EXERCISES IN SEMICLASSICAL ANALYSIS AT SNAP 2019, §4

SEMYON DYATLOV

Recall the Composition and Adjoint Theorems: for $a, b \in \mathscr{S}\left(\mathbb{R}^{2 n}\right)$,

$$
\mathrm{Op}_{h}(a) \mathrm{Op}_{h}(b)=\mathrm{Op}_{h}(a \# b), \quad \mathrm{Op}_{h}(a)^{*}=\mathrm{Op}_{h}\left(a^{*}\right)
$$

where we have the asymptotic expansions in $\mathscr{S}\left(\mathbb{R}^{2 n}\right)$, as $h \rightarrow 0$

$$
\begin{align*}
a \# b(x, \xi ; h) & \sim \sum_{j=0}^{\infty}(-i h)^{j} \sum_{|\alpha|=j} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} a(x, \xi) \partial_{x}^{\alpha} b(x, \xi), \tag{4.1}\\
a^{*}(x, \xi ; h) & \sim \sum_{j=0}^{\infty}(-i h)^{j} \sum_{|\alpha|=j} \frac{1}{\alpha!} \partial_{x}^{\alpha} \partial_{\xi}^{\alpha} \overline{a(x, \xi)} . \tag{4.2}
\end{align*}
$$

Exercise 4.1. (a) Check by hand that an expansion similar to (4.1) holds for $a=\xi_{j}$, $b=x_{j}$. (Of course the expansion will no longer be in $\mathscr{S}\left(\mathbb{R}^{2 n}\right)$; the next section will address this.) Check the Product Rule and the Commutator Rule in this case.
(b) Check by hand that an expansion similar to (4.2) holds for $a=x_{j} \xi_{j}$.
(c)* By direct computation (using the Leibniz rule) show that expansions of the form (4.1)-(4.2) hold in the case when a, b are polynomials in ξ, and thus $\mathrm{Op}_{h}(a), \mathrm{Op}_{h}(b)$ are semiclassical differential operators, see Exercise 3.2.

Exercise 4.2. Verify that the $j=0,1$ terms of (4.1) give the Product Rule and the Commutator Rule, and the $j=0$ term of (4.2) gives the Adjoint Rule.

Exercise 4.3. Using the multinomial theorem, show the following identities used in the proof of the Composition Theorem and the Adjoint Theorem:

$$
\begin{aligned}
\left.\frac{1}{j!}\left\langle\partial_{y}, \partial_{\eta}\right\rangle^{j}(a(x, \eta) b(y, \xi)) \right\rvert\, \begin{array}{c}
y=x \\
\eta=\xi \\
\hline
\end{array} & =\sum_{|\alpha|=j} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} a(x, \xi) \partial_{x}^{\alpha} b(x, \xi), \\
\frac{1}{j!}\left\langle\partial_{x}, \partial_{\xi}\right\rangle^{j} \overline{a(x, \xi)} & =\sum_{|\alpha|=j} \frac{1}{\alpha!} \partial_{x}^{\alpha} \partial_{\xi}^{\alpha} \overline{a(x, \xi)} .
\end{aligned}
$$

Exercise 4.4. In lecture, we only established the expansion (4.1) for any fixed (x, ξ). Show that this expansion is valid in $\mathscr{S}\left(\mathbb{R}^{2 n}\right)$, in particular the remainder is controlled
uniformly in (x, ξ) and the expansion can be differentiated. (Here $a \# b$ is compactly supported and thus there is no need to get asymptotics as $(x, \xi) \rightarrow \infty$.)

Exercise 4.5.* (a) Assume that Q is a $2 n \times 2 n$ invertible symmetric real-valued matrix, $a \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{2 n}\right)$ is supported in the ball $B_{\mathbb{R}^{2 n}}(0, R)$ for some $R \geq 1$, and

$$
\tilde{a}(\rho ; h):=\int_{\mathbb{R}^{2 n}} e^{\frac{i}{2 h}\langle Q w, w\rangle} a(\rho+w) d w .
$$

Show that for each multiindices α, β and each N there exists a constant $C_{\alpha \beta N}$ such that for all $h \in(0,1]$

$$
\left|\rho^{\alpha} \partial_{\rho}^{\beta} \tilde{a}(\rho ; h)\right| \leq C_{\alpha \beta N} h^{N} \quad \text { for all } \quad \rho \in \mathbb{R}^{2 n},|\rho| \geq 2 R
$$

(Hint: integrate by parts using the identity $e^{\frac{i}{2 h}\langle Q w, w\rangle}=h L e^{\frac{i}{2 h}\langle Q w, w\rangle}$ where $L:=$ $-\frac{i}{|w|^{2}}\left\langle Q^{-1} w, \partial_{w}\right\rangle$.)
(b) Explain how part (a) gives the last part of the proof of the Adjoint Theorem in the lecture.

Exercise 4.6.* Following the proof of the Adjoint Theorem, show the following change of quantization formula: if $a \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{2 n}\right)$, then

$$
\mathrm{Op}_{h}^{\mathrm{w}}(a)=\mathrm{Op}_{h}\left(a_{\mathrm{w}}\right)
$$

where $a_{\mathrm{w}}(x, \xi ; h)$ has the asymptotic expansion in $\mathscr{S}\left(\mathbb{R}^{2 n}\right)$

$$
a_{\mathrm{w}}(x, \xi ; h) \sim \sum_{j=0}^{\infty}\left(-\frac{i h}{2}\right)^{j} \sum_{|\alpha|=j} \frac{1}{\alpha!} \partial_{x}^{\alpha} \partial_{\xi}^{\alpha} a(x, \xi) .
$$

In particular, $a_{\mathrm{w}}=a+\mathcal{O}(h)_{\mathscr{S}\left(\mathbb{R}^{2 n}\right)}$. For a more general change of quantization statement, see Theorem 4.13 in Zworski's book.

