EXERCISES IN SEMICLASSICAL ANALYSIS AT SNAP 2019, §7

SEMYON DYATLOV

Exercise 7.1. This exercise finishes the details of the elliptic parametrix construction from the lecture. We assume that m_{1}, m_{2} are order functions, $a(x, \xi ; h) \in S\left(m_{1}\right)$, $p(x, \xi ; h) \in S\left(m_{2}\right)$, and we have the following ellipticity condition: there exists $c>0$ such that for all h

$$
|p(x, \xi ; h)| \geq c m_{2}(x, \xi) \quad \text { for all } \quad(x, \xi) \in \operatorname{supp} a(\bullet ; h) .
$$

(a) Show that $a / p \in S\left(m_{1} / m_{2}\right)$. (Hint: prove first that every derivative $\partial^{\alpha}\left(p^{-1}\right)$ is a linear combination of expressions of the form $p^{-\ell-1} \partial^{\alpha_{1}} p \cdots \partial^{\alpha_{\ell}} p$ where the multiindices $\alpha_{1}, \ldots, \alpha_{\ell}$ add up to α.)
(b) Recall that $q_{0}:=a / p \in S\left(m_{1} / m_{2}\right)$ and $\operatorname{supp} q_{0} \subset \operatorname{supp} a$. Recall from the Composition Theorem that

$$
q_{0} \# p=q_{0} p-h r_{1}+\mathcal{O}\left(h^{2}\right)_{S\left(m_{1}\right)}, \quad r_{1}:=i \sum_{k=1}^{n}\left(\partial_{\xi_{k}} q_{0}\right)\left(\partial_{x_{k}} p\right) \in S\left(m_{1}\right)
$$

Put $q_{1}:=r_{1} / p$. Show that $q_{1} \in S\left(m_{1} / m_{2}\right), \operatorname{supp} q_{1} \subset \operatorname{supp} a$, and

$$
\left(q_{0}+h q_{1}\right) \# p=a+\mathcal{O}\left(h^{2}\right)_{S\left(m_{1}\right)} .
$$

(c) Iterating the argument in part (b), construct symbols $q_{2}, q_{3}, \ldots \in S\left(m_{1} / m_{2}\right)$, $\operatorname{supp} q_{j} \subset \operatorname{supp} a$, such that for each k

$$
\left(q_{0}+h q_{1}+\cdots+h^{k-1} q_{k-1}\right) \# p=a+\mathcal{O}\left(h^{k}\right)_{S\left(m_{1}\right)} .
$$

(d) Using Borel's Theorem, choose

$$
q \in S\left(m_{1} / m_{2}\right), \quad q \sim \sum_{j=0}^{\infty} h^{j} q_{j} .
$$

Show that $q \# p=a+\mathcal{O}\left(h^{\infty}\right)_{S\left(m_{1}\right)}$.
Exercise 7.2. Assume that we are in the setting of Exercise 7.1 and $m_{1}=1, a=1$. The elliptic parametrix construction gives two symbols $q, q^{\prime} \in S\left(1 / m_{2}\right)$ such that

$$
1=q \# p+\mathcal{O}\left(h^{\infty}\right)_{S(1)}, \quad 1=p \# q^{\prime}+\mathcal{O}\left(h^{\infty}\right)_{S(1)}
$$

Show that $q=q^{\prime}+\mathcal{O}\left(h^{\infty}\right)_{S\left(1 / m_{2}\right)}$ and thus $q=p \# q+\mathcal{O}\left(h^{\infty}\right)_{S(1)}$. (Hint: compute the product $q \# p \# q^{\prime}$.)

Exercise 7.3. Consider the Schrödinger operator on \mathbb{R}^{n}

$$
P=-h^{2} \Delta+V(x)
$$

where $V \in C^{\infty}\left(\mathbb{R}^{n}\right)$ satisfies the following assumptions for some $\ell>0$:

- Bounded derivatives: $\partial^{\alpha} V(x)=\mathcal{O}\left(\langle x\rangle^{\ell}\right)$ for all α;
- Ellipticity at infinity: $V(x) \geq C^{-1}\langle x\rangle^{\ell}-C$ for some $C>0$.

