EXERCISES IN SEMICLASSICAL ANALYSIS AT SNAP 2019, §8

SEMYON DYATLOV

Recall the Kohn-Nirenberg symbols

$$
S^{k}\left(\mathbb{R}^{2 n}\right)=\left\{a: \forall \alpha, \beta \partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)=\mathcal{O}\left(\langle\xi\rangle^{k-|\beta|}\right)\right\}
$$

Exercise 8.1. (a) Assume that $a \in C^{\infty}\left(\mathbb{R}^{2 n}\right)$ is compactly supported in x and satisfies the following homogeneity condition:

$$
a(x, \tau \xi)=\tau^{k} a(x, \xi) \quad \text { when } \quad \tau \geq 1,|\xi| \geq 1
$$

Show that $a \in S^{k}\left(\mathbb{R}^{2 n}\right)$.
(b) Show that $\langle\xi\rangle^{k} \in S^{k}\left(\mathbb{R}^{2 n}\right)$.

Exercise 8.2. (a) Assume that $a \in S^{k}\left(\mathbb{R}^{2 n}\right), b \in S^{\ell}\left(\mathbb{R}^{2 n}\right)$. Show that $a b \in S^{k+\ell}\left(\mathbb{R}^{2 n}\right)$. (b) Assume additionally that there exists a constant $c>0$ such that $|b(x, \xi)| \geq c\langle\xi\rangle^{\ell}$ for all $(x, \xi) \in \operatorname{supp} a$. Show that $a / b \in S^{k-\ell}\left(\mathbb{R}^{2 n}\right)$.

Exercise 8.3. Assume that $U, V \subset \mathbb{R}^{n}$ are open sets, $\varphi: U \rightarrow V$ is a diffeomorphism, and $\chi \in C_{\mathrm{c}}^{\infty}(U)$. Let $a \in S^{k}\left(\mathbb{R}^{2 n}\right)$. Show that $b(x, \xi):=\chi(x) a\left(\varphi(x), d \varphi(x)^{-T} \xi\right)$ lies in $S^{k}\left(\mathbb{R}^{2 n}\right)$ as well.

Exercise 8.4. Give the following extension of the elliptic parametrix construction of Exercise 7.1 to the Kohn-Nirenberg classes: assume that $a \in S^{k}, p \in S^{\ell}$, and there exists a constant c such that $|p| \geq c\langle\xi\rangle^{\ell}$ on supp a. Construct $q, q^{\prime} \in S^{k-\ell}$ such that

$$
a=q \# p+\mathcal{O}\left(h^{\infty}\right)_{S^{-\infty}}, \quad a=p \# q^{\prime}+\mathcal{O}\left(h^{\infty}\right)_{S^{-\infty}}
$$

where $S^{-\infty}:=\bigcap_{N} S\left(\langle\xi\rangle^{-N}\right)$. (You may assume that Borel's Theorem is still valid, see §E.1.2 in the Dyatlov-Zworski book.)

Exercise 8.5.* Assume that $U \subset \mathbb{R}^{n}$ is an open set and

$$
P=\sum_{|\alpha| \leq k} a_{\alpha}(x) D_{x}^{\alpha}, \quad a_{\alpha} \in C^{\infty}(U)
$$

is a (nonsemiclassical) differential operator of order k on U whose principal symbol

$$
p_{0}(x, \xi):=\sum_{|\alpha|=k} a_{\alpha}(x) \xi^{\alpha}
$$

is (nonsemiclassically) elliptic, namely $p_{0}(x, \xi) \neq 0$ for all $x \in U, \xi \in \mathbb{R}^{n} \backslash\{0\}$. (Examples include the Laplacian and, in dimension 2, the Cauchy-Riemann operator $\partial_{x_{1}}+i \partial_{x_{2}}$.)

We will show the following elliptic regularity theorem: if $u \in \mathcal{D}^{\prime}(U)$ (i.e. u is a distribution on U, that is a continuous linear functional on $C_{\mathrm{c}}^{\infty}(U)$; any element of $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ would define such a distribution), then

$$
P u \in C^{\infty}(U) \quad \Longrightarrow \quad u \in C^{\infty}(U) .
$$

(a) Fix an arbitrary cutoff function $\chi \in C_{\mathrm{c}}^{\infty}(U)$. Take $\chi^{\prime} \in C_{\mathrm{c}}^{\infty}(U)$ such that supp $\chi \cap$ $\operatorname{supp}\left(1-\chi^{\prime}\right)=\emptyset$ and define the rescaled cut off operator

$$
P_{h}:=h^{k} \chi^{\prime} P .
$$

Show that $P_{h}=\operatorname{Op}_{h}(p)$ for some $p \in S^{k}\left(\mathbb{R}^{2 n}\right)$ such that $p(x, \xi)=\chi^{\prime}(x) p_{0}(x, \xi)+$ $\mathcal{O}(h)_{S^{k-1}\left(\mathbb{R}^{2 n}\right)}$.
(b) Fix $\psi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\psi=1$ near 0 , and put

$$
a(x, \xi):=\chi(x)(1-\psi(\xi)) \in S^{0}\left(\mathbb{R}^{2 n}\right)
$$

Using Exercise 8.4, construct $q \in S^{-k}\left(\mathbb{R}^{2 n}\right)$ such that

$$
\begin{equation*}
\mathrm{Op}_{h}(a)=\mathrm{Op}_{h}(q) P_{h}+\mathrm{Op}_{h}(r), \quad r=\mathcal{O}\left(h^{\infty}\right)_{S^{-\infty}} . \tag{8.1}
\end{equation*}
$$

(c) Put $v:=\chi^{\prime} u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$. Applying (8.1) to v, obtain

$$
\chi \operatorname{Op}_{h}(a) v=\chi \operatorname{Op}_{h}(q) \chi^{\prime} P_{h} u+\chi \operatorname{Op}_{h}(q)\left[P_{h}, \chi^{\prime}\right] u+\chi \operatorname{Op}_{h}(r) v
$$

Show that all three terms on the right-hand side are in $C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$:

- for the first term, use the assumption $P u \in C^{\infty}(U)$;
- for the second term, use the pseudolocality statement from the lecture and the fact that the coefficients of $\left[P_{h}, \chi^{\prime}\right]$ are supported away from supp χ;
- for the last term, use the properties of r to see that $\chi \operatorname{Op}_{h}(r): \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow$ $C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$.
(d) Now write

$$
\chi^{2} u=\chi \operatorname{Op}_{h}(\chi(x)) v=\chi \operatorname{Op}_{h}(a) v+\chi \operatorname{Op}_{h}(\chi(x) \psi(\xi)) v .
$$

Using that $\mathrm{Op}_{h}(\chi(x) \psi(\xi)): \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathscr{S}\left(\mathbb{R}^{n}\right)$ show that $\chi^{2} u \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$. Since χ was arbitrary, this gives $u \in C^{\infty}(U)$.
(Note: in the above arguments h was completely irrelevant, in fact we could have fixed $h:=1$.)

