EXERCISES IN SEMICLASSICAL ANALYSIS AT SNAP 2019, §5

SEMYON DYATLOV

Recall the notation

$$\langle x \rangle := \sqrt{1 + |x|^2}.$$

Exercise 5.1. (a) Let $s \in \mathbb{R}$. Show that

$$m(x,\xi) = \langle x \rangle^s, \quad m(x,\xi) = \langle \xi \rangle^s, \quad m(z) = \langle z \rangle^s$$

are order functions, where we denote $z = (x, \xi)$.

(b) Show that the order functions in part (a) satisfy $m \in S(m)$.

Exercise 5.2. Show that

$$a(x,\xi) = \sum_{|\alpha| \le k} a_{\alpha}(x)\xi^{\alpha}$$

where each $a_{\alpha}(x)$ has all derivatives bounded, lies in $S(\langle \xi \rangle^k)$.

Exercise 5.3. (a) Let m_1, m_2 be order functions. Show that m_1m_2 is an order function as well.

(b) Show that if $a_1 \in S(m_1), a_2 \in S(m_2)$, then $a_1 a_2 \in S(m_1 m_2)$.

Exercise 5.4.^{*} (a) Arguing similarly to the proof in the lecture, show that if m is an order function and $a \in S(m)$, then $Op_h(a)^*$ is a continuous operator on $\mathscr{S}(\mathbb{R}^n)$.

(b) Using part (a), show that $Op_h(a)$ is a continuous operator on $\mathscr{S}'(\mathbb{R}^n)$.

Exercise 5.5.^{*} Using Exercise 3.5(b) and following the proof for standard quantization given in the lecture, show that if m is an order function and $a \in S(m)$, then the Weyl quantization $\operatorname{Op}_{h}^{w}(a)$ is a continuous operator on $\mathscr{S}(\mathbb{R}^{n})$ and on $\mathscr{S}'(\mathbb{R}^{n})$.

Exercise 5.6.^{*} (a) Show that $a(x,\xi) = e^{-i\langle x,\xi \rangle}$ does not lie in S(m) for any order function m.

(b) With a defined in part (a) and h := 1, show that $Op_h(a)$ does not map $\mathscr{S}(\mathbb{R}^n)$ to itself, and it does not map $\mathscr{S}'(\mathbb{R}^n)$ to itself either.

Date: July 29, 2019.