EXERCISES IN SEMICLASSICAL ANALYSIS AT SNAP 2019, §10

SEMYON DYATLOV

Exercise 10.1. Assume that $u \in L^{2}\left(\mathbb{R}^{n}\right)$ is h-independent. Define the nonsemiclassical wavefront set $\mathrm{WF}(u) \subset \mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$ as follows: a point $\left(x_{0}, \xi_{0}\right) \in \mathbb{R}^{2 n}, \xi_{0} \neq 0$, does not lie in $\operatorname{WF}(u)$ if there exists $\chi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right), \chi\left(x_{0}\right) \neq 0$, and a conic neighborhood V of ξ_{0} such that $\hat{u}(\xi)=\mathcal{O}\left(\langle\xi\rangle^{-\infty}\right)$ for $\xi \in V$. Using the Fourier transform definition of the semiclassical wavefront set $\mathrm{WF}_{h}(u)$, show that

$$
\mathrm{WF}_{h}(u)=(\operatorname{supp} u \times\{0\}) \cup \mathrm{WF}(u) .
$$

Exercise 10.2. This exercise explores basic properties of Lagrangian submanifolds and phase functions, in preparation for Wednesday's distinguished lecture. For simplicity we restrict ourselves to the setting of \mathbb{R}^{n}. An n-dimensional embedded submanifold $\Lambda \subset \mathbb{R}^{2 n}$ is called Lagrangian if the pullback of the symplectic form $\omega=\sum_{j=1}^{n} d \xi_{j} \wedge d x_{j}$ to Λ is equal to 0 .
(a) Assume that $U \subset \mathbb{R}^{n}$ is an open set and $\Phi \in C^{\infty}(U ; \mathbb{R})$. Show that the graph of the gradient of Φ

$$
\begin{equation*}
\Lambda_{\Phi}=\{(x, d \Phi(x)) \mid x \in U\} \tag{10.1}
\end{equation*}
$$

is a Lagrangian submanifold. Conversely, show that if Λ is a Lagrangian submanifold, $\left(x_{0}, \xi_{0}\right) \in \Lambda$, and $T_{\left(x_{0}, \xi_{0}\right)} \Lambda$ projects isomorphically onto the x coordinates, then Λ has the form (10.1) in a neighborhood of $\left(x_{0}, \xi_{0}\right)$. (Hint: use that $\omega=d \alpha$ where $\alpha=\sum_{j=1}^{n} \xi_{j} d x_{j}$; for Λ_{Φ} given by (10.1) we have $\left.\alpha\right|_{\Lambda_{\Phi}}=d \Phi$.)
(b) Now assume that Φ depends on additional variables $\theta \in \mathbb{R}^{k}$, namely $\Phi(x, \theta) \in$ $C^{\infty}(U ; \mathbb{R})$ where $U \subset \mathbb{R}_{x}^{n} \times \mathbb{R}_{\theta}^{k}$ is open. Define the critical set

$$
\mathcal{C}_{\Phi}:=\left\{(x, \theta) \in U \mid \partial_{\theta} \Phi(x, \theta)=0\right\}
$$

and assume that $d\left(\partial_{\theta_{1}} \Phi\right), \ldots, d\left(\partial_{\theta_{k}} \Phi\right)$ are linearly independent at each point of \mathcal{C}_{Φ}. Assume moreover that the map

$$
j_{\Phi}: \mathcal{C}_{\Phi} \rightarrow \mathbb{R}^{2 n}, \quad(x, \theta) \mapsto\left(x, \partial_{x} \Phi(x, \theta)\right)
$$

is an embedding. Show that the image

$$
\Lambda_{\Phi}=j_{\Phi}\left(\mathcal{C}_{\Phi}\right)=\left\{\left(x, \partial_{x} \Phi(x, \theta)\right) \mid \partial_{\theta} \Phi(x, \theta)=0\right\}
$$

is a Lagrangian submanifold. (Hint: show that $j_{\Phi}^{*} \alpha=d \Phi$.) We say that Λ_{Φ} is the Lagrangian manifold generated by Φ.
(c) Assume that Λ is a Lagrangian manifold, $\left(x_{0}, \xi_{0}\right) \in \Lambda$, and $T_{\left(x_{0}, \xi_{0}\right)} \Lambda$ projects isomorphically onto the ξ coordinates. Show that a neighborhood of $\left(x_{0}, \xi_{0}\right)$ in Λ is generated by a phase function

