ξj

)
.

(e) Using Cartan’s formula for Lie derivative on differential forms, LX = ιXd + d ιX ,

show that LHpω = 0. Conclude that the Hamiltonian flow etHp : T ∗M → T ∗M is a

symplectomorphism, i.e. (etHp)∗ω = ω.

(f) For f, g ∈ C∞(T ∗M ;R), define the Poisson bracket

{f, g} := Hfg ∈ C∞(T ∗M ;R).

Extend this notion to complex valued functions. If M ⊂ Rn is an open set, show that

{f, g} =
n∑
j=1

(
(∂ξjf)(∂xjg)− (∂xjf)(∂ξjg)

)
.
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(g) Show the following identities featuring the Poisson bracket:

{f, g} = −{g, f},
{f, gk} = {f, g}k + {f, k}g,

{f, {g, k}}+ {g, {k, f}}+ {k, {f, g}} = 0,

[Hf , Hg] = H{f,g}.


