
EXERCISES IN SEMICLASSICAL ANALYSIS
AT SNAP 2019, §6

SEMYON DYATLOV

Exercise 6.1. Show the following versions of the Product, Commutator, and Adjoint

Rules: if a, b ∈ S(1) then

Oph(a) Oph(b) = Oph(ab) +O(h)L2(Rn)→L2(Rn),

[Oph(a),Oph(b)] = −ihOph({a, b}) +O(h2)L2(Rn)→L2(Rn),

Oph(a)∗ = Oph(a) +O(h)L2(Rn)→L2(Rn).

Exercise 6.2. Assume that a ∈ S(1), the functions χ1, χ2 ∈ C∞c (Rn) are h-independent,

and suppχ1 ∩ suppχ2 = ∅. Show that

‖χ1 Oph(a)χ2‖L2(Rn)→L2(Rn) = O(h∞).

This is a version of pseudolocality of pseudodifferential operators. It is a weaker

property than locality of differential operators: if a was a polynomial in ξ, then

χ1 Oph(a)χ2 = 0.

Exercise 6.3. Assume that a ∈ S(m) where m is an order function and

m(w)→ 0 as w = (x, ξ)→ 0.

Fix χ ∈ C∞c (R2n) such that suppχ ⊂ B(0, 2) and χ = 1 on B(0, 1). For R ≥ 1, define

aR(w) := χ
(w
R

)
a(w), w ∈ R2n.

(a) Show that for each multiindex α, we have

sup |∂α(a− aR)| → 0 as R→ 0.

(b) Using the L2 boundedness theorem (see Zworski’s book, formula (4.5.9)) show that

‖Oph(a)−Oph(aR)‖L2(Rn)→L2(Rn) → 0 as R→ 0.

Exercise 6.4. For s ∈ R, define the semiclassical Sobolev space Hs
h(Rn), S (Rn) ⊂

Hs
h(Rn) ⊂ S ′(Rn), with the norm

‖u‖2Hs
h(Rn) :=

∫
Rn

〈hξ〉2s|û(ξ)|2 dξ, 〈hξ〉 :=
√

1 + |hξ|2.
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(a) Show that the norms ‖•‖Hs
h(Rn) are equivalent for fixed s and different values of h,

with equivalence constants depending on h.

(b) Show that the norm ‖u‖Hs
h(Rn) is equivalent, with equivalence constants indepen-

dent of h, to the norm ‖Oph(〈ξ〉s)u‖L2(Rn).

(c) Assume that a ∈ S(〈ξ〉k). Using part (b), the Composition Theorem, and the L2

Boundedness Theorem, show that for each s there exists a constant C such that for

all h

‖Oph(a)‖Hs
h(Rn)→Hs−k

h (Rn) ≤ C.

Exercise 6.5.∗ Let A : L2(Rn)→ L2(Rn) be a bounded operator. Fix a Hilbert basis

{ej} of L2(Rn) and define the Hilbert–Schmidt norm of A by putting

‖A‖2HS :=
∑
j

‖Aej‖2L2(Rn).

If ‖A‖HS <∞ then we call A a Hilbert–Schmidt operator.

(a) For any other Hilbert basis {fk} show the identities∑
j

‖Aej‖2L2(Rn) =
∑
j,k

|〈Aej, fk〉L2(Rn)|2 =
∑
k

‖A∗fk‖2L2(Rn).

Use these to show that ‖A‖HS does not depend on the choice of the Hilbert basis and

‖A‖HS = ‖A∗‖HS.

(b) Show the inequalities

‖A‖L2(Rn)→L2(Rn) ≤ ‖A‖HS,

‖AB‖HS ≤ ‖A‖L2(Rn)→L2(Rn) · ‖B‖HS,

‖AB‖HS ≤ ‖A‖HS · ‖B‖L2(Rn)→L2(Rn).

(c) Show that the space of Hilbert–Schmidt operators is a Hilbert space with the inner

product

〈A,B〉HS :=
∑
j

〈Aej, Bej〉L2(Rn).

(d) Assume that A is an integral operator:

Au(x) =

∫
Rn

KA(x, y)u(y) dy, KA ∈ L2(R2n).

Show that A is a Hilbert–Schmidt operator and

‖A‖HS = ‖KA‖L2(R2n).

You may use the fact that for any two Hilbert bases {ej}, {fk} of L2(Rn), if we define

(ej ⊗ fk)(x, y) = ej(x)fk(y), then {ej ⊗ fk}j,k is a Hilbert basis of L2(R2n).
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(e) Assume that a ∈ L2(R2n). Show that

‖Oph(a)‖HS = (2πh)−
n
2 ‖a‖L2(R2n).

Exercise 6.6.∗ For a bounded operator A on L2(Rn), we say it is a trace class operator,

if it can be written as A = BC where B,C are Hilbert–Schmidt operators. For a trace

class operator A, define its trace by

trA =
∑
j

〈Aej, ej〉L2(Rn)

where {ej} is a Hilbert basis of L2(Rn).

(a) If A = BC where B,C are Hilbert–Schmidt operators, show that

trA = 〈C,B∗〉HS.

Use this to show that trA is independent of the choice of the Hilbert basis.

(b) For A = BC where B,C are Hilbert–Schmidt operators, show that tr(BC) =

tr(CB) and trA = trA∗.

(c) We use without proof the following fact (see Theorem C.18 in Zworski’s book): if

A is an integral operator

Au(x) =

∫
Rn

KA(x, y)u(y) dy, KA ∈ S (R2n),

then A is trace class and

trA =

∫
Rn

KA(x, x) dx. (6.1)

Show the formula (6.1) when KA(x, y) = f(x)g(y), f, g ∈ S (Rn).

(d) Using (6.1), show that for a ∈ S (R2n)

tr Oph(a) = (2πh)−n
∫
R2n

a(x, ξ) dxdξ.


