OVERVIEW OF CALCULUS ON MANIFOLDS

SEMYON DYATLOV

Here is a brief overview of semiclassical pseudodifferential calculus on a manifold M. See §E.1 in the Dyatlov–Zworski book for details. (Note: the calculus here corresponds to symbols in $S_{1,0}^k$ in the notation of that book.)

- Distributions and general operators:
 - $-\mathcal{D}'(M)$ distributions on $M, \mathcal{E}'(M)$ compactly supported distributions;
 - an operator $A : C_{c}^{\infty}(M) \to \mathcal{D}'(M)$ is called compactly supported, if its Schwartz kernel is compactly supported, i.e. $A = \chi A \chi$ for some $\chi \in C_{c}^{\infty}(M)$; in this case A maps $C^{\infty}(M) \to \mathcal{E}'(M)$;
 - $-A: C^{\infty}_{c}(M) \to \mathcal{D}'(M)$ is called properly supported, if for each $\chi \in C^{\infty}_{c}(M)$, the operators χA and $A\chi$ are compactly supported; in this case A maps $C^{\infty}_{c}(M) \to \mathcal{E}'(M)$ and $C^{\infty}(M) \to \mathcal{D}'(M)$;
- Pseudodifferential operators:
 - $-\Psi_h^k(M), k \in \mathbb{R}$, the class of semiclassical pseudodifferential operators of order k on M;
 - all elements of $\Psi_h^k(M)$ map $C_c^{\infty}(M) \to C^{\infty}(M)$ and $\mathcal{E}'(M) \to \mathcal{D}'(M)$;
 - properly supported operators in $\Psi_h^k(M) \max C_c^{\infty}(M) \to C_c^{\infty}(M), C^{\infty}(M) \to C^{\infty}(M), \mathcal{E}'(M) \to \mathcal{E}'(M), \mathcal{D}'(M) \to \mathcal{D}'(M)$, and thus can be multiplied with other operators;
 - $-h^{\infty}\Psi^{-\infty} = \bigcap_k \Psi_h^k(M)$, the class of rapidly decaying smoothing operators on M: integral operators of the form $u \mapsto \int_M K(x, y; h)u(y) \, dy$ where $K \in C^{\infty}(M \times M)$ and each C^{∞} seminorm of K is $\mathcal{O}(h^{\infty})$; such operators map $\mathcal{E}'(M) \to C^{\infty}(M)$;

• Symbols and quantization:

- $S^k(T^*M)$ the space of *h*-dependent Kohn–Nirenberg symbols of order k on the cotangent bundle T^*M (with no uniformity in x imposed when M is noncompact);
- $-\sigma_h^k: \Psi_h^k(M) \to S^k(T^*M)/hS^{k-1}(T^*M)$ the principal symbol map (we usually suppress k in notation, simply writing σ_h);
- the kernel of σ_h^k is equal to $h\Psi_h^{k-1}(M)$;

Date: August 3, 2019.

SEMYON DYATLOV

- $-\operatorname{Op}_h: S^k(T^*M) \to \Psi_h^k(M)$ a noncanonical quantization map;
- $-\sigma_h^k(\operatorname{Op}_h(a)) = a \mod hS^{k-1}(T^*M) \text{ for all } a \in S^k(T^*M);$
- for any $a \in S^k(T^*M)$, $Op_h(a)$ is properly supported, and if a is compactly supported in x, then $Op_h(a)$ is compactly supported;
- we can choose Op_h so that $Op_h(1) = I$;
- for each $A \in \Psi_h^k(M)$ there exists $a \in S^k(T^*M)$ such that $A = \operatorname{Op}_h(a) + \mathcal{O}(h^{\infty})_{\Psi^{-\infty}}$;
- Algebraic properties:
 - Product Rule: if $A \in \Psi_h^k(M)$, $B \in \Psi_h^\ell(M)$, and at least one of these operators is properly supported, then $AB \in \Psi_h^{k+\ell}(M)$, and $\sigma_h^{k+\ell}(AB) = \sigma_h^k(A)\sigma_h^\ell(B)$; equivalently, if $a \in S^k(T^*M)$, $b \in S^\ell(T^*M)$, then

 $\operatorname{Op}_h(a)\operatorname{Op}_h(b) = \operatorname{Op}_h(ab) + \mathcal{O}(h)_{\Psi^{k+\ell-1}(M)};$

- Commutator Rule: under the assumptions of the Product Rule we have $\sigma_h^{k+\ell-1}(h^{-1}[A,B]) = -i\{\sigma_h^k(A), \sigma_h^\ell(B)\};$ equivalently,

$$[\operatorname{Op}_h(a), \operatorname{Op}_h(b)] = -ih \operatorname{Op}_h(\{a, b\}) + \mathcal{O}(h^2)_{\Psi^{k+\ell-2}(M)};$$

- Adjoint Rule: if we fix any smooth density on M (to fix an inner product on $L^2(M)$ and thus be able to take adjoints of operators), and $A \in \Psi_h^k(M)$, then $A^* \in \Psi_h^k(M)$ and $\sigma_h^k(A^*) = \overline{\sigma_h^k(A)}$; equivalently, if $a \in S^k(T^*M)$, then

$$\operatorname{Op}_h(a)^* = \operatorname{Op}_h(\overline{a}) + \mathcal{O}(h)_{\Psi_h^{k-1}(M)};$$

- Wavefront sets:
 - For $A \in \Psi_h^k(M)$, its wavefront set is $WF_h(A) \subset \overline{T}^*M$, with \overline{T}^*M the fiber-radial compactification of T^*M ;
 - $-\operatorname{WF}_{h}(A) = \emptyset \iff A = \mathcal{O}(h^{\infty})_{\Psi^{-\infty}};$
 - if $a(x, \xi; h)$ is supported in an *h*-independent set *K*, then WF_h(Op_h(a)) ⊂ *K*;
 - $-\operatorname{WF}_{h}(A+B) \subset \operatorname{WF}_{h}(A) \cup \operatorname{WF}_{h}(B);$
 - $-\operatorname{WF}_{h}(AB) \subset \operatorname{WF}_{h}(A) \cap \operatorname{WF}_{h}(B);$
 - $-\operatorname{WF}_{h}(A^{*}) = \operatorname{WF}_{h}(A);$
- L^2 theory, assuming for simplicity M is compact:
 - One can define semiclassical Sobolev spaces $H_h^s(M)$, with a noncanonical *h*-dependent norm, and $H_h^0(M) = L^2(M)$;
 - if $A \in \Psi_h^k(M)$, then $A : H_h^s(M) \to H_h^{s-k}(M)$, with the norm bounded uniformly in h;
 - $-H_h^s(M)$ embeds compactly into $H_h^t(M)$ for s > t;

– Sharp Gårding inequality: if $a \in S^k(T^*M)$ and $\operatorname{Re} a \ge 0$ everywhere, then for each $u \in H_h^{\frac{k}{2}}(M)$ and h

$$\operatorname{Re}\langle \operatorname{Op}_{h}(a)u, u \rangle_{L^{2}} \geq -Ch \|u\|_{H^{\frac{k-1}{2}}_{h}(M)}$$

where C is some constant depending on a.