Assume that we are given a family of eigenfunctions:

$$
\left(P-E_{h}\right) u_{h}=0, \quad\left\|u_{h}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}=1, \quad E_{h} \xrightarrow{h \rightarrow 0} E \in \mathbb{R} .
$$

Define the classically allowed region

$$
\Omega_{E}:=\left\{x \in \mathbb{R}^{n} \mid V(x) \leq E\right\}
$$

and fix an open set $U \supset \Omega_{E}$. Using the elliptic estimate, show that

$$
\left\|u_{h}\right\|_{L^{2}\left(\mathbb{R}^{n} \backslash U\right)}=\mathcal{O}\left(h^{\infty}\right) \quad \text { as } \quad h \rightarrow 0
$$

(Hint: take $a(x, \xi)=\chi(x)$ where $\chi \in C^{\infty}\left(\mathbb{R}^{n}\right), \operatorname{supp} \chi \cap \Omega_{E}=\emptyset$, and $\chi=1$ on $\mathbb{R}^{n} \backslash U$.)
Exercise 7.4.* This advanced exercise provides estimates which may be used to establish functional calculus for pseudodifferential operators in the course on eigenfunctions. Assume that

$$
P=\mathrm{Op}_{h}(p), \quad p \in S(m)
$$

where m is an order function such that $m(x, \xi) \rightarrow \infty$ as $(x, \xi) \rightarrow \infty$, and p is real-valued and satisfies the following ellipticity at infinity assumption: there exists a constant C such that for all (x, ξ)

$$
p(x, \xi ; h) \geq \frac{m(x, \xi)}{C}-C
$$

Assume that $z \in \mathbb{C}$ varies in a compact set.
(a) Fix $z \in \mathbb{C} \backslash \mathbb{R}$. Show that the symbol $p-z$ is elliptic everywhere. Define the symbols $q_{0}, q_{1}, \ldots \in S(1 / m)$ using Exercise 7.1(c) such that for all k

$$
\begin{equation*}
\left(q_{0}+h q_{1}+\cdots+h^{k-1} q_{k-1}\right) \#(p-z)=1+\mathcal{O}\left(h^{k}\right)_{S(1)} . \tag{7.1}
\end{equation*}
$$

(b) We now allow z to approach the real line. Show the derivative bounds for each α, j, and (x, ξ)

$$
\left|\partial^{\alpha} q_{j}(x, \xi, z ; h)\right| \leq \frac{C_{\alpha, j}}{|\operatorname{Im} z|^{2 j+1+|\alpha|} \cdot m(x, \xi)}
$$

(Hint: first of all, for any symbol q write the composition formula in the form

$$
q \#(p-z) \sim q(p-z)-\sum_{j=1}^{\infty} h^{j} L_{j} q
$$

where each L_{j} is a differential operator of order j with z-independent coefficients which are in $S(m)$. Now, to get (7.1) we put

$$
q_{0}:=\frac{1}{p-z} ; \quad q_{k}:=\frac{1}{p-z} \sum_{j=1}^{k} L_{j} q_{k-j}, \quad k \geq 1
$$

From here obtain the formula

$$
q_{k}=\sum_{r=1}^{2 k+1} \frac{\tilde{q}_{k r}}{(p-z)^{r}}
$$

where $\tilde{q}_{k r} \in S\left(m^{r-1}\right)$ are z-independent, and deduce the needed estimate.)
(c) Using L^{2} boundedness (see formula (4.5.10) in Zworski's book) and analyzing the remainder in (7.1) similarly to part (b) of this exercise, show that there exists some M_{k} depending only on n, k such that

$$
\begin{aligned}
Q(z)(P-z) & =I+\mathcal{O}\left(\frac{h^{k}}{|\operatorname{Im} z|^{M_{k}}}\right)_{L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)} \\
\text { where } \quad Q(z) & :=\operatorname{Op}_{h}\left(q_{0}+h q_{1}+\cdots+h^{k-1} q_{k}\right)
\end{aligned}
$$

(d) Show that the above statements are still true when p is not real-valued but $\operatorname{Im} p=$ $\mathcal{O}(h)_{S(m)}$, by dividing by Re $p-z$ instead of $p-z$ and putting the imaginary part of p into the next step of the iteration.