$$
\begin{equation*}
\Phi(x, \theta)=\langle x, \theta\rangle-F(\theta), \quad \theta \in \mathbb{R}^{n} \tag{10.2}
\end{equation*}
$$

where F is some function on a neighborhood of ξ_{0}. (Hint: use that $\omega=-d \beta$ where $\beta=\sum_{j} x_{j} d \xi_{j} ; \Lambda$ is generated by $\Phi(x, \theta)$ of the form (10.2) if and only if $\left.\beta\right|_{\Lambda}=d F$.)

Exercise 10.3. Assume that $\Phi(x, \theta)$ is a phase function satisfying the assumptions in Exercise $10.2(\mathrm{~b})$ and Λ is the Lagrangian manifold generated by Φ. Assume next that Λ is also generated by some function $\Psi(x)$ in the sense of (10.1). Consider a family of functions of the form

$$
\begin{equation*}
u(x ; h)=(2 \pi h)^{-\frac{k}{2}} \int_{\mathbb{R}^{k}} e^{\frac{i}{h} \Phi(x, \theta)} a(x, \theta) d \theta \tag{10.3}
\end{equation*}
$$

where a is a C_{c}^{∞} function on the domain of Φ. Using the method of stationary phase, show that we can also write

$$
u(x ; h)=e^{\frac{i}{h} \Psi(x)} b(x ; h)+\mathcal{O}\left(h^{\infty}\right)_{C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)}
$$

for some b supported in an h-independent compact set inside the domain of Ψ, and with all derivatives bounded uniformly in h.
(This exercise shows in a special case that the class of functions of the form (10.3) does not depend on the phase function generating Λ. Functions in this class are called semiclassical Lagrangian distributions associated to Λ and are a key concept in semiclassical analysis.)

Exercise 10.4.* Assume that M is a compact manifold and $u=u_{h} \in \mathcal{D}^{\prime}(M)$ is a family of distributions such that $\left\|u_{h}\right\|_{H_{h}^{-N}} \leq C h^{-N}$ for some C, N.
(a) Let $\left(x_{0}, \xi_{0}\right) \in T^{*} M$. Show that the following conditions are equivalent:
(1) There exists $A \in \Psi_{h}^{k}\left(T^{*} M\right)$ such that $\left|\sigma_{h}(A)\left(x_{0}, \xi_{0}\right)\right| \geq c>0$ for some h independent constant c and $A u_{h}=\mathcal{O}\left(h^{\infty}\right)_{C^{\infty}}$;
(2) There exists a neighborhood U of $\left(x_{0}, \xi_{0}\right)$ such that for each $B \in \Psi_{h}^{\text {comp }}(M)$ such that $\mathrm{WF}_{h}(B) \subset U$, we have $B u_{h}=\mathcal{O}\left(h^{\infty}\right)_{C^{\infty}}$. (Here $\Psi_{h}^{\text {comp }}(M), \mathrm{WF}_{h}(B)$ are defined in Exercise 9.3.)
(Hint: to show that (1) implies (2), use elliptic estimate.) If the above conditions hold, we say $\left(x_{0}, \xi_{0}\right)$ does not lie in $\mathrm{WF}_{h}(u)$; this defines a closed subset $\mathrm{WF}_{h}(u) \subset T^{*} M$.
(b) Show that for any $A \in \Psi_{h}^{\text {comp }}(M), \mathrm{WF}_{h}(A u) \subset \mathrm{WF}_{h}(A) \cap \mathrm{WF}_{h}(u)$.
(c) Assume that g is a Riemannian metric on M and

$$
\left(-h^{2} \Delta_{g}-E_{h}\right) u_{h}=0, \quad E_{h} \rightarrow 1 \quad \text { as } h \rightarrow 0
$$

Show that $\mathrm{WF}_{h}\left(u_{h}\right) \subset S^{*} M=\left\{(x, \xi) \in T^{*} M:|\xi|_{g(x)}=1\right\}$.

